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SUMMARY

As the result of extensive trajectory calculations it is found that when the
hydrazine-oxygen propellant system is employed, a satellite carrying a payload of
500 pounds may be established on a periodic orbit by using a rocket of about 85,000
pounds initial gross weight, 1In order to achieve satisfactory duration an orbital
height of 350 miles is recommended. The investigation shows that in this case a
three stage rocket is best and that a maximum load factor of about 5 should be used
for each stage. The study is presented in two parts. Part I consists of a pre-
sentation and simplified discussion of the various parameters upon which the tra-
Jectory performance depends. Arguments are given to show how, for all practical
purposes, it is best to use independent staging, constant mass flow burning, and to
use the same v (propellant weight to gross weight ratio) and the same n (maximum load
factor) for each rocket stage. The flight path control is accomplished by tilting
the rocket which, since the axis of the motors corresponds essentially with the longi-
tudinal axis of the rocket, provides a component of rocket motor thrust to give lift.
Qualitative arguments are presented to show how it is best to have a trajectory which
starts in the vertical, has a small amount of tilt beginning early in the flight, and
has a long period of coasting occurring late in the trajectory. Finally a very use-
ful simplified formula is derived giving the basic relation existing between the
various trajectory parameters.

In Part Il the accurate equations of motion are presented, and the method of
integration is discussed. The ultimate aim of the calculations is to determine
the optimum trajectory for a three stage rocket as based on the best tilt program,
best coasting arrangement, and the best value for the maximum load factor. Some re-
sults are presented for different propellant systems, rockets having other than three
stages, and for various orbital heights. Some attention is given to the questions of
trajectory accuracy, orbital stability, and the descending trajectory.
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area
acceleration
gsemi-major axis of elliptical orbit

= gemi-minor axis of elliptical orbit
= drag coefficient
= lift coefficient

drag

energy

thrust

force

absolute acceleration of gravity at any height h

absolute acceleration of gravity at sea level = 32.199 ft/sec®

at the equator

= gravitational conversion factor - 32.174 ft/sec?
= vertical height above sea level

specific impulse
lift = force normal to trajectory
aerodynamic lift

= Mmass

total number of rocket stages

total number of complete revolutions of the satellite body in its orbit to give
a specified decrease in height

maximum load factor

= applied structural load

1/2 pv? = dynamic pressure

radius of the earth = 3963.34 miles at the equator

distance from the center of the earth to the height h; r = B + A

range measured with respect to a non-rotating coordinate system

range measured with respect to a coordinate system which rotates with the earth
distance

total time

total time required for the number of revolutions N _

time

length of burning period

energy constant

velocity referred to non-rotating coordinate system

velocity referred to a coordinate system rotating with the earth

mg = standard value for weight based on the standard sea level value for
gravity g = 32.174 ft/sec® .

total initial weight {gross weight) of any stage = Wg + W, + WP + W,
total initial weight (gross weight) of a particular stage

basic weight =W - W,, - #, .. The basic weight includes structure, rocket
motors, and all component parts except payload, rocket motor propellants, and
auxilary fuel

= payload of any stage

weight of rocket motor propellants at the beginning of a stage
weight of auxiliary fuel
weight of rocket mator propellants plus auxiliary fuel = ¥, + H;
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=

angle of tilt of rocket = angle between trajectory and longitudinal axis of
rocket = angle of attack

effective angle of tilt

finite difference

”P'/Wf

angle of inclination of the trajectory with the instantaneous horizontal when
referred to a non-rotating coordinate system

angle of inclination of the trajectory with the instantaneous horizontal when
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mass density
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FLIGHT MECHANICS OF A SATELLITE ROCKET

INTRODUCTION

The basic problem to be discussed in this report is that of establishing circular
orbital motion about the earth in the equatorial plane with a rocket so that the
rocket becomes a satellite of the earth, and which will therefore be referred to as
a satellite rocket. Some of the general features of this problem have already re-
ceived some attention in a preliminary report{!). However, since the present analysis
has been organized in such a completely different manner, the presentation contained
herein has been made complete in itself.

The establishment of a circular orbit about the earth requires that the satel-
lite rocket be designed to attain a final orbital speed of the order of 25,000 ft/sec
in order that the force of gravity acting on the rocket will be exactly balanced by
the centrifugal force resulting from the orbital motion. Besides the problem of
achieving the orbital speed there is the even more important problem of determining
the best trajectory to use in order to establish the orbit with a rocket having the
least possible gross weight, and it is this aspect of the problem which forms the
basic investigation presented herein. The investigation is divided into two main
parts. The first part deals with the subject in a somewhat general and approximate
manner which, nevertheless, yields some important simplified results. The second
part contains a detailed trajectory analysis together with the results of the com-

plete trajectory study.

I. GENERAL CONSIDERATIONS OF PERFORMANCE AND DESIGN
PARAMETERS OF A SATELLITE ROCKET
Before taking up the analysis of the flight mechanics of establishing circular

orbital [t] motion with a satellite rocket, it will be advantageous to first discuss
the problem from a more general standpoint in order to become familiar with the funda-~

M por references see page 89,

(1]

For footnote, see page 2.
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mental parameters which govern the motion of the rocket along a trajectory, The
basic problem is that of establishing the orbit with a rocket having the least possi-
ble gross weight, where the gross weight is defined as the total initial weight of
the rocket, consisting of basic weight, propellant weight, payload, etc. The funda-
mentals of this problem can be discussed from some relatively simple concepts.

It is found that certain fundamental basic parameters connected with the struc-
ture and operation of the rocket may be chosen, and that these parameters have certain
optimum values corresponding to a trajectorylt] of optimum shape such that the re-
quired gross weight is a minimum. The concepts and basic principles involved are
discussed first in part I in a simplified and rather qualitative fashion in order that
the more rigorous quantitative procedure in part II may be better understood. It is
first necessary to introduce the concept of specific impulse.

1. The Specific Impulse

In rocket motor nomenclature, the materials which are burned are called the pro-
pellants and consist of fuel and oxidizer. The high speed exhaust gases resulting
from combustion of the propellants produce the thrust which drives the rocket. It is
readily shown by use of Euler’'s momentum theorem that the thrust F produced by a
rocket motor is given by the expression (1}:(®)

dn'p
F-‘-‘/;’""a't—i/;’pe-pa)do', (1)

where the integration extends over the exhaust area, and where

V.. = axial component of exhaust velocity relative to the nozzle exit
do = element of exhaust area

P, = exhaust pressure

P, = free-air pressure

dn’,

—= = element of mass of propellants flowing through the exhaust area of the
nozzle per second (i.e., rate of mass flow of propellants through an
element of exhaust area).

It is seen, in general, that unless there is complete expansion of the exhaust gases
to give p_, = p,, the thrust will consist of two parts, one part called the velocity

(2]

The ascending trajectory, usually referred to simply as the trajectory, is de-
fined as the controlled part of the flight path over which the rocket moves and in
addition any section of uncontrolled flight followed by more controlled flight. 1In
general this will consist of the flight path when either thrust or lift forces are
operating plus the flight path during coasting. The orbit is defined as the path of
tﬁe motion which is established at the end of the trajectory, a path which is nearly
repested after each revolution about the earth. In the case of descending motion, the
corresponding flight path may be referred to as a descending trajectory even though
there may be no control exercised on the motion.

2



February 1, 1847

thrust and a second part called the pressure thrust. In the case of the ideal rocket
wotor in which there is complete expansion of the exhaust flow and the exhaust velo-
city 9; has no radial component (i.e., one-dimensional), the thrust is simply

d%Pt

F = e dt ? (2)

where dmp /dt is the total rate of mass flow of prcpellantsiz]. This equation shows
how fundamentally the thrust depends upon the exhaust velocity.

The thrust may be increased through the term dmy, ,/dt, since this may be made
arbitrarily large simply by providing adequate means for delivering and burning the
necessary amounts of propellants. This is not the case with the exhaust velocity
which is more strictly a characteristic of the propellant used and is thus a parameter
upon which the relative performance of different propellants might be based. For
this purpose however it is customary to use a closely related quantity I known as the
specific impulse which is defined by the relation

I = 3 (3)
- b ]
v 3
&8s dt
where g is the standard sea-level acceleration of gravity[aJ,and where I is expressed
in units of pounds of thrust obtained per pound of propellants used per second. It
will be found, Refs. (6) and (9) that the specific impulse may be computed in terms
of the temperature and pressure in the combustion chamber, the ratio of the specific
heats, the molecular weight of the ejected gases, and the amount of expansion in the
exhaust nozzle. Thus when the specific impulse is known, the thrust is given very
simply by
dmp ,

F = g, e 1 (4)

2. PBocket Performance

Let us now consider in an elementary fashion the motion of a rocket along a tra-
jectory defined in a stationary two-dimensional rectangular coordinate system as shown
in Fig. 1. For simplicity it will be assumed at first that there are no aerodynamic
forces or forces due to the earth’s motion so that the only forces acting are gravity,
the thrust of the rocket motor, and centrifugal forces. If v denotes the speed in
the direction of the tangent to the trajectory, the equation of motion of the center
of mass along the path (trajectory) is

dv
mgy T F-mgsin @, (5)

2 . . . . .
(2] _ It is convenient for the later developments to introduce the subscript t here to
indicate that the quantity is variable with time,

(5] The value g, is the standard value of gravity, 32.174 ft/sec®, used in converting
from slugs mass ~to pounds weight.

3
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where ® is the mass of the rocket and & is the angle between the horizontal and the
tangent to the trajectory (the angle of inclination of the trajectory). 1In the
absence of lift forces, the corresponding equation of motion in the direction normal
to the trajectory is

dg v3
muJ; T - mgcos 6 +mycos G, (6)

where r is the distance from the center of the-earth to the rocket (see part II). 1In
the equations of motion, 8 is the absolute value of the acceleration of gravity corre-
sponding to the distance r of the vehicle from the center of the earth. Absolute
gravity is distinguished from apparent gravity which contains the centrifugal force
effect of the earth’s rotation and which is less than the absolute value by this
amount. Since the mass rate of change of the rocket is connected with the mass rate
of propellant consumption by the relation (2]

dm
dm pt

dt dt

*

the specific impulse may be introduced by means of
dnm
F = -~ g—
‘s,dtl. (7)

where dr/dt is negative during burning, and Eq. (5) becomes

dv = - gfifm'- g sin &dt . (8)
p ~F
Tes 4 HORIZONTAL
o e \i\/‘—
A wg un 8
F = thrust of rocket motor.

g

angle of inclination of trajectory
from the horizontal.

Earth assumed not to rotate.

O
EARTH

SCHEMATIC DIAGRAM TO (LLUSTRATE MOTION OF ROCKET
ALONG A TRAJECTORY
Fl16. 1

[4]

It is understood here, without using the subscript ¢, that » is a function of time.

4
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Assuming as a first approximation that the specific impulse remains constant dur~
ing the burning, the integration of this equation yields ,

. ' f
bv = vpmvp = gl loe'..;-f g sin & dt , (9)
. t

i

where the subscript © indicates the initial conditions at the beginning of the burning
period and the subscript f the final conditions at the end of the burning period.
The length of the burning period is the difference tf = t, which will be represented
by t;. This approximate equation emphasizes the two most fundamental parameters in
rocket performance: the specific impulse, which depends in large part on the exhaust
velocity, and the ratio of the total mass of the rocket at the beginning and end of
the acceleration {(burning), which depends upon the proportion of the total mass com-
prising propellant mass. It is evident that any increase that can be secured in the
values of I and m;/m, will result in increased velocity gain of the rocket. Letting
np denote the mass o{rpropellants consumed during the burning period, the equation may
be written

».
LAv = gd logﬂ* f g sin & dt , (10)

Since the first term on the right is independent of time, it follows that the gain in
velocity due to the thrust of the rocket motor for a given mass consumption of propel-
lants is independent of the manner in which the burning takes place. The burning time
ty, on the other hand, is strictly dependent upon the manner of burning and here one
may distinguish between two fundamental cases: (1) burning with dmp /dt = - dn/dt =
const. which by Eq. (4) gives operation at constant thrust assuming I does not vary,
and (2) burning with F/m = const. (i.e. 1/m X dmp,/dt = ~1/m X dm/dt = const.) which,
by Eq. (5), gives operation at spproximately constant acceleration if the secondary
effects due to the inclination of the path are neglected. Before evaluating the bum-
ing time for these two cases of rocket-motor operation, a quantity called the load
factor is introduced.

3. The Load Factor

A parameter n, called the instantaneous load factor is now introduced by the
defining equation

dv
ntg, = ; + g sin 8 . (11}

This definition follows automatically from Eq. (5),

2 = ZL 4+ gainb.

F - dv
m dt
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where it is convenient to express the total acceleration, or force per unit mass,
(dv/dt + g sin 6), in terms of the standard acceleration of gravity g,. When the
only forces present are those entering into Eq. (5), the definition then also satis-
fies the relation

F
"€ T m

(12)

The maximum load factor occurring in any burning period will be denoted by n without
subscript where

dv
ng, = (E+ g sin g)nat.' (13)

which, with the same restrictions as for Eq. {12}, also satisfies the relation

ng, = (“fr) (14)

nax.

The quantity ng, is the maximum force, per unit mass of rocket, which is exerted on
the structure in an axial direction opposite to the thrust force F. It is the sum of
the axial inertia force and the axial component of the gravity force. The load
exerted on the structure at any instant is given by the product mn. g  and the maximum
load will be g, (mn,),. ~ For operation with constant thrust it follows that mn,g =
const. © F, and since in this case the load exerted on the structure will be constant
during any particular burning period, there will be no maximum load, although there
will be a maximum value n for n,. On the other hand, for operation with F/m = rconst,
there will exist, in general, in any particular burning period, a greatest value for
the product mn,g .

4, The Propellant-Gross Weight Parameter

In view of the fundamental importance of the ratio mi/mf occurring in Eq. (9),
it 1s found convenient to introduce a propellant-gross weight parameter v defined by

>
v = "WT s (15)

where Wy is the weight of the propellants and ¥; is the gross weightE5] of the rocket
(see section §). From the direct proportionality between weight and mass, it follows

from the notation used in Eq. (10) that v = ﬁ;/Wi = mp/m; and Eq. (10) may be written
_ 1 e
Av = g I log '1—..7;-~gs1n8>< ty {16)

where t, is the burning time and where for simplicity the integrand has been replaced
by its mean value g sin &.

s L .

[] For a single stage rocket the gross weight is defined as the total initial weight
of the rocket including the weight of the propellants. From the definitions it is
seen that Wp, my, W, and m; are constants independent of time.

6
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5. ‘The Burning Times

We may now evaluate f; in terms of the parameters I, n, and v, for the two funda-
mental cases of burning.

Case 1.

Burning with dm/dt = const. {constant rate of mass flow of propellants)
which, if I is constant, corresponds, by Eq. (7), to operation at constant
thrust. In this case since F is constant, the value of F/m is a maximum at the
end of the burning period when m is a minimum, and therefore Eq. (14), ng, =
F/mf. The burning time is evaluated by integration of Eq. (7) which gives

_ &l _ By &rr [ W
t, = F(mi—nf)- F};}_—l = FIWI--WP_

Introducing the parameters n and v, this may be written

t :-.._.—Iv—. 7
b n(l -~ v) ) (17)

Case 2.

Burning with F/m = const. [l/m (dm/dt) = const.] which corresponds approxi-
mately to operation with constant acceleration. In this case since F/m is con-
stant, any value of F/m occurring during the burning period may be used in
Eq. (13), and we have ng, = (F/m), .. =F/mn = Ff/mf. The burning time is evalu~-
ated by first dividing Eq. (7) by m giving

F 1 dn

n - T&Iwar
Assuming constant I, integration of this results in the expression

W.
g.m m, g.m i
t - S 1 i = £ I (-__) “
b - I log (——“f) F log Wi - WP

Introducing the parameters n and v, this may be written

1 1

ty = wlog

= (18)

It may be pointed out that for the same values of I, n, and v, the value of t;
given by Eq. (18) will be less than that given by Eq. (17) for the range of
values of the parameter v of practical importance.

6. Orbital Speed and Staging

The problem of establishing a rocket on a circular orbit encompassing the earth
is primarily one of accelerating the rocket to a high enough velocity, called the
orbital velocity, which is determined by the condition that the centrifugal force is

7
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exactly balanced by the gravity force. The problem of guiding the rocket into the
orbital path is secondary as far as the requirements of performance and design are
concerned. Let us consider the limitations on acceleration imposed by structural
_considerations. Using the following notation,

Wg = basic weight, which includes all component parts except payload,
rocket motor propellants, and auxiliary fuel,

Wp = total initial weight of rocket motor propellants

”2‘ = weight of payload

H; = total initial weight of auxiliary fuel

¥, = total initial weight, or gross weight W+ Wy + W+ .,

L/ ¥, ¥
= -5 _ L. » .
S (19)

Since H;/ﬁ} is extremely small and relatively unimportant compared to the other terms
in this equation, it will be neglected for the present and the parameter v will be
treated on the basis of the relation

¥, L/
B _ "L*
v = 1-Wi W, (20)

The auxiliary fuel will be brought into the discussion later, Egs. (77) and (78),
where a quantity v* is defined in accordance with Eq. (19). Although large accelera-
tion gives high performance, the associated large value of the load factor necessi-
tates a heavier structure with a resultin§ higher value of the ratio Wp/W,, and, as
shown in the Structure and Weight Report (37, in order to obtain optimum performance
there is a limitation on how small Wp/W, may be. Thus, since W;, is constant, the
limitation on Wp/W; sets a limit to the largest value permissible for v and therefore
to the largest acceleration attainable. Likewise, as shown in the Liquid Propellant
Report(9), there is a limitation as to how high a value can be attained for I.

Owing to these limitations on I and v, it is seen from Eq. (16) that there is a
corresponding limitation on how large a value may be obtained for Av, Since the
main problem is to establish an orbit with a rocket having the least possible gross
weight, it follows that we must seek conditions (both launching and orbital) which
will make the required Av as small as possible. Accordingly, not only should the
orbital velocity required be as small as possible, but also it would be highly desira-
ble to launch the rocket with an initial velocity as large as possible. The idea of
launching anything as large and heavy as the satellite rocket with an initial velocity
is, of course, highly impractical and is dismissed immediately. Also, there is very
little choice in, or control over, the magnitude of the required orbital velocity.
However, we do have a choice in selecting the launching site, and in this respect it
is found highly advantageous to have the launching take place at the equator with the
trajectory directed eastward.

8
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Although the rotation of the earth has been neglected in the simplified discus-
sion of part I, it is evident that when the launching takes place at the equator and
the trajectory is directed eastward, the fullest possible advantage is taken of the
linear velocity at the surface of the earth due to earth's rotation. Launching the
rocket in this manner at the equator makes the required change in velocity Av as
small as possible and the orbital velocity required with respect to the rotating earth
as small as possible. Since the linear velocity at the equator is 1525 ft/sec, the
required velocity Av is less by this amount than it would be for a non-rotating earth.
This saving in required velocity change results in an important saving in the re-
quired gross weight of the rocket. The importance of this saving may be readily
appreciated by the fact that when the rocket is launched at the equator, the gross
weight required is about 30 percent less than if it were launched at one of the
poles. Launching at the equator also has an important additional -advantage, for,
since the orbit will then lie in the equatorial plane for which there are no north-
south components of the Coriolis’ force, it is then possible to maintain orbital
motion in a fixed plane relative to the earth without the application of any forces
to control the path.

In view of the important advantages accruing from an equatorial launching of the
rocket with its trajectory directed toward the east, this type of launching will be
assumed in all succeeding discussion. However, in spite of the saving in gross weight
resulting from an equatorial launching, it is still found that the largest value
practically attainable for Av is not sufficient to accelerate a single rocket up to
orbital speed.

The only practical way of overcoming this shortcoming is to proceed on the basis
of a staged rocket (multi-stage rocket), that is, a rocket which contains two or more
rocket motor units which may be operated either simultaneously or consecutively and
which are discarded when their propellants are consumed.

7. Independent and Dependent Staging

There sre two basic methods of staging which may be referred to as independent
staging and dependent staging. With independent staging the rocket motors are operated
consecutively. As an illustration consider a two stage rocket. The primary rocket,
which is the one to be established on the circular orbit, is carried along over part
of the trajectory as the payload of a larger secondary rocket which furnishes the
acceleration over the first part of the trajectory. When the secondary rocket has
exhausted its propellants, and hence its usefulness, it is discarded; the primary
rocket then continues to accelerate further under its own power, adding its own
velocity increase to that imparted by the secondary rocket. In general, independent
staging consists of an assembly of progressively smaller rockets each of which is
carried as the payload of the preceding rocket.

As an illustration of dependent staging, consider a three stage rocket. Initially
this will contain three rocket motors which are all in operation over the first part
of the trajectory. The arrangement is such that after a first part of the trajectory
has been covered, one of the motors and its propellant tanks are discarded and the
rocket continues with only two motors operating. Later a second motor and its pro-
pellant tanks are discarded, and the final stage continues with thrust supplied by
only the single remaining motor. Thus the motor in the final stage operates continu-
ously over the whole trajectory.
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In order to make a choice as to which of the two methods of staging is prefer-
able, consider two staged rockets, one with dependent staging and the other with
independent staging. Assume that both rockets use the same type propellants and
rocket motors (and therefore have the same specific impulse I), have the same struc-
tural load factors and structural weights (Wp/W);, and also that the thrust program
(variation of thrust with time) is the same for each., Although not strictly justi-
fied, if it be assumed at first that the rocket weight per stage is the same for both
cases, it then follows from this, plus the additional conditions assumed above, that
the trajectory and flight conditions will be the same in both cases although the
manner in which they are produced will be different, since the rocket arrangements
are different, Actually the combined weight of the rocket motors may be made less
when dependent staging is used than when independent staging is used, and on this
basis alone it would appear better to use dependent staging since this would give a
smaller initial gross weight. However, owing to the additional auxiliary equipment
which would be required by this design, the actual net saving in weight, if any, would
be small; and since a dependent staging design would be a much more complex one, it
has been decided to adopt independent staging for the satellite rocket.

8. Performance With Multiple Independent Staging

Having adopted the independent staging scheme, the performance equation {(16) may
be considered again, this time from the staging point of view, In the case of multi-
ple staging the parameter v is defined for each stage by

L= Hb') . weight of propellants used in the stage
I W i gross weight of the stage

?

where the subscript ; indicates the particular stage[a}, With this nciatinn 1t is no
longer necessary to use the subscript ! to indicate the imitial total {gruss) weight.
Consider for example a three stage rocket, where the stages are indicated by the sub-
scripts 1, 2, and 3. With independent staging the payload of one stage is the gross
weight of the following stage. Thus

¥ ¥ '\ W RN
1 b} 2 2 3

where the symbol W . without numerical subscript is used to denote the payload in the
final stage. From Eq. (20) it then follows that

]

(21)

E

Jﬁil
]
38

[s]

When a particular atage is indicated by the subseript j, it will not be necessary
to use any other subscript (such as i) to indicate that it is the gross weight of the
atage which is involved. Thus in the expression ( P/ '};, it is to be understood that
¥ is the gross weight of the jth stage. The expression Wi(or m;)is used to indicate
the gross weight in a more general sense not pertaining to any particular stage. When
¥ ior m) has no associated subscript, it is then simply the total weight and is vari-
able with time. When it is necessary to indicate a guantity, in a particular stage,
whigh is also variable with time, the subscript ¢ will be used together with j as
indicated by "Gt (or mjt)' for example.

10
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This last expression may be written in the form

which, by use of relations (22), may finally be expressed in the form

A K, A W

L — B B B

T = 1~ Vt - (T) 1 - va - (T) 1~ Vs — (T) - (23)
1 1 2 3

When v and Mg/ are the same for all stages this may be written

1
WoANT 7
L = - B
(?j 1 % (-W_) R {24)
1 1

where Wl is the initial gross weight. In the general case for N stages this gives

N
)
W 3 Wl

For a staged rocket, the performance equation (16) may now be written

1

N N 1 N
Av = Z &vj = 8, I Z logw'“ Z g}- sin 9} x tbj , (26)
WIEE =1 J=a

where the summation extends over all of the stages.

If the rocket starts from rest and attains its final velocity v; without coasting
(see section 13), it follows that Av = vg. If coasting occurs over part of the tra-
jectory and the change in velocity during coasting is Av_, then Av = vp - Av,,

11
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where Av, will be small compared to Av and is negative. If the final velocity at-
tained corresponds to an orbital velocity Vorp.s Which will always be the desired
condition, then vz = v .. All discussions of Av are to be thought of on this basis.

Consider a fixed value given for Av of such magnitude, including any coasting
effect that is present, that it will permit the attainment of an orbital velocity,
i.e., Av=wv - Av_. Tt will now be shown that when (WE/") and g; sin 3 are the
same in all stages, 1.e., (WB/W) - Wp/¥;, B sin g = g sin 5, a mxmmum value re-
sults for the initial gross we1ght ¥, prov1ded v has the same value for each stage.
The method by which this is proved w1ll be illustrated by treating the case of a three
stage rocket. Assuming (K’B/’V) = Wp/W, = (Wg/®) = const. in Eq. (23), form the
derivative d(l(‘ .-/'W ) dv holdmg v, constant, obtammg

L

1 d(%):-l_y_.@_l_v“fgfﬁ
[1“%“(-%)] dv_ [ 2 (w):] [ 1 (w)] dv,

Settmg this equal to zero to satisfy the condition for a maximum in K ;g’W (a minimum
in W ), we have

P — T (27)
1

For a three stage rocket with g sin & = const., Eq. (26) becomes

1 1 1
Av = & I [108_1"'—1: + log'l-—;T3 + logm—sjl

- gsin B (t& +t, +tb) .
1 2 3

Performing the differentiation d/dv_, using d/dv = d/dv x dy /dv  and remember-
ing that Av is considered as havmg a given fixed value resufts in the relation

dt
I b
( &s - £ sin ')

(iVa B _ 1 - Vl dvl (28)
dy 8 I dtba .
. ~¢gsin @
- Y, dva

It is evident that the equivalent Eqs. (27) and (28) are compatible only if v =

v., and therefore this is the condition which must be satisfied if the gross weight

19
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¥, is to be a minimum. In a similar manner it can be shown that minimum gross weight
requlres that v, = v,. Hence, if there are N stages,

v, Y, Ty, B Tyg T v (29)

is the required condition for minimum gross we1ght ¥, in the special case that
g sin € and Wg/W are the same in all stages. This is anxmpottant result since it
indicates that even in the general case, where g sin 9 and (ﬁk/ﬂﬂj vary with stag-
1ng, the values of ¥; are not expected to be marﬂedly dxfferent if the condition for
minimum gross weight W, is to be fulfilled. What is finally desired, of course, is
the optimum distribution of v; with staging to give a minimum gross weight ¥ in the
general case where the quantities in Eq. (26) vary from stage to stage.

Actually sin 85 will vary considerably from stage to stage. It is apparent that
in the first stage where the trajectory is more nearly vertical, the term'Ef_giﬁuzg X
tbj will be relatively larger, compared to the thrust term g, I log 1/1 - v;, than in
the second and remaining stages. In this connection suppose that there is a given
weight of propellants available for burning. Then it is seen from Eq. (26) that the
greatest increase in velocity Av will result when relatively greater amounts of the
propellants are burned over those portions of the trajectory where & sin 9- is rela-
tively small. Therefore, as can be readily shown analytically, the optimum d1str1bu-
tion of v; will always be such that v, <v, <v, ... <7y In other words, it is
most efficient to burn relatively greater amounts of the propellants (in terms of the
ratio ¥) in those stages where the burning can produce the greatest velocity increase
as far as the retarding effect of gravity is concerned, that is, where the trajectory
is relatively horizontal. In some preliminary investigations of an approximate
nature it appeared that a decrease in gross weight amounting to about 10 percent
could be achieved by a proper staging of v. However when a more accurate study was
made, which included the effects of changes in shape of trajectory and variations in
the values of (“h/ﬂ? , the actual decrease in gross weight which could be achieved by
means of a staging of v turned out to be less than § per cent. The investigation of

the optimum distribution of v, among the various stages (optimum staging of ¥) has
therefore proceeded far enougﬂ to show that no appreciable decrease in gross weight
can be achieved by this means. Thus since the condition v; ¥ v = constant is very

nearly optimum, the flight mechanics investigation contaxneé in this report has been
carried out on this basis, i.e., ¥ = constant as far as staging is concerned.

Aside from the fact that v; = constant represents practically optimum condi~
tions, a further important concept expressed by Eq. (23) should be emphasized.
Suppose v, S v = Vg then since W has a fixed value, it follows from Eq. (23) that
when the (ﬂb/ﬁa are fixed, the 1n1t1a} gross weight ¥ will be a minimum when v is
a minimum. ias been found from structural calculations¢3) that, as far as the
variation of the important parameters (other than the load factor n) which determine
the trajectory is concerned, the values (Wz/W). remain practically fixed and are
approximately equal to each other, i1.e., as 1néxcated approxxmately by Eq. (24).
Therefore, the determination of these parameters to give minimum v is a satisfactory
approach to the determination of minimum ”&. On the other hand, the variation of the
maximum load factor n has just as important an effect in determining the structure(3),
and therefore (Hb/HQ , as it does in determining the trajectory. The determination
of the minimum requxred value for W \ which in most cases corresponds to the problem

13
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of finding the minimum value for v, constitutes the basic investigation of this re-
port. The details of the calculations required to solve this problem are discussed
in Part II.

Assuming the values v, to be independent of staging and equal to v, the perform-
ance equation (26) may be written

N N
_ 1 2 ———rs
Av = E Avj = Ng,I log -7 ~ €; sin 93- x tbj . (30)
j = q J = 1

On the basis of staging, the expressions (17) and (18) for the burning times are
written

v
bj - n_j (1 po 7/) ’ (31)

for burning with dmr/dt = constant, and

t -1 (32)
o
&j nj g 1

for burning with F/m = constant.

9. Qualitative Analysis of the Relative Uptimum Staging Yalues of n;
and the Best Method of Burning toEmploy for Obtaining These Values

The overall problem to be discussed in this section is that of determining the
best method to employ for burning the propellants during flight. The manner (includ-
ing rate) in which the burning takes place obviously determines the burning time tp;,
which by Eq. (30), for constant I and v, determines the trajectory performance.
Furthermore, by Eqs. (31) and (32), it is seen that fj. also determines n. and there-
fore essentially determines the structural loads which the rocket must be designed
to withstand. This, of course, determines the weight of the rocket structure. Thus,
it is seen that the determination of the best method of burning, through the burning
time tbj. is the fundamental basic problem involved since it is fundamental in deter-
mining trajectory performance, and also determines the structural strength (weight)
which the rocket must have, In fact, since weight and trajectory performance are
closely related, the best method of burning is that which gives the least initial
gross weight “1 with regard to both structural weight and trajectory performance.
The argument presented here emphasizes the flight mechanical point of view, while a
similar argument given in Bef. 3 emphasizes the structural point of view.

Although there are several different ways in which the burning problem could be
analyzed and discussed, it is convenient, and at the same time results in no loss in
generality, to separate the problem into two parts. Using tnis type of approach we
first seek the relative magnitude of the best (optimum} values for n., where the
best n, are determined from both structural and flight mechanical considerations,

J
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and where, in this first part of the analysis, the manner in which the burning must
take place in order to give the best n. is specified only to the extent that the
same type of burning is assumed to take place in each stage.

Having this result, the second part of the analysis proceeds to compare dif-
ferent methods of burning, on the basis that the burning always leads to the same
(best) values for the n., in order to determine which type of burning is best to
give the least gross weight for the rocket. In this way the burning is always dis-
cussed on the basis that it gives the same value for the applied load on the struc-
ture (and also the same n.) at the end of a particular burning period, although the
loads at the beginning of the burning period may be equal to or greater than the
load at the end of the period. The relative applied loads corresponding to the
relative values found for n; are discussed on the basis of two particular types of
burning, burning with de/dt = const. and burning with F/m = const. These two types
of burning are sufficiently diverse to include within them any other type of burn-
ing which would be of practical interest. '

Considering the trajectory performance Eq. (30) together with expressions (31)
and (32) for the burning times, it will be observed that the larger the value of the
maximum load factors n., the smaller will be the value obtained for v when Av 1is
held constant. In fact, from this point of view, when g; sin 8, is different from
zero the least value for v would result when n, = @, that is, when t3. = 0. On the
other hand when n. increases, strength considerations require that (ﬁb/W). increase,
since the structure must be made heavier. Accordingly, for a given value of Av, it is
seen that the relation between the parameters v, (Wh/WQj, and n; is such that an
optimum value must exist for n;, an optimum value always being understood as a value
which leads to a minimum value for the gross weight # . Since it is important that
these various optimum conditions he cleariy underscocd, the following illustration
may be helpful.

First of mlil it should again be pointed out that, since the rocket is to be
established on a circular orbit at a given height above the surface of the earth,

N
the necessary total change in speed Av = 2:: Avj to accomplish this is approxi-
=
mately the orbital speed itself which, together with Av, will be considered as
constant in the following treatment. Considering for the moment a two stage rocket
with (”hXW)j the same for each stage, we have from Eq. (25) that

2
(1 e %)
W l-v=iy al"’wl .

1

Since ¥, , has a constant fixed value, it is clear that ¥ will be a minimum (in this
particular case with vy + (W%/“Oj = constant with staging) when the sum v + (Wp/H)
is a minimgn. Now when n increases, while Av remains constant, the orbital velocity
is attained in a shorter burning time and therefore, from this effect alone, a
smaller value of v would be required. An increase in n, on the other hand, will
require an increase in weight of structure per unit of gross weight, that is, an
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increase in the ratio (W3/W) . As a result of these oppositely directed effects of
change in n, it is apparent that a minimum value must exist for v + (¥3/¥).  and there-
fore also for W, and the problem is to find the value of n which gives this minimum
value. Consider now the more general case where (Wb/ﬁ)j may vary with staging.
Referring again, for simplicity, to a two stage rocket we have

ol [kl

i

where it is now desired to find the values of n for each stage, independent of the
other stages, which will result in a minimum value for the gross weight Wx of the
first stage. The manner in which this is accomplished is illustrated, for example,
in (A) of Fig. 2 which shows schematically a typical variation of (WE/W) , v, and
W with n_ . The optimum values of n; are defined as those values which Iead to a
minimum vaﬁue for the gross weight ﬂ"l of the first stage.

oA A
T R 1
¥, W, ¥ W
w [W | i
%) (el
AT =CcONST 1/ Mhoet A ¥=CONST l[
l’!‘-—-——)- nt——-—,-
A. FIRST STAGE OF A TWO STAGE ROCKET 8. SECOND STAGE OF A TWQ STAGE ROCKET
SCHEMATIC DIAGRAM TO ILLUSTRATE THE OPTIMUM STAGING OF n. (SEE REE 3)
FlG. 2

The question may now be asked how the optimum value of n will vary with stag-
ing. This is illustrated for a two stage rocket in Fig. 2 where (A) represents the
first stage and (B) the second stage. It is shown in the Structure and Weight
Report(3) that in going to a higher stage, from the first to the second for example
the variation of (Wp/W) with n becomes smaller so that curve 2 of (B) has a slightly
smaller slope for a given n than curve 2 of (A). It is also found, because of the
much smaller sin &, that the variation of v with n not only becomes smaller in going
to a higher stage but that the decrease is much more pronounced than for the Wg/W
variation. Thus curve ] of (B) has a considerably smaller slope for a given n than
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curve 1 of (A). The net result of this is to give a smaller value for optimum n_ than

. 2
f n,ie.,, n < it i
or optimm n_, i.e., 20pt nlapt. In general it is found that

Piopt Raopt > Raopt > s> L . : (33)

It must be emphasized that this result has been based on ahypothetical or ideal con-
cept in which the fact that the rocket stages are carried within each other has been
completely disregarded. When this necessary restriction is imposed, the relations
{33) can no longer be completely fulfilled, as will become apparent from the discus-
sion which follows.

For a three stage rocket, for example, the second and third stages are carried
by the first stage, and the third stage is carried by the second stage. Thus any
stage must undergo, at the very least, the maximum acceleration of any of the pre-
ceding stages and in particular that of the first stage.

Suppose that the optimum values of n have been determined for a three stage
rocket as specified by the previous discussion (each stage considered independently
of the others), and the staging of n is optimum on this basis so that

Pagpt < Magpe < Migpe (34)

where the n,,, are the maximum load factors which are now assumed to exist in the
different burning periods as far as trajectory performance, Egs. (30) to (32}, is
concerned. In view of the fact that each stage is to be carried along over part of
the trajectory within a preceding stage, consider the maximum structural loads te
which each of the individual rockets will actually be subjected when motion over the
entire trajectory is taken into account. Now the maximum applied load Q,,, to which
the structure of the third stage rocket is subjected is given, in general, by @, .~
8, (myen ¢)aaxr Where the subscript t refers to instantaneous values which are vari-
able with time and which may occur over any part of the trajectory[”]. Similarly,
the maximum load endured by the structure of the second stage is expressed by G4 ,.~
8, (® N ) ngx+ The load Q imposed on the structure of the third stage rocket during
its travel with the first stage will be Q.. = g.m , where m__ indicates the

G . 31 . i‘niogt nl
total initial mass of the third stage rocket with full prdpellant tanks.

Since, when n, = n, ., the maximum load during the third burning period would
never exceed ByRyiMagper 1t follows from relations (34) and an = BRyifgp, that, as
far as the applied load which the structure of the third stage rocket must withstand
is concerned, the structure of stage 3 must be made heavier than would be indicated
simply by the optimum staging value Raopt alone. Thus since the structure must be
made at least as heavy as that required by the loading Q, , the value for the maximum
load factor n, in the third burning period may therefore be chosen greater than ny,,,
without entailing any increase in structural weight. Similarly for the second stage
structure the maximum load applied over the first stage of the trajectory is sz =

[e]

See footnote on page 10.
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gsﬂz‘"gopt Since, for operation with n, = n, ., the maximum load during the second
burning period would never exceed g.m,; ny,,¢ Dut since the applied load Q,, is al-
ready greater than this by virtue of Eq. (34), it follows that the second stage
structure must be made heavier than would be indicated by the value Naopt alone.
Therefore, as in the case of the third stage, the value for the maximum load factor
n, in the second burning period may be chosen greater than n,,,, without entailing
any increase in the structural strength (weight) which is required by the applied
load Q,,- In view of these results that n, and n, may be chosen larger than n,
M30pt wlthout entailing any increase in structuraf weight, the question 1mmed1atefy
arises as to what are the best values to use for n, and n.

It has already been indicated in connection with Eq. (30) that, when the struc-
tural weight is fixed, the trajectory performance improves with an increase in the .
maximum load factor n. That is, if there is no increase in structural weight in-
volved, it is always better from the trajectory standpoint to use the largest possible
value for n, since, Egqs. (30) and (32), this will lead to a smaller retarding effect
due to gravity. Accordingly, it is desirable to make n  and n_ as much larger than

Sopt’ nsopt as 1s possible without necessitating any increase in structural weight.

To discuss n, and n_ further requires a consideration of the load factors n_,
n,; at the beginning of the second and third burning periods, since, as can be shown
from Eq. {12), for the two types of burning being considered here, the maximum applied
load in any burning periocd always occurs at the beginning of the period.  Thus, if
there is to be no increase in structural weight beyond that required by the loads
Qzl and Q ,» We must have gnm 2ifgi = gs 2iopt and gnm gilai = BsMgiMiopt that is,

¢ and no; By "iopt Furthermore, in order E? satisfy the condition
g:(mat aef:az 2 B My Mgt it is evident that n2 must be = Nigptr Thus, since fref

trajectory considerations the best value for n, is the largest value, the value n, =
Riopt is adopted for the second stage burning peried.

Since stage 3 is carried by stage 2, the additional condition must be satisfied

that m_.n . < m .n . Hence the conditions which must be satisfied during the third

stage burning period are

mafnsopt Smogng Smyngg S myn,, or, using the adopted value
n, = n‘opt,
m . oo m .
13 1 t
ng < ﬁa ‘EA nai < 2 n, = “'Lnl " . (35)
t - - . ] n o
°r Taf sf af °F

It is evident that n. may be chosen greater than D ont if it is desired, provided n_;
does not exceed n, .. However, the advantage accruing from such a choice isso
small as far as trajectory performance is concerned, because of the small effect of
gravity in this burning period, that ny = n, ~ is adopted and therefore the per-
formance of the satellite rocket will be based on the adopted values

n, = n, = nlopt ] (36)

The determination of the value of nlapt is discussed later.
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The discussion above is illustrated by the diagrams in Fig. 3 for the two cases
of burning, constant mass flow (dm/dt = const.) and constant F/m (1/» de/dt = const.).
For the simplified conditions of Eq. (12) the instantaneous load factor n, is given
by g,n, = F/m. For burning with constant rate of mass flow of propellants, and with
I assumed constant, the thrust F is constant and therefore the applied load Q = g an,
is constant and equal to F, Since F is constant, n, varies from its lowest value at
the end of the period. For burning with F/m = constant, the value of n, remains con-
stant during the burning period, and since the condition 1/m dm/dt = const. gives an
exponential variation of m, the applied load Q = g,mn, therefore varies exponentially
from its greatest value at the beginning of the burning period to its least value at
the end of the period.

It will be noted that the value of Ry at the end of a burning period is the same
for both types of burnmg. This follows in accordance with the basic method of attack
employed as discussed at the beginning of the section.

nt: Instantaneous load factor, (Eg. t1).
N = gaximum load factor with apar ticular
burning period, {(Eq. 13).
1. gurning with constant rate of mass [low
of propellants; F = constant.

2. Burning wi r.h-”T = cons tant; nt = constant.

n <n <n (Eq. 33).
Ropt iopt’
BASED ON 1, = 1, oy dopt =op s
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The question of the best manner in which to have the burning occur may be
answered at this point in order to simplify succeeding discussions. It was pointed
out, Eq. (18}, that burning with F/m remaining constant gives a shorter burning time
than for burning with constant rate of propellant mass flow (da/dt = constant); and
considering the gravity term in the performance equation (30), it would appear better
to have burning with F/m = constant. For a three stage rocket, for example, it is
probably best to employ this type of burning in the second stage. For, in view of the
adopted value n, = Miopt! the structural strength is adequate for both types of burn-
ing, but since burnxng with F/m = const. has the shorter burning time, this type of
burning is to be preferred. On the other hand, the length of the third stage burning
period has but little effect upon the trajectory, and the main consideration is one of
structural weight, and burning with dm/dt = const. is recommended. In the first stage
the applied load Q , = g,® 1 , which the structure must withstand is, for the same
value of n, less for burnlng with dn/dt = const, than for burning with F/m = const.
Also, as shown in the structure 1nvest1gat10n(3), the saving in gross weight W by
using dm/dt = const. is greater (for structural reasons) than the increase in gross
weight resulting (for trajectory reasons) from the use of dn/dt = const. Therefore,
in the first stage, burning with dm/dt = const. is recommended.

Calculations based on burning with F/m = constant in the second stage indicate a
saving of 6 to 8 per cent in gross weight, while the corresponding saving in the
third stage is considerably less. Actually it is questionable whether there would be
any saving at all, since burning with F/m = constant would require additional equip-
ment to produce variations in combustion chamber pressure or throat area, and this
added weight required would probably result in a final net saving in gross weight
which is practically zero. Also, such a system would present a much more complex
engineering problem. Hence since the saving in gross weight, if any, is small and
the increase in complexity is large, the succeeding analysis will be based entirely
on a burning system with constant rate of mass flow of propellants. However, the
whole question of the staging of n and the method of burning should be further in-
vestigated if small gains are desired,

10. Considerations Concerning the Optimum Number of Stages

The discussion so far has resulted in simplifications in the analysis to the
extent of using constant v, constant n, and constant rate of mass flow of propellants.
Since these discussions were based on a non-variable number of stages N, the optimum
number of stages which the rocket should have may now be considered. The performance
equation (30) may be written in the form

l .
NeJ log 7= = v+ ) § s §; G - (37)
, T
As usual, Av is considered as having a constant fixed value. If, in addition, it is
assumed that the discussion is based on trajectories which are more or less geometric-
ally similar, then the term

N
Z g, sin 9’ x t

i=1 4
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will remain approximately constant, and thus the right hand side of Eq. (37) may be
considered to remain constant. Eg. (37) then shows, in general, that when N increases,
v must decrease. Assuming for simplicity that (ﬂh/W)j = (Wg/W}, = const. for any
given trajectory, it then follows from Eq. (25) that an optimum value must exist for
the number of stages V. Using appropriate trajectories and the smallest values of
(?b/w)iconsiSCent with present day materials and structural techniques, it is found
that the optimum N has a value of 2, 3, or 4 depending upon the propellants (through
the specific impulse I which are used. Hence most of the discussion, analysis, and
calculations contained in the remainder of the report will be restricted to a rocket
having either two or three stages. The four stage rocket is not given any further
consideration because the gains are very small and the increase in complexity is con-

siderable.

11. Drag

In the simplified performance equation (30) certain quantities and refinements
were neglected in order to simplify the discussion, and these will now be taken into
account. First the lift and drag of the rocket, which were neglected in Eq. (30},

must be considered. Of these two forces it is only the drag D of the rocket which
enters the equation of motion (6) along the path, and this becomes

__:_.{—gsine—.?_ . (38)
mn m

When a lift force L normal to the trajectory is present (lift positive in the direc-
tion of & = + 7/2, the equation of motion (6) becomes

i@:-l—(-é."gcosﬁ‘fﬁcosé?) . (39)
dt v \nm r

which may be approximated by the difference equation
3
A8 = —lv— (gs%'“gcosé"” %cos@)ét . {40)

At this point we may also take account of the fact that the specific impulse I will
vary slightly with staging, owing mainly to the changes in the free-air pressure, so
that the performance equation is now given by the expression

N N N

ey i i1 ’
N _
- 8, Z (*f%)} P (4)
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where the bar indicates the mean value{’] during any particular stage, and where
W= ?gs is the weight referred to standard sea-level conditions, &, denoting standard
gravity at sea level (g, = 32.174 ft/sec?).

Since the drag is discussed in detail in Ref, (§), it will only be mentioned here
that as far as practical trajectories of interest are concerned, the maximum value of
the ratio D/F in the first stage is about 0.5, and its average value during this stage
is about 0.2. These values become considerably smaller in the succeeding stages where
the drag approaches zero owing to high altitude. Thus, since (D/H)i is relatively
small compared to sin 8;, the previous arguments based on the simplified performance
equation (30} are not invalidated by the neglect of the drag term. In view of the
more exact performance equation, (38), it follow§ that the maximum load factor n is no
longer given by Eq. (14), but must now be defined by

N | (F-D) _ (F—-D) ,
g’ " Rax W nax ! (42

where W is the weight referred to standard sea-level conditions. It was pointed out
in connection with Eq. (17) that when the burning occurs with constant rate of mass
flow of propellants, the maximum value of F/F occurs at the end of a burning period.
On the other hand, the ratio /W becomes quite small at the end of a burning period,
typical values being 0,05 at the end of the first period and 0.00 at the end of the
second period. Accordingly, here again, the inclusion of the drag term has little
influence, and the maximum load factor is still determined for all practical purposes
by (F/W),,, as before.

12. Lifr, Guidance, and Tilting

As far as lift (force normal to trajectory) is concerned, this is required in
order to achieve the major control over the shape of the trajectory, particularly in
order to turn the trajectory into the circular orbit, and for these purposes the
lift required will always be directed toward the center of curvature of the trajectory
and will therefore be negative. The need for lifting forces will become apparent from
the following remarks. First of all it should be pointed out that because of the high
temperatures existing in the ionosphere(4), the decrease in density, and therefore
drag, with height is relatively small, making it necessary to establish the orbit at a
height of 300 to 350 miles 1f the endurance is to be of the order of several months.
In investigating possible trajectories it is necessary to consider the fact that the
alr resistance, starting from its initial value of zero, will increase rapidly at
first as the rocket accelerates in the high density portion of the atmosphere. As the
rocket gains altitude and the density becomes small, the drag forces begin to decrease
and become negligible at a height of about 250,000 ft. The variation of rocket speed
with height and of atmospheric density with height are such that the maximum drag

(7]

[n view of the convention adopted in footnote [8], the drag term would be written

(Dej Wtj& = (ﬁg/wg)j to indicate that the mean value is based on values of drag and
weight which are variable with time. However, since this is clear from the context,

the subscript t will be omitted
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occurs at a height of the order of 50,000 ft. It is apparent that the initial portion
of the trajectory should be nearly vertical so as to reduce as much as possible the
length of flight path over which the rocket is subject to appreciable drag. On the
other hand, if too much of the trajectory is steep (large sin &) there will be an
adverse effect on velocity because of the presence of the gravity term 8 sin G, X tbj
in the performance equation (41). Thus to minimize the adverse effects of the drag
and gravity terms in Eq. (41) it is necessary to arrange that the rocket travel over
a specified trajectory, which can be achieved only by the use of lift forces.

Although some negative lift could be obtaired from the body and external surfaces
of the rocket by operating the rocket at an angle of attack, these, in general, are
not nearly sufficient to control the trajectory, especially in the first stage where
relatively large amounts of lift are required and where aerodynamic lift is small
owing to the relatively low speed. Moreover, at the heights corresponding to the
upper part of the trajectory the density of the air becomes so low that, in spite of
the great speed, the dynamic pressures are inadequate to produce any appreciable
aerodynamic lift. Accordingly, the only practical scheme for producing lift for
trajectory control must be based on the use of rocket motor thrust. The question then
arises whether it is better to use a number of small rocket motors thrusting in a
direction normal to the centerline of the rocket and passing through the center of
gravity, or to have an arrangement using the moment produced by small rocket motors
to tilt the rocket and thereby give a component of the thrust of the main rocket motor
in a direction normal to the trajectory (lift} which may be used to provide the neces-
sary lift. These two methods of obtaining the necessary lift for trajectory control,
or guidance, are illustrated in Fig. 4. It is readily shown that as far as propellant
consumption is concerned, the latter arrangement is much superior. Although the basic
argument used to show this has been presented previously in the first satellite inves-
tigation ), it is included here, since it is essential for completeness and continu-
ity, and since it also provides the opportunity for making necessary changes in
notation.

lLet L denote the lift force normal to the trajectory, positive in the direction
a =+ 7/2, and let a be the angle of attack (angle of tilt of rocket). The angle of
attack a is defined as the acute angle measured from the tangent to the trajectory
(the direction of air flow) to the centerline (zero-lift chord line) of the rocket.
The angle @ is taken as positive in the direction opposite to that of the center of
curvature of the trajectory, that is positive in the + & direction.

Case 1. Lift Obtained from Small Rocket Motors

It will be assumed that the specific impulse of the small rocket motors is
the same as that of the main motor in the satellite rocket. Using the thrust
expression (7), the thrust F_ required from the main motor when none of this
thrust is used for lift may be written

dm
F; = - g, (E?)o I ,

where (dm/dt) is the mass rate of propellant consumption corresponding to the
thrust £ . The lift force produced by the small rocket motors is

- dm
L ”“‘8’(;)1_{ »
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where ( a'-l/(ff)1 is the propellant consumption required by the lift motors. Since,
with this arrangement all of the main rocket motor thrust is directed along the
trajectory, the thrust remains at the value F . Hence the ratic of the mass rate
of propellant consumption with and without guidance for Case 1 is given by

s @e®m @
= = 1t = L4F, (43)
@@ @

where dn/dt is the total rate of propellant consumption,

20 SMALL ROCKET
X MOTORS FOR LIFT

W
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o motors.
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PLOT SHOWING SUPERIORITY OF OBTAINING LIFT BY USING A COMPONENT
OF THE MAIN ROGKET MOTOR THRUST
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Case 2. Lift Obtained as a Component of the Main Rocket Motor Thrust

In this case, Fig. 4, since the vehicle must be tilted with respect to the
trajectory, the thrust required of the main rocket motor must be sufficient to
produce a thrust Fo directed along the trajectory and a force L normal to the
trajectory. Denoting by Fﬁ the main rocket motor thrust required in this case,
we have

dm
Fo = Ficosa = —gs(g—t)alcosa,and
- . - _ (éz} I si
L = Faslna = g, dtz sin a ,
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where (dm/dt), js the total weight rate of propellant consumption, and where
F, = f o, TL® = -—glI (dm/dt):. Therefore the ratio of the propellant
consumption rates for Case 2 is

& (@

E_t— = _it_n = N _F{;)’ . (44)
@, @, VvV

o

Having the ratios (43) and (44), one may compare the relative rate of propellant
consumption corresponding to the two methods for achieving lift.

The ratio of the consumption rates with and without small auxiliary rocket motors
are plotted in Fig. 4 against the ratio L/F,. It is immediately apparent that Case 2
is markedly superior to Case 1. In fact, using the scheme of Case 2, substantial
guidance forces may be obtained without appreciable penalty in thrust, and the method
of Case 2 will therefore be adopted as the means whéreby the lift forces are obtained.
Since jet vanes are not to be used, this method of obtaining lift will require the
use of certain rocket control motors to produce the necessary tilt of the rocket.
These rocket motors are to be movable to the extent that they can produce thrusting in
various directions and in this way produce moments about a transverse axis. It may be
shown, by an argument similar to that used above, that the total propellant consump-
tion of the control rocket motors and the main rocket motor will be least when the
control motors are as large as possible. This means that the main rocket motor should
actually consist of a group of movable control motors which are used not only to pro-
vide the necessary thrust for propulsion but also to provide the necessary control
moments

Since the scheme adopted for achieving iift requires that the rocket have a vari-
able angle of tilt a, this must now be taken into account by the introduction of the
factor cos a in the performance equation, since the thrust used in that equation is
always defined as the thrust directed along the trajectory. Hence, with angle of
tilt present, the component of thrust along the trajectory is, from Eq. (7),

Fcosa = -8 Jg¢ I cosa,

where F is the total thrust of the rocket motor. Using this expression for the thrust
occurring in Eq. (38), the performance equation becomes

N N
Av = g, Z (I cos a); log‘l—%—;— Z g sin éj x tb}.
i=1 i=1
= (D
B ("’) Xty (45)
& }i Wiy = %
J=1
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Similarly the expression (42) for the maximum load factor must now be written

n = _l_(i a,.&)
g, \® cos ®/nax (46)

However, preliminary calculations based on actual typical flight conditions and tra-
jectories have shown definitely that the effect of the factor cos a and of the term
(D/m), ., is entirely negligible so far as Eq. (46) is concerned; and it is quite
adequate as far as structural load is concerned to use the simpler expression, Eq. (17),

_ v (Ij)nax
n = ?T:TET?;; , (47)

where it is to be so arranged, as discussed previously in connection with the optimum
value of n, that the maximum load factor n has the same value in all stages, since
this represents the best that can be done as far as staging of n is concerned. The
quantity (I.)_ = represents the maximum value of the specific impulse in any particu-
lar stage igich, owing to the beneficial influence of decreased external pressure,
will always occur at the end of a stage. Since the rocket is to be operated with n
and v constant, it is seen from Eq. (47) that this corresponds to the condition that
(Ij)lax/tb' remain constant with staging over any given trajectory. This may be
readily acdieved by the proper choice of motor size (see Refs. 6 and 14).

In determining the best trajectory, it must be decided how the tilting, and
therefore the lift forces, must be programmed. As already pointed out, this must not
only be such as to minimize the adverse effects of the drag and gravity terms in the
performance equation (45), but also such that the angle of tilt necessary to bend the
trajectory does not become so large that excessive decreases result in the component
of thrust along the trajectory, since this is the effective thrust producing the ac-
celeration. In view of the relatively great height at which the orbit must be estab-
lished, 1t is found that these conditions can best be met by the proper use of a
period of coasting along the trajectory.

Actual trajectory calculations have shown that it is best to launch the rocket
in the direction of the vertical and to have most of the tilt very near the beginning
of the flight where its bending effect on the path is largest and where the maximum
angle of tilt is only a few degrees. it might appear that non-vertical launching
would be better inasmuch as this would require less tilting. However, this method of
launching turns out to be inferior because it results in a greater length of flight
path in the high drag region of the atmosphere. Moreover, it is highly undesirable
because a launching track would be necessary.

13. Coasting

Although coasting motion was not explicitly invelved in the foregoing discus-
sions of the performance equation, it was implied nevertheless by the relation ¥ _, =
Av + Av, (mentioned in section 6) that such motion might be present. In order to

establish efficiently an orbit at high altitudes (it appears that the height of the
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orbit must be about 350 miles), it turns out to be highly desirable to have a period
of coasting (non-powered flight) somewhere near the end of the trajectory. The reason
for this will become apparent from the following qualitative discussion.

The basic requirement of the trajectory is that it must lead to final values of
speed-(vg) and direction (Jp = 0) appropriate for the establishment of a circular
orbit situated at a sufficiently great height (about 350 miles) to satisfy endurance
requirements. The height attained by the_rocket is determined by the integral

h = v sin 6 dt (48)

where T is the total duration of the flight over the trajectory. Neglecting for the
moment any variation in T, it is apparent from this equation that the greatest height
is attained when v and & are so scheduled that & is large when v is small, and con-
versely, v is large when 0 is small. Considering the time T, it is also clear that
when the scheduling of v versus 0 is fixed, h will increase with increasing T so long
as O remains positive. A large value of T may be obtained either by employing long
burning periods, which by Eq. (31) corresponds to small n, or by employing shorter
burning periods but allowing the rocket to travel over part of the trajectory without
power, that is, by allowing the rocket to coast. The question then arises as to which
is the better method to use in order to attain the high altitude necessary for the
orbit.

Consider two trajectories, one in which either one or more long burning periods
are used and the other in which shorter burning periods and coasting are used. Sup-
pose the tilting program is so arranged that the two trajectories have the same final
orbital conditions, curves A, Fig. 5. Depending upon the length of the burning
periods, the rocket will require different amounts of time to reach the same height
but will always have the same speed (orbital velocity) at the end of the trajectory,
point E. If short burning periods and coasting are employed {curves B) with coasting
occurring near the end of the trajectory (it will be shown that coasting is best as
near the end as possible), the velocity may at some height, point C, be greater than
the orbital velocity, since the vehicle must slow down in the coasting region C to E.
When there is no coasting and all of the trajectory is under powered flight with long
burning periods, the speed of the rocket in the latter part of flight decreases less
with height than when coasting 1s present, finally attaining the orbital velocity at
E, curve 1 of Fig.5, B, Accordingly, for given heights along the trajectory particu-
larly in the latter part except the end points, the velocity for the case with shert
burning periods and coasting will, in general, be greater than for the case with long
burning periods as indicated in B of Fig. 5. The rapid change in velocity with alti-
tude indicated at the very end of curves B is due to the necessary final boost in
speed required to attain orbital conditions after coasting or when slow burning is
employed. This matter is discussed further later on.

According to Eq. (40) when the lift is negligibly small and v?/r is < g, for a
given distance Ax back from the end of the trajectory, the change in & is less for
the case with coasting than for the long burning period case. Hence, in A of Fig. §
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the trajectory with coasting is the higher of the two. By consideration of the
curves of A and B and the expression

E E
- dx ) dh
B veos® or T = v sin B
0 o

for the total time of flight to traverse the trajectory, it is seen that the flight
time for the trajectory with coasting is less than or at most equal to the flight time
for the long burning period case. It also follows from Eq. (40) that the change in 6,
proceeding backward from E, will be indicated in C of Fig. 5, that is, smaller for the
coasting case. It may be noted that in practice the curves of B and C may have
several slope discontinuities.

It has been pointed out previously that the final velocity attained by the rocket
when coasting is present is given by vy = Av +Av_, where Av, is the velocity change
during coasting. The term Av_ is entirely similar in character and effect to the
gravity terms in 8; sin Gj which occur in the performance equation. The entire effect
of gravity upon trajectory performance could therefore be summed up by an expression
of the form

T

/gsingdt,

[

where T is the total time of flight over the trajectory including ccasting. From a
consideration of C of Fig. 5 it follows that this integral is less for the case with
coasting present. Since from trajectory considerations it is desirable to have gravity
effects as small as possible, it is seen that this may be accomplished by using coast-
ing (near the end of the trajectory) and burning periods as short as possible. Al-
though the discussion of coasting thus far has been very qualitative in nature, it has
been found justified as the result of some earlier trajectory studies. In fact these
results are more generally true than here discussed; for example, the simplification
of having the same range need not have been made. The result is true even when the
cases are compared at their optimum ranges.

As far as the effect of coasting on the determination of n is concerned, if the
discussion of n in section 9 were now repeated to include coasting, the conclusions
reached before would remain unchanged. This follows because when altitude is obtained
by coasting, it is still desirable from trajectory considerations to have the maximum
load factors as large as possible and since this was also the basis of the arguments
in section 9, the conclusions reached there remain unchanged. Likewise, the effect of
introducing a period of coasting in the performance equation is negligible as far as
the other previous results and conclusions associated with this equation are concerned.

Having pointed out the desirability of attaining altitude by the use of coasting
with v large when & is small, the question which then arises is how best to gain alti-
tude in the lower part of the trajectory where vis relatively small and where & = 90°.
This might be done, for example, by launching the rocket vertically (& = 90°) and then
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starting the tilt late but using large amounts of tilt to bend the path sufficiently
rapid to give the required condition 9; = 0° at the end of the trajectory. However,
this would be an inefficient method of obtaining altitude since it would result in a
large reduction in velocity due to the effect of gravity (g sin &) and a large reduc-
tion in thrust due to the large tilt angles (F cos a). Although it is always best to
have launching in the vertical, the trajectory studies show that the most efficient
tilt program is such that the maximum is small (never more than a few degrees) and
occurs early in the first stage, while in the succeeding stages the tilt is zero.

Since it is advantageous to have a period of coasting in the trajectory, a coast-
ing term must be introduced into the performance equation., Since the coasting period
will always be located near the end of the trajectory where drag is negligible, the
rocket may be considered as a free body moving in a potential (conservative) force
field, the field of gravity. Consequently, along the coasting part of the trajectory,
the motion of the rocket will be governed by the condition that the total energy
{potential plus kinetic) remain constant, which is expressed by the equation

Ay
1 21 a =
i S AT A gdh , (49)

hy

where the mass of the rocket will be constant since there is no consumption of propel-
lants, and where h is height measured in the vertical. The subscript i denotes the
beginning of the coasting period and the subscript f the end of the period. Replacing
the g under the integral by a mean value §, appropriate to the height interval hf ~h.,
this may be written

v,3 ..,,fz = gg_ Ak, (50)

where Ak, = he - h; is the change in height during coasting. From this, it follows
immediately that

5z Ah
. Av = vy =-E§CA‘

s (51)
¢ vty

where Av_ is the decrease in velocity during the coasting period., Since the coasting
will always occur near the end of the trajectory where v, and v f do not differ greatly
it is sufficiently accurate to write

Av, = - —F% (52)

where v, is the mean velocity during coasting.

In the performance equation (45) the velocity change Av refers only to the change
velocity which results while the rocket motors are in operation. By introducing the
expression {52) for the velocity change during coasting, Eq. (45) becomes

30




February 1, 1947

N
- — 1 :
Avy = 8, Z {I cos a)j logl—_y— - Z 8; sin 3}. X tbj

=1 =1

N i w———
5B, -5
- R 4 x t — —
; ¢ Wj bf Ve (53)
J =1

where Avy is the total velocity change resulting from rocket motor operation and
coasting. Since a is always very small, never exceeding several degrees, cos a may be
replaced by unity as far as Eq. (53) is concerned. Thus, when the vehicle starts from
rest ander its own power and finally attains the required orbital velocity v, ,, we
have Avy = v, and, if th; be replaced in terms of Eq. (31), the performance equa-
tion {53) may then be wrltten

N

- 1
g,X Ijlogl_y X(l_v)ngJIsm@
J =1

a g VI E r3
) T om V)n (’ﬁ?) ¥ (54)
F=1

Suppose that the powered flight is interrupted somewhere in the trajectory by a
period of coasting and that the orbital velocity to be attained is specified and
therefore a constant. Relatively speaking, as coasting occurs successively later in
the trajectory, v; becomes larger, which causes 3; to become larger, which in turn
causes E;ZShc/a; to become smaller. Since for approximate results, it is permissible
I )
to treat Ij and Z:: (W). as quantities which remain constant, it then follows from a

j=1
consideration of Eq. (54) that the value of v must also decrease as ¥; (or V) in-
creases. Since, as pointed out previously, a small value of v leads to a small value
for the initial gross weight W we always seek conditions leading to small v. There-
fore, in view of the coasting effect on v, this alone would indicate that the coasting
should take place as near as possible to the end of the trajectory where ¥V, has its

greatest value.

On the other hand, as the coasting occurs successively later in the trajectory,
the average value of sin & over the entire trajectory will increase, since the greater
length of trajectory with powered flight before coasting results in greater length of
trajectory with the larger values of 6. A systematic investigation, using accurate
trajectory calculations, has shown that the effect of the positioning of coasting on
vV is more important than the effect on &, and that in order to obtain least v, the
quantity U, should be as large as possible, a condition which is satisfied when the
coasting is positioned as near to the end of the trajectory as possible. In this con-
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nection however, it must be pointed out that at the very end portion of the trajectory
it is necessary to have a final burst (short duration) of powered flight to secure the
exact speed and direction which the vehicle must have in order to establish the circu-
lar orbit. Thus the period of coasting may not extend completely to the final end
point of the trajectory where the circular orbit is established, Taking this restric-~
tion into account, detailed trajectory studies reveal that the optimum position for
coasting is within the last burning period (i.e. within the last stage) beginning at
that point on the trajectory where the last period of burning has reached about 97 per
cent completion. The motor is shut off{ at this point allowing a specified period of
coasting. The motor is then turned on again for the final burst of powered flight
which has a duration equal to the remaining 3 per cent of the last burning period.

Let 7 denote the percentage completion of the last burning period when coasting
begins. Then, consistent with the restrictions imposed by the neceasity of having a
final burst of powered flight, the optimum coasting occurs when 7= 0.97. If the
coasting is positioned farther than this along on the trajectory, it becomes impossi-
ble to establish the conditions for a circular orbit. Furthermore, positioning the
coasting at the value 7 = 7 % 0.97 as found above, results in such a long range
(practically half way around the earth, which is too far from the standpoint of
communication limitations) before the circular orbit is established that it is found
necessary, on this account, to shorten the range by using 7 approximately equal to
0.75 and having the remaining 25 per cent of the last burning period occur after
coasting. Using the value 7 = 0,75 as demanded by range limitations, it is found that
the gross weight is about 15 per cent greater than if the optimum position of coasting
were used, The systematic investigation of this will be discussed in Part II.

Accordingly, since the coasting occurs so late in the trajectory, the mean speed

v, will not differ much from the orbital spead v, , and 3t is suffaciant!y accurate to
use U, = v, in Eq. (54) which may then be w#ritten

.’
- 1 _ Yors ‘ Z v g} o
Ijleg =y = 7, * A= om g, 1y sin &

J=1

N . —
. v - (._D_) , B D
- (I-V)n I) WJ gs vorb - (55)
J =1

This simplified approximate equation is of fundamental importance in the analysis of
the rocket and its motion since it expresses, in a highly practical form, the basic
relationship existing between the fundamental parameters.

The performance equation (55) finds its principal application when it is desired
to find the effect on v of changes in the other parameters. For example, if the main
features of the tilt a and coasting 7T programs are kept fixed so that the main
features of the shape of the trajectory remain the same, the formula (55) may be used
to great advantage for deriving the change in v resulting from variations in the
values of the other variables such as I, horb {orbital height), and N. One use of
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Eq. (54) should be mentioned in particular; since it is best to have the coasting
occur very near the end of the trajectory, the positioning of some of the coasting
earlier in the trajectory will be inefficient. However, some coasting of this nature
is unavoidable owing to the small time interval which elapses between stages. Calcu-
lations for a three stage rocket of the increase in v caused by three seconds coasting
between the first and second, and between the second and third burning periods, re-
sulted in a 2 per cent increase in gross weight.

The formula (55) may also be used to estimate the change in » with height, and
for this purpose it is convenient to make a further modification. First, it may be
pointed out that the minimum gross weight studies have shown that the optimum values
of n must lie within the range 4 < n < 8. It is found from many trajectory calcula-
tions that when the orbital velocity is attained under optimum conditions, the burning
times are such that the burning is practically completed by the time the vehicle has
attained a height of the order of 100 miles, that is, the non-coasting change in
altitude is about 100 miles. The condition for the circular orbit is that the centri-
fugal force be equal to the gravitational force, which is expressed by

2
Yorb

T & - gR@)s ’ (56)

where r is the distance of the orbit from the center of the earth, R is the radius of
the earth, and gg is the absolute value of gravity at sea level. The orbital velocity
is therefore given by

N\
Yorb = ~fEaR® X A= NI SR VER (“F) r 5D

where h * r — R is the height above sea level. Since A/R is small compared to 1, the
last expression on the right may be expanded by the binomial theorem, and if only the
first two terms in the expansion are retained, the orbital velocity may be expressed
to a high degree of approximation by[s}

Wi

1h
Vors = V Bl ( -E;{) : (58)

Since the orbit is to be established at a height of the order of 300 miles and since
powered flight ends at about 125 miles height, the heights of interest for coasting
motion will range from 100 to 400 miles. Let vorp, and Vorb, be the orbital veloci-
ties at the heights h, and h respectively, where h, > h . If B’ denotes the rate
of change of orbital velocity with height, it follows from Eq. (58) that

. varba ‘Uorb1 - 8r (59)
h - h, 4R

8 . . R . : .
(] In this last expreasion only the first two terms are retained as sn approximation

to the expansion of (1 + h/R)'%. For values of h of interest here, h/R is of the
order of (4,1 and the approximation is sccurate within ] per cent which is entirely
adequate for the present analysis.
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The orbital velocity at a height A, where hl < h< h‘, may be expressed in terms of
Vorp by the relation

2
=y - B’ (h' - h},

Yorb orb
2

which may alsc be written in the form

- B(h, - h)
Yorb ~ Yorp |1 +t—2 1, (60)
3 100

orba

, 5.280%10° /R
where B is a constant having the value B = + -_23——_1-_4J/;;- and where h is expressed

in miles. This enables the height interval (ha ~ h) to be expressed in terms of a
unit of distance of 100 miles, which has certain advantages as far as the calculations
are concerned. Using the relation (60) with ha = 300 miles, Yopp, = ”orb390' using Ah,
= h ~ 125 since coasting begins at about 125 miles altitude, and neglecting the minor
effects due to variations of gravity, the performance equation (55) is finally written
in the simplified form

N Uyrs N
— 1 _ %" %300 B(300 ~ h) v e —
211-1081-;," g, 1+ 100 + Z'(—l"__—v),“fj51n6’j

=g J=1

v _(D\  5.280 x 10% (A ~ 125
“(1-—v>n€(w)‘+ v ( 100 ) (61)

orb
300

300 - h
in which the height A occurs explicitly, and where the quantity [; + B ("iaa“‘i]

which strictly should alse appear in the denominator of the last term has been re-
placed by unity without affecting the accuracy of the equation. The constants have
been based upon a height of 300 miles since this is approximately the required orbital
height for the satellite rocket. From this equation it is found, for example, by
using constants corresponding to a three stage hydrazine-oxygen trajectory, and by
neglecting the variation of all terms on the right side of Eq. (61) not containing h
explicitly, that dv/dh . is such that the gross weight changes about 10 per cent
with a 100 mile change in orbital altitude.

The simplified performance equation (61) is very useful. For example, it may be
used to advantage in obtaining an initial estimate for the value of v to be used in
the exact trajectory calculations. Its most important use, as pointed out in connec-
tion with Eq. (55), is in determining the changes in v which result when the parameters
I, n, h, N, and sin O, are varied one at a time. The most important of these is the
dependency of v on I.” This effect may be studied for changes in I up to 15 per cent
by holding constant the right hand side of Eq. (61). It is also found, from accurate
trajectory calculations, that the right hand side of Eq. {61) may be considered to
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remain constant in determining the change in v due to change in N, provided N does not
change by more than t1. The variation of the initial gross weight ¥, with the number
of stages N based on the final design value of v for the three stage hydrazine-oxygen
rocket is shown in Fig. 18.

The simplified formula Eq. (61) is not suitable for revealing the change in v
resulting from change in n because n is strongly involved implicitly in the term

2 3i.n Ejo

The use of Eq. (61) for computing change in v due to change in (ﬁ7i) gives
results of quite satlsfactory accuracy. This enables one to ascertain the change in v
shape of the rocket and is therefore important in determining the optimum shape for
least gross weight as this depends on drag as well as structural weight. This will be
discussed further in Ref. (6).

Another interesting use of formula, Eq. (61}, is the calculation of the reduction
in ¥ which results when the rocket is launched from a high altitude such as a mountain
top. If the rocket were launched at a height of 10,000 feet, for example, the reduc-
tion in drag due to the lower density at launching results in a decrease of 3 per cent
in the gross weight.

II. FLIGHT MECHANICS AND TRAJECTORY CALCULATIONS

In part I the problems of establishing a rocket of minimum gross weight on a
circular orbit as a satellite of the earth have been discussed from a more or less
general point of view and in a somewhat qualitative fashion. By means of this some-
what elementary but fundamental discussion, it was possible to derive a simplified
performance equation, (61), which is extremely useful in showing how the various
performance parameters are related. These approximate relations must now be treated
on the basis of more exact mathematical formulations which will lead to accurate
determinations of trajectories and of the optimum values for the various performance
and trajectory parameters.

1. The General Equations of Motion of a Point Mass Moving on a Path in the Equatorial
Plane of a Rotating Planet.

Since the present study is concerned only with the special case in which the
satellite orbit lies in the equatorial plane, the analysis of the motion will become
somewhat simpler. Although the equations of motion may be derived with neatness and
brevity by employing Lagrange’s dynamical equations, a longer but perhaps more physi-
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cally significant method will be used here. The basic equations of motion are those
for a point mass moving on a path situated in the equatorial plane of the rotating
earth. Consider a rectangular system of coordinates having its origin at the center
of the earth and rotating with the earth at the constant angular velocity {1, where the
arrow is used to denote a vector quantity. The vector (I passes through the center of
the earth and is directed toward North. 1If f is the true resultant force acting on
the particle of mass m, the vector force equation is

—

{-*—'&"+6x{5><?)+2ﬁxv', (62)

-

where 7 is the position vector of the particle measured from the origin at the center
hnd * - - . .

of the earth, a‘ is the apparent linear acceleration of the particle, and ¥’ is the
- " — - — - -~

apparent velocity of the particle, 7, a“, and ¥’ all being measured relative to the

rotating system of coordinates. The term f1x (@ x ) represents the centripetal re-

action, and 2{} X v/ is known as the Coriolis’ acceleration. The position vector 7

has the same magnitude regardless of whether the system of reference is rotating or

not.

Since the motion of the point mass is to be identified with the motion of the
rocket, we consider a trajectory, as shown in Fig. 6, which starts at the earth’'s
surface at the launching point L, travels in a clockwise {eastward) direction of
rotation with respect to the earth, and establishes the circular orbit at the end
of the trajectory at the point E.

CORIGINAL LAUNCHING HORIZONTAL w
A TRAJECTORY

Nt CIRCULAR ORBIT

INSTANTANEQUS
\ HORIZONTAL

/ » \
4 \
/ ¥ \
f I \
| j . l
i - - t
{ Eu‘m« |
\ ¢ o /
4
\\ i /
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\ /
N /
\\ //
\‘-‘._ i -
’K‘ CIRCUL AR DRBIT

SCHEMATIC DIAGRAM OF TRAJECTORY AND ORBIT OF ROCKET

IN THE EQUATORIAL PLANE AS VIEWED FROM THE SOUTH
FIG. 6
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The earth rotates in a clockwise direction (when viewed from the South) with
angular velocity {l. The line h*h*, which may be referred to as the original hori-
zontal, specifies the direction of the horizontal at the time of launching and rotates
with the earth in a clockwise direction. Only the clockwise (eastward) direction of
motion of the vehicle will be considered here, since this case requires less energy to
establish the orbit than when the motion is in the counterclockwise direction. Since
the position vector is restricted to the plane of the equator and since the angular
velocity_vector Q is normal to the equatorial plane, and points North, the vector
product 1 x (‘Q’ x T) will be a vector in the direction of —7*, and the vector product
{1 x v’ will be a vector normal to the path. With the type of trajectory being treated
here, Fig. 6, it is apparent that (1 % v’ will always be directed toward the center of
curvature of the path (i.e., 90 clockwise from t), and if this direction be denoted
by the unit normal vector -n (% positive in the direction 90° counterclockwise from
t), the force equation (6§2) may be written

Bl\l

= o' -Q%F -9Qu'n . (63)

If 7 is a unit tangent vector in the direction of 7' and &* is the inclination of the
trajectory with respect to the original horizontal, A*h*, the apparent acceleration a*
may be expressed in terms of the components tangential and normal to the path in the
following manner.

By definition

- d (—; ‘ dv dt
4 =S ) = L
a , v) = + v b (64)

The cquantity dz:fdt may be expressed in the form

dt _ dt do+
dt  dg« dt

Since fdﬁl = |d6*|, and since df is normal to the trajectory, it is convenient to
define dt as positive when it corresponds to a positive value of the differential d8*.
Hence dt/df* will be a unit normal vector which, for the trajectory treated here, will
be identical with n. If &' is the inclination of the trajectory with respect to the
instantaneous horizontal A'h’, Fig. 6, the instantaneous angular speed of rotation o’
of the instantaneous horizontal is @’ = v’ cos 8%/r, and it follows that

do+ _ dg v’ cos &'
B | B e (65)

] -
Hence the expression for a’ becomes

-, _ dv’ o (;d&’_v'“cosé’j—'
it = FILVG F/n (68)
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Noting that in the total force equation (63) the vector ={)27 may be resolved
into the components ~r (Q2sin &' in the direction of ¥ and ~r{)2 cos &' in the direc-
tion of W, Eq. (63) may then be expressed in the following form, entirely in terms
of the unit vectors T and .

— dl
-i- = (‘3% - r{1? sin 9')?

r

dg’ 3 o' -
+ (v' i o5 r(1? cos 6' -2Qv')n (67)

Hence the true force ft in the tangential direction T and the true force fﬂ in the
direction of the positive normal to the trajectory n are

f dv’
‘f = -&v-t‘“rﬁ"sine". and (68)

:v!"—i‘; -—"-';:—-—— '*?'Qa COSQ:—2Q7}‘~ (69)

é df'  v'3 cos '
n
2. Application of the Equations of Motion to the Satellite Rocket
The following quantities are now introduced.

F = total thrust of all rocket motors when all of the thrust is in the
axial direction

F_ = total magnitude of the thrust of the rocket control motors

D = drag

¥ = weight based on standard sea-level gravity = mg,
8, ~ standard sea-level value of apparent gravity = 32.174 ft/sec?

& =~ absolute gravity
L, = aerodynamic lift, positive in the direction of +n

a = angle of tilt of vehicle relative to direction of trajectory, positive
in the direction of in

fee = difference between F, cos o and the component of the thrust of the
rocket control motors in the direction T

fne = component of rocket control motor thrust normal to the trajectory,
positive in the direction of +n
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_.Besolving the forces acting on the rocket into components in the direction of ¥
and n, we have

fe =Fcosa‘9“lgsin9'*f¢€ (70)

fa

+Fsina+Ll, -mgcos & +f,. , (71)

and the force equations may then be written

féf — ) . F D ftc
dt = ~ (8- r(Bfsinf +cosa~-yg, + 5 , and (72)
,d@' a v'2 F L, f;c
LA r “(8"?‘(1) cos 6" +——cos ' +20v' +rsina g, . (73)

It will be noted that weight is defined on the basis of the constant standard sea-level
value for the acceleration of gravity, g,, and therefore does mot vary with height.
The absolute acceleration of gravity g varies with the distance r from the center of
the earth according to the formula

g = gg(ﬁ)2 , (74)

r

where R is the radius of the earth and g is the absolute value of gravity at sea
level. The absolute value g is the measured or apparent gravity at sea level plus
the centripetal acceleration due to the earth’s rotation., At the equator gp=
32.199 ft/sec?, the apparent gravity being 32.088 ft/sec®.

In these equations F is the combined thrust of all the motors, including the
control motors when they are aligned in the axial direction. If the control motor
deflections are small, which is a control motor design criterion, then f‘c is negli-
gible in Eq. (72) compared to F cos a and it will therefore be omitted in the follow-
ing development. On the other hand L _; is not negligible compared to F sin a in
Eq. (73) and consequently may not be disregarded. The value of L  and the required
value for f,. depend to a great extent on the aerodynamic characteristics of the
rocket {6}, and both fae and L are usually smaller than F sin a. If it now be assumed
that the servo-control system is capable of supplying, through a program on the inde-
pendent parameter a, any reasonable desired program on the net value of F sina + L +
fner it becomes convenient to define a new independent parameter a* by the relation

Fsina* = Fsina+L +f,. , (75)

so that the determined lift program shall henceforth be specified through a program on
the effective angle of attack a*, It will be noted that the condition a = a* corre-
sponds to the case of no aerodynamic or control forces. When a program on a* 1is
determined from considerations in this section, it can be converted to a program on a
by means of Eq. (75) as discussed in detail in the aerodynamics report, Bef. 6. When
aerodynamic forces are absent and a* is constant, a* is practically equal te a,
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differing from it only because f,, must still supply the moment necessary to turn the
rocket so that the condition of constant a* is maintained along the trajectory. In
order to simplify some of the calculations to follow, we shall seek optimum a* pro-
grams by representing the variation of a* with time by means of a step function. Such
a program could not of course be supplied by the serve-control system so that it must
be remembered that the program finally chosen must be suitably *rounded off'. There
still exists a cos a term in Eq. (72) which is practically unity for values of a in
the range 0 = 3° as in this study. Thus, although the approximation cos a = ] might
be used in this equation, it is somewhat more accurate to employ the approximation
cos a = cos a*, which will be done here. By neglecting f, and letting cos o = cos a*
in Eq. (72) the error in the final velocity is less than 10 ft/sec. It is not permis-
sible to make any simplifying approximations in Egq. (73) and in this equation a* must
be used in accordance with the exact definition, Eq. (75). By making the above sim-
plifications in Eq. (72) and using a* accurately in Eq. (73), the present trajectory
analysis has been divorced from some of the less known aerodynamic characteristics and
all of the rigid body dynamics and servo-control interaction, The modified differen-
tial equations truly describe the motion of a point mass.

Certain of the forces appearing in the equations of motion may now be replaced in
terms of the performance parameters discussed in Part [. We first return to Eq. (7)
and, assuming operation with constant rate of mass flow of propellants (dmn/dt =
const.), evaluate the quantity F/m for any time ¢ within the burning peried t,. It

follows from (7) that

- 1 dn
CRRE N (I (76)
Also, since dm/dt is constant, it follows that —dm/dt = #,/g t, and therefore that
n=W/g, ~ (K/g,t,)t, where W, is the gross weight at the beginning of the burning
period and H, is the total weight of propellants consumed during the burning period
t,. Thus
b

g, Iv
...F_: ’ {17)
n
w(i-vg )
where v = Wi

A refinement of the analysis may be made by considering the weight of fuel used
in furnishing power for various auxiliary purposes such as propellant pumps and servo-
mechanisms. The weight WP is used to denote only the weight of propellants consumed
in obtaining thrust from the rocket motor. Let ¥ denote the weight of fuel used
during a burning period for auxiliary purposes and introduce the factor € defined by

W
- ) - - P
WP* = Wyt WP = €k, or € 71 ‘*’W; ' (78)

where Wy* = €M, is equal to the total weight of propellants and fuel consumed in the
burning period t;. This is equivalent to defining a total propellant-gross weight
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parameter * such that »* = €v, see Eq. (19), and when the extra weight of auxiliary
propellants is taken into account, Eq. (76) must be written

g I v
= S (79)

t
ty (1 - €V Tb—)

In general, if W, denotes the initial gross weight for a given stage and W
denotes the gross weight at any time t during the burning period t;, of the stage, we
have

£
n

W, - W T )
W i P tb pr* t WP t t 50)
— e - — = - T = -y — .
¥; L L A 1 ety 1=evyy

Using this relation, the drag and lift terms in the equations of motion are evaluated
by means of the relations

D Cphq

_n( = t\? and (81)
“2 (] - €V ?—)

3‘“ CLAQ

W KRY (82)
Wi (1 - €V tb)

where C, and C, are the drag and lift coefficients, A is a representative area (maxi-
mum cross section) of the rocket stage, and g is the dynamic pressure. The coeffi-
cients G and €, are discussed in Ref. 6. With the aforementioned simplifications,
the equations of motion (72) and (73), referred to the rotating system of coordinates,
may now be written

dv’ g, Iv cos a* RV D
¢ - LA
b \L7 €V g,
, g, Iv sin a* RV 2
v:ég. - ——i—~—"'———?— - [%R 6;) - r0 | cos 6 + vr cos O +20Qv' |, (84)
at t@,(l“é?/'t:)

where the gravity relation Eq. (74) has been introduced.
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3. Integration of the Equations of Motion

In general these equations of motion cannot be integrated analytically., An ex-
ception to this, however, occurs in the highly specialized case of coasting at high
altitudes where the lift and drag forces are negligible; in this case, the equation
may be integrated to give motion in an elliptical orbit as discussed later. Thus, in
order to obtain accurate results, it is necessary to solve the differential equations
of motion (83) and (84) by numerical methods. Many such methods are available??)’(s),
differing considerably in complexity and amount of labor involved. Since the main
term in the equations of motion is the thrust term which is essentially integrable, a
rather simple method of successive approximations is used in this study which is based
upon a combination of the method of Picard (Ref. 7, pp. 218 to 225) and the Cauchy-
Lipschitz process (Ref. 8, Chap. XIII). The equations (83) and (84) apply to any
burning period %3, {(i.e. to any stage) and to any time interval A? within a burning
period. Since the method of successive approximations requires that each burning
period be broken up into small time intervals, to avoid complicated notation the
particular stage in question (the subscript j) will not be specified. However, it is
necessary to specify the finite differences within a burning period, and these will be
denoted by the subscript k. Considering Eq. (83) for example, the formal integration
process would be indicated by

¢ t
2 : Iv cos a*
tv, = / dv' = gsf S Tt
H - €V T
t 4 b (1 tb)
k3 1

t 4

- le:gﬁ (—?—)2 - er] sin &'dt - gs‘/‘ (%) dt , {85}
’ t

t
i 3

—

where Avy = v, = v, is the change in velocity in the kth time interval At, =t
t ., If the time interval At, is taken small enough, which is always the case when the
numerical method is employed, certain of the quantities vary so slowly with time, and
therefore altitude, that it is sufficient to replace them by their mean values during
the small time interval At, whereby they are then treated as constants. In this way,
Eq. (85) is replaced by the expression

t
1

. 1 - evy—
8,1, cos oy _____ik_ R\? .
bvy = ——— log t, ~|é& E;T -rQ} sin & « At
1-evy
b* k
D
- (T)k s T &tk ' (86)
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and Eq. (84) becomes

t
1
: 1-e¢
8, /1, sma.; vﬁ: a\? .
86 = =\ )108 T Kn(?) “ Q1| cos G * B¢,
1 -ev > T

b

%

+-;:-cos 6, Ot +20 - At (87)

A third equation defining the height A = 7 - R must now be introduced; this is dh/dt =
v sin &' which is used in the finite difference form

by = v} sin Ol , (88)
where Ak, = Thg = Thy+ The numerical method of successive approximations is now

applied to the equatxolns (85), (87), and (88).

In carrying out the numerical solution, the procedure is to begin with Eg. (86)
and calculate Av; using a sufficiently small value for At, and using either known
initial values or estimated values for the mean value quantities. This gives a value
for v& which is then used in Eq. (87) to get Af;. This will give a value for 6&
which, together with ”k' 1s used in Eq. (88) to compute the corresponding value for
Ohy . Then using these new values of h (i.e., T,) and 8&! the process is repeated
several times until the values of v', 6’, and h converge. In using this method pre-
cautions must be taken that the time interval &fy, is not too large. For even though
convergence is secured, if the time interval is not small enough, the final converged
values obtained may still differ from the true values by an amount greater than the
required accuracy. One simple test of a very practical nature is to compare the con-
verged values based on a given At; with those obtained when At, is taken half as
large. If the difference of the two sets of converged values is less than the re-
quired accuracy, it may be concluded that the original time interval was not too
large. The accuracy which has been specified in most of the calculations is about
16 miles in total height 2b6h, and about 50 ft/sec in total velocity change ZAv'k.

4. The Trajectory Calculations

Various results which were discussed in a general way in Part I will now be
treated in more detail., Sufficient discussion has already been given in Part I to
show that the best that can be done for a rocket with independent staging is to use
a constant value of n throughout the non-coasting part of the trajectory, and also
that the use of constant Vcorresponds to conditions very near the optimum. According-
ly all caleulations are carried out on the basis of n-and v constant as far as staging
is concerned. The purpose of the trajectory investigations is to determine, on this
basis, the particular trajectory which will satisfy the required orbital conditions
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with the least value for gross weight, which in most cases means the least value for
v. The basic value for the specific impulse I is determined by the type of propel-
lants used and the combustion temperature as described in Ref. 9, and is to be treated
in the trajectory equations as a quantity specified in advance, although a variation
will be allowed to take account of the effects of changes with height of the free-air
pressure (see Ref. 6) and the changes in design from stage to stage. Likewise, since
the general features of the shape of the rocket are known, the value of the drag-
coefficient Cb. and its variation with speed and altitude, may be considered as known
in the trajectory equations (see Ref. §).

Thus, calculations must be made for various trajectories which differ in the tilt
program a{t), in the time 7 which specifies where the burning period is interrupted
and coasting begins, in the amount of coasting Ahc, and in the maximum load factor n
which enters the trajectory equations implicitly through the burning period, Eq. (31).
Consistent with the required orbital conditions (height, velocity, and angle), the
problem is to determine, by means of the trajectory equations, the optimum values for
least v of a*(t), Ok, and T for various values of n. Then, from these values, an
optimum 1 may be chosen corresponding to a minimum value for gross weight by making
use of the weight studies of Ref. 3.

Considering particular orbital conditions which must be satisfied by means of the
trajectory calculations, these may be expressed in functional form by

v;rb = v;rb [a‘(t)' Ahct T, I, V]

reg req

:,ré =0 - ;,—b [a*(t): MCJ T, B,V ] (89)
req

harb = hqr& [a‘(t}o &hca T, B, 1)] .

reg req

The orbital angle condition S;rb = 0 must always be satisfied on a circular orbit, and

the angle of inclination must be zero in both the fixed and rotating coordinate
systems., In fact, this is the only value for which the angle will have the same value
in both systems of coordinates. The orbital velocity is determined mainly through the
effect of v, the orbital angle through the effect of a, and the orbital height through
the effect of Ah,. Strictly speaking the number of stages N should be treated as
still another variable, so that all of the following discussion should, in principle,
include consideration of variations in N. However, the best value for N 1s more
readily determined by means of the simplified performance equation, Part I, which
indicated that most of the trajectory shape study should be carried out on the basis
of N = 3, but that some consideration should alsc be given to the rocket with ¥ = 2.
In view of this result it is not necessary to consider variations with N in the
following discussion, since N will always have a fixed value of either 3 or2.

The problem of determining the best form of a continuous function a*{t) is essen-
tially a prablem in the calculus of variations. However, this problem can be simpli-
fied here since it has been found by actual calculations that it is of no value to
have any tilt in the higher portions of the trajectory and that the most important
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factor associated with tilt is the position, or time, in the lower part of the trajec-
tory at which tilting begins. To specify this, the parameter A is introduced which is
defined as the fraction in time of the first burning period t; at which a first has a
value different from zero. Since it is inefficient to use tilt in the higher portions
of the trajectory, the tilt angle a must go to zero again somewhere along the trajec-
tory. To determine where the tilting should end and a = 0 again, the effect of ending
tilt at various positions in the trajectory was investigated over a wide range extend-
ing from the middle of the first burning period to the end of the trajectory. It was
found that the performance of the rocket and the resulting value for v were, within a
wide range, practically independent of where the tilting was ended. Actually it was
found that when the tilt ended early, slightly larger values of a were required in the
first part of the trajectory, but that the net effect on the required value of v was
negligible. Accordingly, all of these results indicate that it is quite satisfactory
to employ the following simplified a*(t) program.

Start the tilt program at the time A early in the first stage.

Keep the effective angle of tilt a* constant up to 0.9 of the

first burning period (0.9 t; ) and then keep a* = 0 thereafter.
1

Near the very beginning of the first stage and in the last stage a* is practically
equal to a due to the small magnitude of the aerodynamic forces. As pointed out
before, Part I, section 12, the reguired lift force will always be negative (in the
direction toward the center of curvature of the trajectory) and accordingly the tilt
angle ¢ is always negative.

Consider further the required orbital conditions, Egqs. (89). The method of cal-
culation which will be used here does not allow one to arrive at specified orbital
conditions directly. Rather, the calculations proceed on a somewhat indirect basis,
since it is noted that for any chosen set of values for a*{t), éhc, r, n, and ¥, a
definite value will result for the velocity at the end of the trajectory. If this
velocity is high enough it will correspond to the velocity of some type of orbit but
not necessarily to a circular one. Moreover, the angle of inclination &' at the end
of the trajectory will not necessarily give the proper direction of motion required
for establishing a circular orbit. To meet the conditions required for establishing a
circular orbit, the velocity vy at the end of the trajectory, at the height h, where h
is whatever value results from the calculations, must have the value given by Eq. (57)
and the angle &, ; must be zero. Functionally, the equations (89) show that by proper
choice of two of the variables, say a* and M, it is possible to satisfy two of the
orbital conditions, for example the velocity and angle; when this is done, the third
orbital condition is still dependent upon the remaining variable. Thus, in order to
find a trajectory which corresponds to any circular orbit at all, it is necessary to
have trajectories for various a* and &hc from which, by interpolation, a trajectory
can be picked out which corresponds to a circular orbit. If the trajectory curves are
comprehensive enough, it will then be possible to find a trajectory which will satisfy

the orbital conditions corresponding to a specified height h ;.
req

Accordingly, we may imagine the elimination of the variables &t _ and a* by means
of many trajectory calculations, which would then result in a relation of the form
h =h,.p (\, 7, n, v) where h,_; is any orbital altitude and not necessarily the
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required one. If the range of v covered is great enough, one méy then specify the
value for A, , and get

reg
where the orbital conditions ”;rb’ 9;,5, and horb are now considered satisfied and
req regq reg

therefore do not enter the functional relation as variables. Having a relation of
this type, it would be possible to investigate the variation of v with A, 7, and n.
However, it is found much more convenient to proceed by first considering relations of
the form h _, = horb (A, 7, n, v) for a given value of v. Optimum values of A and 7,
for various n, are then found which give the maximum value for 2 _, . Thus the maximum
values of h, ; are found rather than the minimum values of v. This procedure is
- justified by the following remarks.

In the simplified performance formula {61), the main effect as far as changes in
v are concerned is determined by the term on the left hand side of the equation. The
terms in kA on the right hand side are nearly independent of X, 7, and n. The sin &
term varies with A but its variation with A does not change much with A and n; that
is, when A and n are held constant, the value of the derivative (0v/dh), . , does
not depend to any appreciable extent on the particular constant values which X and n
have., On the other hand, the derivative (9v/3h)y . , does vary somewhat with 7, and
this is adequately taken into account in the anal§sis, as will be seen later. It is
found that (3V/ah)A - n 1S nearly constant over height intervals of the order of
200 to 300 miles, and the use of this property allows important simplifications to be
made. For example, because of this property it is possible to deduce the value of
v = (A, 7, n) for a given horb from the value of horb =h, .y (*, 7T, m} at conslant W

req

jse 1s alsc made of a further general property that the optimum A and 7 to give the
maximum orbital height is the same az the optimum A and 7 to give the minimum . These
details will become more apparent in the later discussion.

5. Coasting

Before explaining in detail all of the various steps employed in using the tra-
jectory calculations, it will be necessary to discuss the coasting portion of the
trajectory. Since there is no rocket motor thrust present during coasting, and since
the coasting always occurs at such great heights (100 miles or more) that the drag and
lift are negligible, the equations of motion (83) and (84) are considerably simplified
and may be integrated. To do this it is convenient for the integration to refer the
equations of motion to a fixed (i.e. non-rotating) system of coordinates with origin
at the center of the earth, rather than the system of coordinates rotating with the
earth, which has been used up to the present, In the fixed system of coordinates the
speed and angle variables will be denoted by v and & without the primes; h is the same
in both systems. In the fixed system of coordinates the only forces acting on the
rocket during coasting are the gravity and centrifugal forces, and the equations of
motion become

dv
dt = —gsin 6 {91)
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along the trajectory, and

a8 v
vyt = —~8cos B t—cos b (92)

normal to the trajectory. As shown in Appendix I, these equations are quite easily
integrated yielding the solution

v - 9 gr v, —2g,;r; = 2E (constant total energy) (93)

and rvecos & = r.v, cos 6, (constant angular momentum) {94)

where the subscript i is used to denote the beginning of coasting, and where E is the
total energy per unit mass (kinetic plus potential). These integrals could have been
written immediately from the well known dynamical law that the motion of a particle in
a conservative field of force, the field of gravity in this case, must always be such
that the total energy and the angular momentum are conserved. When the field of force
is one of gravity, which varies inversely as the square of the distance, we have the
well known case of Keplerian or planetary motion for which the path of the particle is
known to be elliptic, parabolic, or hyperbolic, depending on whether the total energy
is negative, zero, or positive!10),

When the particle is at rest at infinity, its total energy is zero; and it can be
shown{11) that the coasting portion of the trajectory will be elliptic, parabolic, or
hyperbolic, depending on whether the actual velocity is less than, equal to, or greater
than the velocity it would acquire in falling from rest at infinity under the action
of gravity, that is, the escape velocity. Since the circular orbit velocity is
obviously less than the escape velocity, the velocity during coasting will likewise be
less than the escape velocity, the total energy 2E will be negative, and, as shown in
Appendix I, the coasting trajectory will be an ellipse such that one focus is situated
at the center of the earth. Letting 2E = =U? where U is a positive number having the
dimensions of velocity, it is shown in Appendix I that the semi-major axis a of the
ellipse is defined by a = r 2g./U® and that the semi-minor axis b is defined by b =
v;r. cos 6,/U. Hence the coasting motion is such that, with the center of the earth
located at one focus, the coasting begins at a point i near this focus and ends at a
point f in the direction toward the other focus. Denoting the end of coasting by the
subscript f, the time of transit between the two points i and f is computed from
At = tf - t;, where the instantaneous time t is related to & by the formula

-1 /b
a sin ! (;’tan 3) + b tan 6
t = - 7 R (95)

which is derived in Appendix I, Eq. (170). In this expression a is the semi-major
axis, b is the semi-minor axis, andc is defined by ¢ = /a® — b2,

The changes which take place during coasting may be combined with the values at
the beginning of coasting, and the changes after coasting to give the final values at-
tained at the end of the trajectory. Considering the final burst of powered flight
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after coasting, let the changes which occur over this end portion of the trajectory be
denoted by Av,, AG,, and Oh,. The changes which occur during coasting will be denoted
by &v,, &0,, and Oh,. Thus, the final conditions attained at the end of the trajec-
tory, denoted by the subscript F, are

v, tAv, +Av, = v (96)
8‘- tAg, +A8, = 9; (97)
h, +Ah +Dh, = hp | (98)

In these relations it is assumed that all values have been referred to the fixed
system of coordinates. Values computed on the basis of the rotating coordinate system
may be referred to the fixed coordinate system by means of the relations

vsin & = v sin 6 ,

il

v cos & v' cos 6 +rQ) , (99)

In the special case that the final conditions at the end of the trajectory are condi-
tions corresponding to a circular orbit, we have vp = v ., Gp 6,pp =0, and hF =
horb = Tore R.

Combining Eqgs. (93) and (94) and other elliptical characteristics for the coast-
ing motion and imposing the orbital condition that &y = 0 yields (o]

bh, a a\? cos? 6; \ v,?
re ("T“l) ¥ (“ﬁ) *\1-?08, ) 2 (100)

U

where from (97), cos A6, = cos Sf. Using Eq. (93) together with Eqs. (96) and (98)

with the imposed orbital conditions vp = v, 4. hp = h ., results in the expression (]

)
S () -(%)
Ahc F: v or ¥ 2 v TALY Torb
R , (101)
Dv, ?
1 *\7yp
These are two independent equations in &k, involving the three orbital conditions

v, .p» Gopp = 0, and h . Having these equations it is now possible to explain in

more detail the method employed in the trajectory calculations.

1
9 » ke
[»] In Eq. (100) the positive value of the rsﬁical must be used, since the negative
value would correspond to negative values of M. The positive value of the radical
must also be used in Eq. (101), since otherwise the curves for Egqs. (100) and (101)
cannot intersect to give a circular orbital sclution.
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6. Procedure Followed in the Trajectory Calculations

1. Considering first the final burst of powered flight after coasting compute,
for a certain chosen set of values of v, n, and 7, the changes Av,, A9,, and O, asso-
ciated with this end portion of the trajectory. For the orbital heights of interest
here (about 350 miles), these values are essentially independent of orbital height.
The calculations 1 may be expressed in functional form by the relations

&v, = v (v, T, B)

A8, = MG (v, T, n) (102)

e

Ja¥s

4

bh (v, T, n)

2. For a certain chosen set of values v, 7, A, and n, calculate trajectories up
to the beginning of coasting using various a*. The values of v and 7 used are the
same as in 1. This is expressed in functional form by

vi = vi ({VQ T’ k’ n], a‘)
8, = 6, (v, 7, \, n], a*) (103)
hi = hi ([V, T, A n] ’ a‘) ,

where it is to be understood that the calculations are carried out for certain chosen
values of the guantities occurring within the bracket. The quantity outside the
bracket may be viewed in the manner of a running variable such that it varies over a
range of values for each set of conditions specified within the bracket. Unless it is
specifically understood otherwise, as in coasting and in the final burst of powered
flight, all values are first computed in the system of coordinates which rotates with
the earth and are then transformed to the fixed system of coordinates.

3. Using the results (102) and (103) in the coasting equations (100) and (101)
gives relations of the form

bh, = bh (B, 7, A, 0], a*), (104)

[

and plots are made of O, against a* as shown in Fig. 7.

EQ (98)

An CIRGULAR QRBAT EQ (98)

HINIMUM FOINT

¥, T, A 0 | “CONSTANT
[ 1

i
{
!
i
!

a ¥ O ——

SCHEMATIC SKETCH TO ILLUSTRATE HOW AN
ORBITAL CONDITION IS OBTAINED
Fig.7
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Curve 1 is obtained by always satisfying the conditions of Egs. (102) and (103) in
Eq. (101), while curve 2 is obtained by always satisfying the conditions of Eqs. (102)
and (103) in Eq. (100). The set of values (a*, ﬂhc) corresponding to the points P and
P' where the two curves intersect will obviously determine a circular orbit and will
therefore be denoted by (a*,.,, Ohe,,p). The circular orbit will therefore correspond

to a certain height h_ _, which may be expressed functionally as

Bhy 4Ok, + Bk, =k =k, ([v, 7, A nl, ad,, Mc“b). (105)
In this way for any given set of values (v, 7, A, n], a circular orbit may be estab-
lished at some known height h _, which is not specified in advance and which is there-
fore not necessarily the orbital height desired. Moreover, the values (v, 7, A, n)
will not, in general, be the best values to use from the standpoint of minimum gross
weight. The point P’ nearly always corresponds to negative &; and to ranges which are
more than halfway around the earth. Moreover, although Ak, is higher, h; is lower for
P’ than for P causing the rocket to be subjected, usually, to more drag during coast-
ing which tends to make the calculations by which P’ is reached erroneous to the
extent that h  , for P’ may well be lower than that for P.

4. Steps 1, 2, and 3 are now repeated holding [, A, n] constant but using
various 7. This process may be indicated by the notation

harb = orb ([V (m), A, nl, G rbe ‘ahcarb) ’ (106)

where the symbol (7) 1s used to indicate that 7 varies over a range of values while
the other numbers 1, A, n remain constant. From the process indicated by (106) a cer-
tain largest physically possible value of 7 is found, which may be indicated by 7, ,
and which corresponds practically to the largest value attainable for h, .. That is,
the value 7 = 7__  is very close to the value 7 = 7 __, which makes h  , a maximum. In
a diagram such as that of Fig. (7), 7 = 7, corresponds to the case in which curve 1
intersects curve 2 only once, which occurs at the minimum point P,. The value 7 = Topt
is such that curve ] intersects curve 2 twice very close to the minimum. It is not
clear in the present study, due to the neglected drag effect, whether the optimum is
at P or at P', but it is apparent that P or P’ is so near to the minimum that the h,_,
value for v =7 __and 7 =7 __, are so nearly the same that we shall assume them
approximately equal in this discussion, This preblem should be more thoroughly in-
vestigated in any study where the emphas1s is not on short ranges such as are desired
here. This value 7 = 7, opt = Tuax 1S lmportant since, as discussed in section 13 of
Part I, this value of 7 leads to the least value for v. It was pointed out (section 4,
Part IT) that the value 7 = 7, for maximum h  , would give the least value for v if
h,., were fixed or specified in advance. In fact, since it will be found desirable
later to have the dependence of { Bz/ah)h ron 00 T, it is worthwhile at this stage to
repeat the calculations for various v and 'in this way obtain the relation between v

and h,,., for various 7. This relation immediately gives (aq/ah)x r,n as a function of

7, and also gives 7 ., for minimum » at constant h, ,. This is "the same Topt a8 al-
ready discussed for, sxnce
L. = _[oh .
€ &), . am
r.,n,h .8, v A, T,n
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it follows that for the same value of 7 both (Bq/ak), n. 4 and (ah/ax), n,, are zero.
Using the 7, , determined in either of the ways mentioned above and returning to the
discussion of the variation of h, , with fixed v, we may write

h’orb = h’orb ([Vv Topt’ >\, n], a;,-b; N‘corb) . (108)

5. Steps 2, 3, and 4 are repeated for various A giving
horb = h’orb ([Vv Topt' (A); n]; a;rb’ Ahcorb) . (109)
6. Steps 2, 3, 4, and 5 are repeated for various n giving

horb = h'o,-b ([V' Topt’ (>\): ("')] ’ a;,—bv Ahcorb) i (110)

Thus far, Egs. (108) to (110), the calculations described are still based on the
original value chosen for v which will now be denoted by Vo On this basis, the.cal-
culations carried up to the stage indicated by (110) give, over a range of values for
A and n, the values of 7, , and the corresponding maximum orbital heights for a cir-
cular orbit. Thus, for each of the values (A) and (n) the calculations determine the
value of Topt and the corresponding maximum value of h  ,. It now remains to determine
the minimum v corresponding to the desired orbital height of 350 miles.

7. Corresponding to each of the different values of n, the optimum value of A
(X =A,,,) is chosen which gives the greatest of the corresponding maximum orbital
heights; this may be denoted by h ;. This process may be looked upon as finding a

nax

double maximum or the ultimate maximum since for each (n) there is found for a series
of values A the corresponding values of 7, ,, and from these A there is chosen a Aopt'
In this way the ultimate maximum orbital height can be determined as a function of n,
This relation is then used to find the minimum value of v, v = v,;, (as a function of
n), which will just suffice to give the desired orbital height of 350 miles. To do
this, use is made of the approximate result that (v/3h)_, ,is independent of the
values A and n. T

Since d/dh is fairly constant with h we may write

_ v
Yreg T Yo T oh T, \,n

FRAZ AN

(hm - hm), (111)

regq

which may be used to calculate the value of Vreq for a given h when any h , is

orbd
req
known for a particular v . Using this procedure it is necessary to know (Bu/ah)T A n
as a function of 7. It will be seen later, Figure 8, that it is more convenient to

use the range instead of the parameter 7.
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In particular, for the values 7 = 7, ., Ea. (111) may be used to obtain v as a
“function of A and n from the known relation of h ,, to A and n. Further, for the
condition A, , and Topt? the relation between v_; and n may be calculated, and from
this ¥ may ge obtained as a function of R from structural considerations. This last
relation will have a minimum which will determine Roptr which in turn will determine a

final v ;..

8. The value for v_;, as obtained above will be slightly in error owing to the
approximate nature of the relationship (Bu/ah)fik,a = const., which was used. Therefore
a final optimum trajectory must be determined. Using the fixed values 7, ,, Aopt’
n,,¢» determined above, trajectories are computed for three or four values of’v having
vaiues in the neighborhood of the value v_;.. Each of these trajectories will deter-
mine an orbital height. By interpolating between these orbital heights for the desired
orbital height (350 miles), the corresponding interpolated value of v is the final
minimum value which gives the final optimum trajectory {see for example Fig. 8 dis-
cussed later}.

The method which has been used here to determine the optimum trajectory (Topf'
Kopt, Roptr Vain) has been based on the determination of maximum orbital heights and
on the use of the relation (au/ah)k s n - const. Although this relation is only
approximate, its use has been found jhs%ified since the optima are broad and because
actual calculations of (au/ah)A r.n 8t different sets of values [\ and n] have veri-~
fied the approximate constancy of ‘cthe derivative. The procedure adopted here for the
trajectory calculations, although somewhat indirect, allows the optimum trajectory to
be found in much less time than if the calculations were carried out in the more

direct manner based on the specification in advance of the desired orbital height.

7. RBRange

Before the results of the trajectory calculations zan be discussed with complete-
ness, it will be necessary to make a few remarks concerning the range. The range
corresponding to any portion of the trajectory is defined as the distance intercepted
on the earth’s surface by the two radius vectors extending from the center of the
earth to the end points of the portion of the trajectory. Thus the range is deter-
mined by projecting the trajectory onto the surface of the earth by means of the
verticals at the two end points of the trajectory. Letting ¢ and r be the polar
coordinates (with origin at the center of the earth) of a point moving along the
trajectory, and letting s, be the horizontal projection of the trajectory at the
distance r and S, the corresponding projection at the surface of the earth at r = R
{the range), it follows that

ds, = Rd¢,

ds, = rde¢, and
R

dSh = ‘;'dsh .

Since ds; = v cos & dt, the differential equation for the range is

R
dS, = Fvcesfdt, (112)

52




February 1, 1947

from which the range itself is given by the integration

t
2
v
S, = R = cos 8 dt , (113)
t
1
v cos &

where ——dt = d¢. For the non-coasting portions of the trajectory, the range is
obtained by numerical integration of Eq. (113).

Since the coasting part of the trajectory is a portion of an ellipse, the range
for this part of the trajectory may be obtained analytically by integration or from
the analytic geometry of the ellipse. If ¢; and ¢? represent the polar angle at
the beginning and end of coasting, the range during coasting is

S}; = R(¢i "¢f) ’ (114)

and it is therefaore required to find the expression for the angle ¢ for this part of
the trajectory. This expression is derived in Appendix I, Eq. (165), where it is
found that

o
é = tan? pean 6 , (115)
tan? 4 + (1 - Hﬂ

where

2
I - (116)

Thus when 6,, &, r;» and ry are given, the range is computed immediately by use of

It should be pointed out that in this study we are mainly concerned with ranges
referred to the rotating earth. This will be denoted by Sj. The above formulae refer
to a non-rotating coordinate system and can be converted to values referred to the
rotating earth in the case of the calculations for powered flight by using ‘primed’
values in Eq. (113), and in the case of coasting by subtracting from Eg. (114) the
term R(1(t; - t;).

Having introduced the range, 1t may now be noted that to a first approximation
the range of the ascending trajectory is determined when 7 is given; that is, T governs
range in the main. Since we are more interested in the range {actually we want to
limit it to 2500 miles on the earth’s moving surface so that communication does not
become too difficult) than in 7, it is convenient to replace the independent variable
7 by the independent variable S;. Since it has been found that (32/3&}ﬂ An varies
mainly with 7, it then follows that (3%/3h)3é'x’n varies mainly with §j. This is
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illustrated by Fig. 8 which, for various ranges Sj, shows the variation of v with h,,
for a three stage hydrazine-oxygen satellite rocket.
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8. Results of the Trajectory Calculations for a Three Stage Satellite Rocket

The calculations discussed here refer to a three stage hydrazine-oxygen rocket
having the optimum shape as determined by the analysis of Ref. 6. The two stage rocket
will be discussed later. Basic to the optima study is the use of (av/a’t)sh A,n which
must be known for different values of S;. Fig. 8 contains a plot of A ., vs. v for
various ranges and therefore determines (31)/'511)3' A, n as a function of 'er‘ For the
three stage rocket the trajectory calculations glve T opt = Tmax * 0.97 for h__, = 350

req
miles; it is found,however, that this gives atotal range extending about halfway around
the earth. For greater orbital heights the value of 7, , becomes more nearly unity
and in order to escape the earth entirely the value is exactly one. For the purposes
of communication it is essential that the total range from launching to establishment
of the circular orbit does not exceed about 2500 miles. For this reason it is necessary
to choose a smaller (range control) value for 7 and it is found that values in the
neighborhood of 0.75 give the maximum allowable range of about 2500 miles. This will
cause an increase in the gross weight, but the change 1* small. Using the final
values adopted for (Wgﬂﬂj and ¥, together with v vs. S for h, , from Fig. 8, the
req
variation of gross weight with range may be computed giving the result shown in Fig. 9.
Fig. 9 shows the importance of using a large value for 7. It also shows the decrease
in weight which would result if ranges of the order of 7000 miles could be allowed.
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Having chosen the range and the corresponding approximate value for 7, the varia-
tion of A _, with A and n for this range can be converted by use of (av/ah)sa.)\,u

to a variation of v with A and n by using the values of (au/ah}sg’&n derived from

Fig. 8. Although these calculations were not as exhaustive as could be desired, they
sufficed, nevertheless, to indicate that the variation of v with A over theé range of n
pof interest was quite small, Using weights as determined in Ref. 3 for the final
rocket design, the variation of ¥ with A can be converted to the variation of ”; with
X\ giving the results shown in Fig. 10. These results are valid for values of n lying
between 4 and 7, and they indicate that a value A = 0.1 or somewhat smaller is best.
The value X = 0.1 was chosen as best because a smaller A would have caused greater
bending of the path and hence greater dynamic pressure ¢ in the latter part of the
first stage and in the second stage. This would result in higher temperatures and in
more difficult control problems. Using the values of A\, , as determined previously
(which vary slightly with n but are approximately equal to 0.1), v,;, can be deter-
mined as a function of M in a manner similar to that used for A, and this in turn cen
be converted through structural considerations into ¥ vs. n, While v vs. n has a
minirmm when n = ®, ¥ vs, n has a minimum at about n = 4.5 as shown in Fig, 11. How-
ever, before the value n=4.5 had been obtained, calculations had already been started
using ? = 5.0 which, at the time, appeared to be the best value. Since, as shown by
Fig. 11, the use of n = 5,0 instead of 4,5 has a very small effect on the magnitude of
¥ , for the hydrazine-oxygen rocket it did not seem worthwhile to start the final
calculations over again and they were therefore completed using the value n = 5.0.
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GALGULATIONS BASED ON FIXED VALUES FOR s AND
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In carrying out the calculatzons for the final trajectory, use was made of the
most recent aerodynamic data(6) {see the drag curve, Fig. 12), atmospheric data’ 4) and
specific impulse data®®), The final optimum trajectory consistent with the range
limitation is based on the values A = 0,1, » =5, and 7 = .762. The calculations have
been based upon specific impulse values corresponding to the hydrazine-oxygen system
of propellants, which, from all considerations, appears to be the most practical
system to use. The values of specific impulse versus height for the first stage burn-
ing period are shown in Fig. 13. In the second and third stages it is sufficient to
use the constant value I = Ia = 296.7 seconds.

Using the value A = 0.1, the simplified tilt program discussed in section 4 would
be as shown by the full lines in Fig. 14. Actually, for various control reasons, it
was found necessary to adopt a more gradual type of tilt program as indicated by the
dotted lines, In this program the tilt was assumed to begin at A = {,05. With time

expressed in terms of t/f, .’ the effective tilt a* was then assumed to vary as a sine
curve reaching a maximum value at 0.15, to remain constant at this value up to 0.5,
and then to decrease linearly to zero at 0.9. As far as the trajectory is concerned
however, the result is practically the same as if the step function tilt program were
used with A = 0,1, The program of the actual tilt angle a is discussed in Ref. 6.

——————— SIMPLIFIED STEP FUNCTION TILT PROGRAM
— — —— ACTUAL TILT PROGRAM ADOPTED
EFFECTIVE
ANGLE Of
Ty, a ¥
14354 —
‘ e s
\\
N,
/ =~
/ SINE GURVE ~
Z S
o] v Y Y
.05 010 .15 0.5 03 —wm
—:; {TIME EXPRESSED IN TERWMS OF FIRST BURNING PERIOD)
i
SCHEMATIC DIAGRAM TO SHOW TILT PROGRAM

FiG, 14

The characteristics of the final optimum trajectory are shown in Figs. 15 and 16.
The final value obtained for the minimun required value of the gross weight is ﬁ’
84,400 pounds which is based on the final value v, ;. = .6533 resulting from this study
and the final structural considerations. However, since this final minimum value for
W became available only at the very end of the study, all curves in this report
referrmg to the three stage hydrazine-oxygen rocket correspondmg to the conditions
hypp =350 miles and S; = 2500 miles are based upon the value ¥ = 86,400 pounds. This
value represented the minimum gross weight up to that stage :m the ana1y31s where the
final optimum trajectory was calculated. The 2000 pound difference in the two values

is entirely negligible as far as the trajectory is concerned,
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The final optimum design for the rocket corresponding to the optimum trajectory
and the value found for the minimum gross weight is shown in Figs. 17 and 17a. The
characteristic features of the design are discussed in Refs. 6 and 3.

9. Results of Trajectory Calculations for Rockets Having From Two to Six Stages

Although the calculations for the two stage rocket have not yet been completed,
there is no indication from the results available at the present stage of the investi-
gation that the optimum values for 7, A, n will differ appreciably from those obtained
for the three stage rocket. Proceeding on the basis that this result will be borne
out by the completed investigation, the minimum value of v which will give an orbital
height of 350 miles may be obtained from the corresponding value v, ,;, for the three
stage rocket by use of the simple formula

2 log T“%__ (117

2 min

where v refers to the two stage rocket.

2 min
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Very early investigations showed that this simple formula could be used with
confidence in deducing comparative values of v for different rockets varying in number
of stages as wuch as from one to five. The basic reason underlying this result is
that optimum trajectory shapes are quite similar regardless of the number of stages.
Using the estimates of (Wp/W). for a two stage rocket and using the same average
specific impulse I (hydrazine-oxygen) as for the three stage rocket, the variation of
gross weight with the number of stages is obtained{3) as shown in Fig. 18. These
results are based on an orbital height of 350 miles, Curves are also included for the
hydrazine-fluorine, alcohol-oxygen, aniline-nitric acid, hydrazine-anhydrous hydrogen
peroxide, and hydrogen-oxygen propellant systems. It should be pointed out that the
gross weights which have been derived here are based upon a final stage payload
(weight of fixed equipment) W, ' of 1080 pounds (satellite payload ¥, = 500 pounds).
The gross weights derived here may be altered to suit the condition ¥ ' = 700 pounds
simply by smultiplying them by the factor 700/1080. Although it is seen from Fig. 18
that the three and four stage hydrazine-oxygen rockets have about the same gross
weight, the choice of the three stage rocket is obvious because it is less complex.
It is also apparent that the hydrazine-oxygen propellant system, which is the one
chosen for the satellite rocket, does not represent the best system which could be
used. It is only the practical, but highly important, considerations of handling and
availability that have led to the choice of the hydrazine-oxygen system.

Although the curves of Fig. 18 indicate that a three stage rocket is best when
the orbital height is 350 miles, it is found that if higher orbital heights are re-
quired the optimum number of stages increases. This is shown by calculating ¥, versus
h,.p for a three stage hydrazine-oxygen rocket from the results of Fig. 8 and then
using the simplified formula

1 1
3 log =7, win 4 log 77= V. win

to obtain Y. min from which Wl versus h . may be calculated for a four stage rocket.
This result is shown in Fig. 19 from which it is seen that at the higher orbital alti-
tudes a four stage rocket requires less gross weight than a three stage rocket. Since
the results of Fig. 8 have been greatly extrapolated in order to obtain these high
altitude results, the greatest orbital height attainable with a three stage rocket is
really higher than that indicated in Fig. 19. Also, since the results were based on a
range of 2500 miles, the heights indicated are lower than those which would be
obtained for optimum ranges. In connection with these attained orbital altitudes it
is interesting to note that the rocket of final design (three stage hydrazine-oxygen
rocket of 86,400 pounds gross weight) would be able to attain a maximum height of
about 2300 miles by travelling on a perfectly vertical path.

10. The Accuracy With Which The Orbital Conditions Must Be Established

Since it probably will not be possible in practice to attain exactly the circular
orbital conditions which are specified, it becomes necessary to investigate the orbit
which results if the specified circular orbital conditions are not exactly satisfied.
If the flight values at the end of the trajectory differ from those which are speci-
fied in order to establish the desired circular orbit, the rocket will then, in
general, establish an elliptical orbit. Although a circular orbit is the desired one,
an elliptical orbit will be acceptable under certain conditions.
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From the drop per revolution which results (section 11) because of the atmospheric
density values prevailing in the upper atmosphere(4), it is found desirable to estab-
lish the circular orbit at a height of 350 miles if a long duration of orbital motion
is required. Since the minimum duration acceptable corresponds to an initial circular
orbital height of about 250 miles, if an elliptical orbit is established it follows
that the very least condition which will be acceptable is that the ellipse be such
that its minimum height from the surface of the earth be 250 miles. Since it is safer
to require, when an elliptical orbit is established instead of a circular one, that
the height of the elliptical orbit never fall below about 300 miles, this value for
the minimum height will also bLe considered in the following discussion. In view of
these limitations on height for an elliptical orbit, it becomes necessary to determine
the corresponding amount of error which may be allowed, for example, in the final
values of velocity and angle of inclination at the end of the trajectory.

In answering these questions use will be made of the properties of elliptical
motion derived in Appendix I (see Fig. 23) and these results will be used here without

any additional definition or explanation. In Appendix I, relations (166), it was found
that the maximum and minimum distances of the ellipse from the center of the earth,
the points 1 and 2 in Fig. 23, have the values
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nax , = @tc, where 91 = 0, ::51 = @, and (118)

Tain = Ty = @ ~¢, where §, = 0, ¢, = m (119)

xin 2

It was also shown, Eq. (167), that the parameter u has its minimum value at point }
where

c

1-73 (120)

Hgin ~ }J.‘

and its maximum value at point 2 where

¢
Ppar = My, = 1tg. (121)

It was shown further, Eq. (170), that at the points 3 and 4, Fig. 23, where the minor
axis meets the ellipse, and where r = r_ = Ty =V b% ¥ ¢? = a, the parameter u has the
value u = g, = p, = 1. The maximum angle of inclination was found to occur at the
point 3, having the value, Eq. (168),

6,,, = 6, = tan’! T, (122)

¢
9‘!".’! = 64 = - tan—l“b— M (123>
Thus, 0,;, = = G.o» OF the extreme value of & is always given by
.
16,,,] = tant g, (124)

Since ¥ 2 + ¢ = a, it follows that this may also be written

4
= gin1 & (125)

Suppose now that the required orbital height horb and velocity v . (the sub-
script req used previously to denote required values is no longer necessary here) for
the circular orbit are cobtained at the end of the trajectory, but that the angle is
wrong., When the height and velocity stand in correct relation for a circular orbit,
it follows from Eq. (56) that & = 1 and therefore, referred to an ellipse, the rocket
must be situated at a point such as 3 or 4 where r = / b2 + ¢ = a, Thus the orbital
distance at which the orbit is established in this case is r_ ., = a. Since the cor-
rect value for the angle is & = 0° and since the actual value is |8] = sin™? c/a, the
error in angle, which will be denoted by |A8], is simply |A&| = sin”? ¢/a, or

[ +4
sin |A8] = ¢, (126)
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where ¢ = r__ .. Since an elliptical orbit, Fig. 23, will be established instead of a
circular one if there is an error in angle, and since this will be established at the
points 3 or 4, where r = a = r ., it follows that the greatest decrease in height
during a traverse of the elliptical orbit will occur at the point 2, and will there-
fore be of amount r,., = (a = ¢) = c. Letting Ah = ¢ denote the decrease in height
‘which occurs during a traverse of the elliptical orbit, and replacing, for small
angles, the sine by the angle, it follows from Eq. (126) that

_ bk
lag| = P (12m)

Using h, , = r ., =R =350 miles, it is found that [a6] = 1.3° for Ah = 100 miles
and 0.68 for A;l = 50 miles. Thus if the minimum allowable height above the earth’'s
surface is 300 miles, the angle of inclination at the end of the trajectory must be
controlled with an accuracy of about one-half of a degree.

Having discussed the effect of an error |Af| in the angle, we now assume that
the proper values of height and angle, h, ., and 8, , = 0, to establish a circular
orbit exist at the end of the trajectory but that the velocity is too low. In this
case also an elliptical orbit will be established, and since 85 = 90,,,, = 0, the
ellipse will be established either at the point 1 or 2. Since the velocity is speci-
fied as being too low, it follows from Eq. (56) that i must be less than unity and
therefore that the elliptical orbit must start at the point } where p = TR B ¢/a
and where r__, = r.=atc Tt then follows in this case that Ah = r, - (a~-¢) =
2¢. Since u =1 ~ ¢/a, the quantity u may be written

_ Ah
mo T 17 g SRR

orb

and since r,,, is of the order of 4300 miles while Ah is only 50 to 100 miles, it is

permissible to neglect Ah compared to 2r,., and to use u =1 = Ah/2r, ., or
_  Ah
l [.‘l.1 - 2’},.5 . (128)

If ~Av represents the error in the velocity v, ,, required for the circular
orbit, the velocity v at the point 1 is v = v . - Av, and from the definition
u = v3/gr and from relation (56) it follows that

(vorb - Av )3 ("0,5 - Av)a _ ( Av )3

= - 3 Vord

T
- 8orb Yorb

2 ..
Since v,., is of the order of 25000 ft/sec , the quantity (bv/v,,,) eppearing in the
expansion will be a small higher order term which may be safely neglected giving

A
1-p, = 25— . (129)

orb
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A comparison of Eqs. (128) and (129} results in the relation

bk
O Y (130)

orb orb.

Using h,,, = 350 miles it is found that an error in velocity of 0.6% gives a value Hh
of 100 miles, while an error of 0,3% gives 50 miles,

When the trajectory values v,, &;, r, at the beginning of coasting differ,
because of error or inaccuracy, from those which are required in order to satisfy
specified orbital conditions, an elliptical orbit will be established rather than a
circular one. Errors in the values v;, O, r; may be partially compensated for by
adjusting the coasting height interval 4, in such a way that the elliptical orbit
which is established has its minimum distance from the earth r, = (@ = ¢) as large as
possible. Since 7 is always taken as large as possible consistent with range restric-
tions, it is found that this leads to values of the angle O,, at the end of coasting,
which are practically zero, of the order of a few tenths of a degree (see Fig. 16 for
example}. The best way of adjusting Ok, to compensate for existing errors in the
initial coasting conditions is to adjust the duration of coasting so that &, has a
value as close to zero as possible. The proof of this statement is contained in
Appendix I. A method is discussed in the Communication Report(lz) for obtaining the
condition &y = 0 by adjusting the duration of coasting on the basis of measurements
made during flight of the conditions at the beginning of coasting.

Table 1

ERROR IN VELOCITY OR ANGLE AT THE BEGINNING OF COASTING
TO GIVE SPECIFIED VALUES OF r__, - T

2 RmRax
- VitV | G0 B | BV
orb 2 max v, degrees ft/sec
i
50 miles 0.0036 0. . 66
0. 0.83 115
100 miles 0.0072 0. . 132
0. 1.62 230
Vo and aio are the values of velocity and angle

at the beginning of coasting when there exists no
error of any kind.

Table 1 gives the error, at the end of coasting, in either the velocity v, (when
the error in angle is zero) or the angle &, (when the error in velocity is zero) which
results in the values of 50 and 100 miles for the difference r, , = r, .., The
notation 7 refers to the elliptical orbit which has its minimum distance 7, as

nax 2
large as p;;sible. The figures in the table show that the path control apparatus must
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be designed to control the flight path with an accuracy of either 1% in velocity or 1°
in angle. The table also shows the increase in velocity which is required, over and
above that of the final burst, in order to establish a circular orbit. This last
increase in velocity could be accomplished if a slight reserve of propellants is
available.

As far as stability and control of the rocket are concerned, the aerodynamic
stability is to be accomplished by means of fins{6) and the dynamic control(13) jg o
be brought about by the use of rocket control motors (14},

In order to insure that the attitude (i.e. the angle of tilt a)} of the rocket,
when it starts in the final burst, is the desired one with the nose of the rocket
always pointing in the direction of motion, it may be necessary to allow for a slight
change in the shape of the final part of the trajectory. This necessity arises
because, unless the control motors are operating, the attitude of the rocket will
change by about 30° during coasting. If the control motors are used during coasting,
the coasting period becames essentially analagous to a very long burning period stage
having a value of n of about 0.08. Although this would necessitate a slight compen-
satory change in v, and v,, the net effect on required gross weight to reach a
350 mile orbit is quite negligible.

11. Stability of the Orbital Motion and Duration of Flight After the Orbit is Estab-
lished .

Once the satellite body is established on its circular orbit, it is important to
know the effect on the orbital motion of the drag resulting from the extremely small
density of the rarefied atmosphere{4) existing at the orbital height. Although the
drag itself is extremely small, since it is continually present while the rocket is
revolving about the earth, the integrated effect over large time intervals results
eventually in a decrease in orbital height such that the rocket finally reaches the
surface of the earth. Thus, because of the delicate balance which exists between the
gravity and centripetal forces when the motion is orbital, the stability of such
motion is quite sensitive to the presence of any dissipative (drag) forces. Assuming
the initial orbital height to be 350 miles, we shall investigate the time and number
of revolutions about the earth required before the rocket drops to a height of 100
miles. This height interval, 350 to 100 miles, is chosen for discussion since condi-
tions remain practically orbital in this range, and the decrease in height per revolu-
tion of the satellite in its orbit may be determined from a particularly simple
formula.

Assuming that the satellite has been initially established on a circular orbit
(at a height of 350 miles for example), the problem is to integrate the equations of
motion of a free body moving in a central force field in which dissipative (drag)
forces are present, and thus to find the variation of the motion with time. Since it
is not possible, in general, to integrate these equations of motion in closed form,
approximate methods must be employed. One such method which is especially appropriate
to the present problem has been given by Chien‘1%), This analysis is given in
Appendix II. Referred to a fixed non-rotating system of coordinates with origin at
the center of the earth, the approximate integration of the equations of motion in
polar coordinates as derived in Appendix II gives the result
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Al’1 = CTo (wyt = 2 sin w t)
or = 2 (s t-wt
1 w? (sin w,t =) (131)
°
Ikwl = % (3@0 t — 4 sin a)ot) .
where Tor Yo and w_ are the initial equilibrium conditions at the beginning of the

circular orbital motion, and A"x, Aul, Awl are the deviations or perturbations
from these equilibrium conditions resulting from the effects of the atmospheric
drag D.

Writing D/m = g D/W, the variation in height r — r
g, (O/M br , or

o 18 expressed by r - r =

|so

D
(sinat -~ w 1) g, - (132)

"»

°
@
[:]
The corresponding variation in velocity is

1 D
vy, T E'; (wof - 2sinat) g . (133)

Although the values of v and r computed from these equations show some variation over
an orbital period, it is found that the final values at the end of the revolution are
almost exactly the same as the values at the beginning, and therefore the net effect
of drag during only one revolution is very small. However, the integrated effect of
drag over a large number of revolutions becomes appreciable as will be shown by the
following analysis.

For one complete revolution of the satellite, the change in height Ar is deter-
mined by

ﬂ!
“o
=, b - D 4m
or = g, yor, ERCETRE (133a)
°
Making use of the relation
Yoo . RY
T T T8y, where & = 8p\v ] »
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Eq. (133a) may be written

8 D
Ar = "4772;-!'07. (134)

Using the appropriate value for D based on the designed body size, it is found, for
example, that at a height of 350 miles, Ar = - 34 feet.

Let N_ denote the total number of revolutions (referred to fixed space and not ta
the rotating earth) which the satellite must make before the height has decreased to a
certain value h ; say 100 miles. Since N_ will be a relatively large number, the
decrease in he1ght per revolution Ar may be replaced by the derivative dr/dN_ giving
the differential equation

_ & D
dr = - 4nm -g— T, . (135)
Using D = C’D 9 Av? with C) = 2 as discussed in Ref. 6, this becomes

&N = _—32 ¥ dr
r s 97Cy Av3r p(r) (136)

Since for relatively small changes in height the percentage variation in r itself will
be small, the density po(r) will be the only quantity in this expression which varies
appreciably with r, and to a fairly close approximation we may use

r
v & 1 L
= —-— —— —— [3 (137)
Ny I7mA &, ; (CD””’) (1)
k

rgk

where the bar indicates the mean value appropriate to the height interval (rop = roa)s
r,k 18 the upper level of the kth height interval, and r ok the lower level. The total
hexght interval covered by the integration is EI ('3k “} = r T

Since d(log p)/dr is approximately constant if the change in height is not too
large, a variation in density of the form

Pe = Papexp (ry, =1y K o (138)

is used, where p, .4 1s the density at an upper level at distance r akr P is the density
at any lower level r, within the kth interval, and K, is a constant which determines
the density variation within the kth height interval and is differeat for each height
interval chosen. In practice it is found satisfactory over ranges in height from 350
down to 100 miles to perform the integration of Eq. (137) by using the density varia-
tion (K,) based on 50 mile intervals. The density values used are those given in
Bef. 4 for the atmosphere at the equator. Proceeding in this manner, the values given
in Fig. 20 are obtained for the number of revolutions N, required in order for the
satellite to drop from an initial orbital height h to a height h, = 100 miles.
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The period P of ‘a revolution is

_ 27r
P = v ? (139)

end since r and v, and especially the ratio r/v, do not vary much in the range 350 to
100 miles, the value of P remains essentially constant. The time T, required for the
rocket to drop from 350 down to 100 miles height may therefore be computed from

T = an{D, . (140)

The values of T_ corresponding to those of N, are also shown in Fig. 20. This figure
shows that when the orbit is established at a height of 350 miles, the satellite will
remain aloft for approximately two years. It also shows that a period of about 6 months
must elapse before the satellite drops to the earth starting from a height of 300
miles, and 46 days when the satellite starts from a height of 250 miles. Starting at
an altitude of 100 miles it is found that the descent of the satellite is so rapid
that it reaches the earth in less than one revolution (less than 1% hours), so that
this portion of the descent is negligible as far as duration is concerned. It is
precisely these results which have led to the choice of 350 miles as the desired
orbital height. For, since a duration of 40 days for the 250 mile height is the least
amount acceptable, it is found necessary to specify a 350 mile height in order not to
violate the 250 minimum height limitation if an elliptical orbit is established
instead of a circular one due to inaccuracies, etc., as discussed previously,

The accuracy and limitations of the method of calculation presented above for the
decrease in altitude of the satellite may be investigated by determining the second
approximation values, &v_, Ar_, Aw_ occurring in Egq. {176}, Appendix IT. This has
been done and the results show that the calculations presented here are valid down to
heights of about 100 miles. The analysis of the second approximation is uite involved
and will be presented later in a separate paper. For heights lower than 100 miles, the
increase in density with decreasing height is so rapid, and the consequent variation
with time of v, 7, and & becomes so large, that the method employed above is no longer
applicable. In fact below about 75 miles the motion changes so rapidly that it
becomes necessary to perform a numerical integration of the equations of motion in
order to obtain a satisfactory solution. The results of these calculations show that
once the satellite has descended to an altitude of 100 miles, it will then descend
rapidly to the earth in less than one revolution. The accurate calculation (by
numerical integration of the equations of motion) of the descent of the satellite fly-
ing stably from a height of 100 miles down to the earth has been carried out taking
into account the variations of density!4’ and drag coefficient(s), and the results are
shown in Figs. 21, 22 and 22A. Fig. 2] contains the complete results of the calcula-
tions and shows the variation with time of height, velocity, angle of inclination of
trajectory, and the range. The values given are with respect to an observer situated
on the rotating earth. Although, strictly speaking, exact circular orbital equilibrium
exists only at the 350 mile height where the circular orbit is established, it is
found that even after the satellite has descended to 100 miles height, the velocity
and angle differ by such a small amount from exact circular orbital conditiens corre-
sponding to this height that it is quite permissible to use exact equilibrium as the
initial condition at 100 miles height.
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12. Conclusions

From the analysis and calculations which have been presented it is found that a
rocket may be established on a satisfactory satellite orbit by using a three stage
rocket with the hydrazine-oxygen propellant system. It is found that the minimum
gross weight required for the three stage rocket is 84,400 pounds, which is about
three times that of the German A4 rocket.

While it is apparent from Fig. 18 that the minimum gross weight required is much
less when the hydrogen-oxygen or the hydrazine-fluorine propellant systems are used,
the hydrazine-oxygen system has been chosen because of the much greater ease and
safety in its handling and because of its more ready availability. A three stage
rocket has been chosen since, for the propellants of interest, the gross weight is
much less than for a two stage rocket. While the three and four stage rockets are
found to have about the same gross weight, the three stage rocket is chosen because
it will obviously be less complex from a fabrication standpoint.

For the three stage rocket it has been found that practically optimur conditions
will be obtained when the burning is such that the rate of mass flow of propellants is
constant during a burning period, and when n and v have the same value for each burn-
ing period. Since the final optimum values of n lie in the range from 4 to 5, it
seems likely that the corresponding accelerations might be just low enough to allow a
man to ride in the rocket without too much risk of blacking out or of injury to
internal organs,

an analysis of orbital stability on the basis of the vertical distribution of
atmospheric density found in BRef. 4 leads to the conclusion that the orbit of the
satellite rocket should be established at a height of 350 miles if satisfactory dura-
tion is to be guaranteed, especially in view of the fact that slight errors in the
trajectory will cause an elliptical orbit to be established instead of a circular one.
On the basis of a required orbital height of 350 miles, extensive calculations have
been made to determine the optimum trajectory, this being the trajectory requiring the
least gross weight necessary to establish the orbit.

The determination of the best trajectory is subject to several restrictions of a
practical nature, one of these being the range. In order to satisfy the requirements
of communication with, and tracking of, the satellite rocket, it is found necessary to
restrict the range of the trajectory so that it never exceeds 2500 miles. Another
restriction or condition which the trajectory must satisfy is one concerning the
temperature of the metal (stainless steel) skin of the rocket. Unless care is exer-
cised, the extremely high speed motion of the rocket through the atmosphere might
easily lead to sufficiently high skin temperatures that melting would result. Accord-
ingly, the trajectory has been required to satisfy the condition that the maximum skin
temperature must not exceed 2000°R, and this amount is allowed for only a short
time6?, A third condition which the trajectory has been made to satisfy is that the
control moments required of the servomechanism do not exceed the moment producing
limits of such mechanisms. The optimum or best trajectory consistent with these
various limitations is shown in Fig. 15. The outstanding features in connection with
this optimum trajectory are (1) the small amounts of tilt employed and the positioning
of the maximum tilt early in the trajectory and (2) the use of long duration coasting
positioned near the end of the trajectory.
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APPENDIX 1I.

PROPERTIES OF ELLIPTICAL MOTION

a. Integration of the Equations of Motion for Coasting--The Equations of Energy and
Momen tum

It was pointed out in section 5 of Part II that the motion of the satellite
rocket is’ such that the coasting part of the trajectory is always a portion of an
ellipse with the center of the earth situated at one focus., Over the coasting part of

the trajectory the rocket moves as a free body in the central force field of gravity
for which the differential equations of motion are

dv
7t - ~8sin b, (141)
2

dé v , ,

v= T = g ooz B+ 2as &, and {1422
It I3

i i4d
ER

Letring 2 denots diatanca along mhe ©oan0toTy, e way woile

v dv s dv dv dr du N

Sr T o S R Vs ow Ve = Y S gin 80T - gogip 9

dt ds dt ds dr ds dr ® » 7 ;

where dr/ds = sin &, since £ is the angle of inclination referred to the instantaneous
horizontal, Hence,

3
d [v -
Ir ('?} - - K. {144)

Using the gravity relation g = B,q(ﬂ/r)2 and denoting conditions at the beginning of

the coasting motion by the subscript i, the integration of Eq. (]44) gives the total
energy equation

2 2
1

3 _ 2 1 - R gil
v - v, = 2gR FEY BT B Vo L 1 Y

-2g,r, t2gr .

"

(145)
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Since, as explained below, the total energy 2E of the satellite rocket will always
be negative, by putting 2E = - (where U is real) the energy equation may be ex-
pressed by

v.—2gr = v:-gg'.ri =2 = -, (146)

If further, the absolute gravity relation g = &g (R,»"r):n is’introduced, this becomes
2 Rﬂ

2 . 2 -
voc2gpT = v -2gy, = -0 (147

Considering Eq. (142) we may write

v% = va(%) = vn(%) sin 8

and Eq. (142) becomes

afdo
v (F)siné’ = “Ecosﬁ*’f;cos@, or
o
0o o BT g dr (
tan §df = —m—mdr F ey e {148
2 v

Substituting +* from Eq. (145) and integrating yields

%
cos 6@ 1 v - 2g;r; t 28r r
log (o @ g, t3 log . t+ log ‘,:': .
i

Using relation (145) again, this gives the angular momentum equation

rvcos 8 = r.v.cos 6, = constant = M . (149)

b. Special Properties of an Elliptical Orbit

The integrals (145) and (149) of the motion of a free body are, of course, quite
general and apply to a flight path of any shape, the elliptical property of the motion
having not yet been introduced. However, when the total energy constant 2 is speci-
fied as negative, this at once requires that the motion be elliptical. This is
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readily shown by introducing the polar angle &, in terms of which the engular momentum
¥ is expressed by

_ d¢ _ dg d
W=rg= g n. (150)

The energy relation may then be written

2 3 3
dr de R
26 = (K) + (f‘ ﬁ') ~ 2837 = comstant, or (151)
9E + 2 Ry + l ’
8 r -r'r W . (152)
-

The total energy 2E is zero when the body is at rest at infinity, and as seen from
Eq. (146), will always be negative provided v is less than the escape velocity. Since
for the satellite rocket, v will always be less than the escape velocity, it follows
that the values of 2£ considered here must always be negative, and it is therefore
permissible to use 2 = ~ U/, where it will be noted that U has the dimensions of

velocity.

Eq. (152) is readily integrated to give

R2 2[’;“2
ga—g |1~ [1+ — cos @-8)| , (153)

M (8pR?)

where 5 is a constant of integration. This is the equation in polar coordinates of a
conic section referred to one focus as origin. The constant of integration § deter-
mines the position of the apse-line which is defined as the line on which dr/dg
changes sign 11) and therefore the line on which r attains its maximum or minimum
value. Choosing this as the line along which & = 0 by putting & = 0, we have

1 R Dl
=g (1~ [1+ 5
M (ggR*)

cos p| . (154)

That this equation represents an ellipse may be seen, for example, by direct comparison
with the usual equation of the ellipse in polar coordinates when referred to one
focus, as derived by the methods of analytic geometry. When the origin is located at
the left focus F’, Fig. 23, the equation for an ellipse in polar coordinates is

L :}(1—”08@, (155)
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where a is the semi-major axis, & is the semi-minor axis, and € is the eccentricity

defined by ¢ =v 1 = 83/a3, Comparison with Eq. (154) shows that
2 28 b°

€ = 1+—"—F = 1-—, and
(SRR'). a .
: a
ga_ = —
H' b’

which shows that 2E must be negative for elliptical motion. Thus, Eq. (154) repre-
sents an ellipse such that the origin, which is at the center of the earth, is situ-
ated at the left focus as shown in Fig. 23.

TANGENT TC ELLIPSE

INSTANTANEOUS
HORIZONTAL
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Since d¢ /dt =H/r’. Eq. (151) may be written

2 2
dr M R
U‘ = (d_t) + i 287  or

dr v U /
T :?\/m = - ca-(r-a)‘, (157)

where relations (156) have been used and where

2E

¥

¢ = ae =, a -b". ‘ (158)

The negative radical sign, omitted in (157) refers to the third and fourth quadrants.
The integral of this equation is

tU = -I} cos™! — : S N ¢ - (r- a)'] + constant. (159)

Since dr/dt = v gin 8, it follows from (157) that

[ in &
Cz"(""“)' = rus‘—(j«-n_ = b tan &, and

b e
e “(‘; tan 9) : (160)

where relations (149) and {156) have been used. The positive sign of the radical is
used in the first quadrant and the negative sign in the second quandrant. Hence,
Eq. (159) may now be written in the form

b
t =—% {} sin™? (; tan 9) + b tan % + constant, (161)

which may be used to find the time of transit between two points i and f on an ellip-
tical path by forming the difference t, = t,.

From {154) or (155) one obtains

b f
taz\qf»:—'—;— ‘-‘3“("“0)8.
ar - b

which, by use of (160), becomes

bz

2
ar - b

tan ¢ = tan & . (162)
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Introducing the parameter i defined by

H = - = » (163)

S s b*
- = . = Mufcos 6, 0r, r = —_— (164)
&R au cos 6
and if this value for r be substituted in Eq. (160), the resulting expression is
_ . u tan 6
¢ = tan”! . (165)

tan” 6 + (1 - p)

By using this equation, the range S; = R(¢; — ¢;) may be computed from a knowledge of
the initial values 6, u; and the final values g, tg corresponding to a portion of an
elliptical path. The corresponding time of transit is obtained from Eq. (161).

Further remarks which follow readily from the preceding analysis, may be made
concerning the ellipse. In the ellipse of Fig. 23 consider the points 1,2,3, and 4
situated at the ends of the major and minor axes. From Eq. (154) or (155) it is
evident that 7 is a maximum when ¢ = 0 (the point 1}, and a minimum where ¢ = 7 (the
point 2). Thus at the point 1,

Ty 7 Taax T Fe ¢1 =0 81 =0
and at the point 2, (166)
r, T Tain - @87 ¢, ¢ =7 6 = 0.

From the energy equation (147) it is seen that v is a minimwn when © is a maxi-
mum, and from (163) it then follows that 4 is a minimum when r is a maximum, and vice
versa. Thus, using relations (158) and (164), it is found that at the point 1 where
r =r

1 ngx’
_ c
My T Hyqp - 175,
and at the point 2 where r, = r .., (167)
_ _ c
#h - phax =1 4'?;‘

The points 3 and 4 also have some special properties. At these two points r has
the value r=r_=r =/ b3+¢3 = g, From Eq. (160) we have tan 6 = 1/6 vV ¢?—(a~r)3
from which it 1s readily evident that & will have an extreme value when r = a. Thus,
€ will be either a maximum or minimum at the points 3 and 4. Since & is positive in
the counterclockwise sense measured from the instantaneous horizontal PQ, Fig. 23, to
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the tangent to the ellipse, it is evident that 6 will be a maximum at point 3 and a
minimun (negative) at point 4. Hence, when r = g,
<
Orax = 9’ = tan"'F at point 3, and

c (168)
tan™! ' at point 4.

It

6... =8

ain 4

Thus 6,;, = = 6,,,s and the extreme value of 6 is always given by

¢
|eext| = tan™' g,

which, by use of @ =V b% + ¢# may also be written in the form

., € b
14 = cos™t . (169)

|6

cstl sin a

Using r = a and cos & = b/a, it is found immediately from (162) that
T T L ¥ (170)

at points 3 and 4.

¢. Adjustment of Coasting to Compensate for Errors Present at the Beginning of Coast-
ing

In section 10 of Part II it was pointed out that the best way of adjusting Hh, to
compensate for existing errors present in the initial coasting conditions is to adjust
the duration of coasting so that é} {the angle of inclination at the end of coasting)
has a value as close to zero as possible. The reasoning upon which this statement is
based is contained in the following discussion,

When the flight conditions at the beginning of coasting (indicated by subscript
i} are not exactly the prescribed ones owing to the presence of errors in v, r;, and
@;, it is important to know how the duration of coasting should be adjusted during
flight so that the trajectory values Ve T Gf, at the end of the trajectory will
correspond to the best orbital condition it 'is possible to attain consistent with the
errors present at the beginning of coasting. With given fixed values for Av,, Ar ,
&F,, and alse for v, r;y O;, then when D, is specified, the final trajectory values
Vg, T'p, Qf, are determined, and therefore the elliptical orbit is determined. Using
the results derived in section b of this appendix, the closest approach to the earth

r ;. of the elliptical orbit may be expressed in the form

ain
2 3
ggR? gt Vg cos Op
r - r . = a - ¢ = -— - UF . (1?1)

2 nen UFﬁ Ups

We now seek the value of either &h  or p which gives the maximum value for r_...
Using Ahc, this maximum condition is determined by an examination of the expression
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d’,’ 1 gRR?(vFrrﬂ - v!rft)
d(&c) - UF’gRR’eF vfrf3rF’

28pRr, = (%rp cos 6p)?

8pR®rp cos 6p
* Up*rpvp cos 6 | ——————— + vp cos

vt

vprp (8gR® = v *r ) (cos B sin O, = sin A6,)
+

* 7
S e, (172)

Putting § = 0 in this equation, it is found that

dr_ N 4 (vgrp? - vfrf‘)
a(ﬁl;c) vfrfs (1 + eF)ﬁ
G=0
dr2
which shows that d@k,) < 0.

9F=0

The values of A8, of interest lie in the range |A9e| $0.4° corresponding to values
of 72 0,70. Using 6 = 0.01° in Eq. (172) it is found that

dra
dah))

6F=o.01°

Hence the derivative, Eq. (172), has its zero value, and therefore r_has its maximum
value, within the narrow limits 0° < &g < 0.01°. Thus for all practical purposes the
value 65 = 0 corresponds to the maximum value for r,. Since the optimum trajectory
calculations show that the A5, required is of the order of 0.3°, it is evident in
view of the limitations in accuracy of communication that A0, may also be considered
zero for all practical purposes. It is concluded therefore that when errors are
are present at the beginning of coasting, it is best to allow the coasting to con-
tinue until the angle 8}, is practically zero, If the accuracy of communication were
great enough, the optimun requirement would be that Bf =46,
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APPENDIX II.

THE EFFECT OF DRAG FORCES ON THE STABILITY
OF CIRCULAR ORBITAL MOTION

The problem considered here is that of the motion of a free body moving in a
central force field in which dissipative (drag) forces are present, and where the
initial motion of the body is that corresponding to equilibrium on a circulsr orbit at
distence 7 from the center of the earth. In general, since the differential equations
of this type of motion cannot be integrated in closed form, it is necessary to resort
to approximate methods. The analysis presented here is essentially that given by
Chien'15), The equations of motion in polar coordinates referred to non-rotating axes
with origin at the center of the earth are

v = ~go-_, and (173)

PR 2% = e ara)

where D is the drag, v is the total velocity in the direction of the motion, r and ¢
are polar coordinates of position, and time derivatives are indicated by the dot
notation. The total velocity v must slso satisfy the relation

v o= (rg)t . (175)

Letting Yys @ and T, denote respectively the linear velocity, angular velocity,
and radial distance of a stationary circular orbit, we have the relation

¢ 3 R 2

o

L (r“) (176)
e

for the equilibrium of forces in the radial direction, and the velocity relation

w, T = am
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Since D/m is very small compared to the other forces present, the actual motion will
be considered as a perturbation of the stationary circular orbit, and it is then
permissible to use the approximation

b, (D
vo+~ﬁvi+ ) Qv t

v =
. b DAR

— B Ds . s o
r =r, &—"—Arl + (-“—) an +

where Av , Av_, Ow , &w , Or , etc., are functions of time only and D/m is independent
of time. Using only t}le first approximation terms Av_, Arx, Aw,_ of the expansion
(178) and making use of relations (173), (174), and (175) it is }'ound, by equating
coefficients of the terms in D/m, that

A;-l
Avx = - 1+go v )

143
2Ar1rowo° + 3wo"roi§wl - rowna?l = B,y (A“"l - Ari-%) , and (179)

joed 2
2:}0Av1 2roArlw° + zroawko1

Using relations (176) and (177), these equations may be wiibten in tha simpler form

AV, =~ (L+aw AT,
A;:x = 3w°°Arl +2v, 0w, and (180)
Avl = co‘)At‘1 + roixwl .

giving three equations in the three unknowns, Av , Ar ,» D, . Since the initial condi-
tions at the beginning of the motion are assumed to correspond to those of the sta-
tionary circular orbit having the values v,, ry, «,, it follows that Av, = Ar, = Aw, =
0 when t = 0. Equations (180) may be readily integrated, yielding the result

1 .
Av, = -‘Z (@t ~ 2 sin & t),
Ar. = 2 (sinwt-wt) (181)
1 w 3 (1 e !
(3
Aw =-1—(3wt"4 in w_ t)
1 2N ° s e 7*
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