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National Aeronautics and Space Administration 

Headquarters 
Washington, DC 20546-0001 

Office of Communications 

FOIA: 19-MSFC-F-00098 

October 25, 2019 

Thank you for your Freedom of Information Act (FOIA) request dated November 12, 2018, and 
received November 13, 2018, at the George C. Marshall Space Center FOIA Office. Your request was 
assigned FOIA Case Number 19-MSFC-F-00098 and was for: 

A copy of each report produced under each of these Heavy Lift and 
Propulsion Technology (HLPT) tradeoffs contracts awarded by NASA 
(MSFC) 

NNM11AA09C awarded to Boeing 
NNM11AA08C awarded to ATK Launch Systems 
NNMl lAAlOC awarded to Lockheed Martin Corporation 
NNMl 1AA06C awarded to Analytical Mechanics Associates, Inc. 
NNMl lAA0SC awarded to Aerojet-General Corporation. 
NNM11AA16C awarded to United Launch Alliance, LLC 
NNM11AA07C awarded to Andrews Space Inc. 
NNMllAAllC awarded to Northrop Grumman Systems Corp. 
NNMl 1AA14C awarded to Pratt & Whitney Rocketdyne/ United 
Technologies 
NNM11AA13C awarded to Orbital Sciences Corp. 

Please be advised that the search for responsive records has concluded and a total of 1,644 pages have 
been located. We have reviewed the responsive records under the FOIA to determine whether they may 
be accessed under the FOIA's provisions. Based on that review, this office is providing the following: 

Boeing report (369 pages): 

____§2.._ page( s) are being released in full (RIF);1 
____1.2_ page(s) are being released in part (RIP); 

271 page(s) are withheld in full (WIF). 

1 All page counts above are provided in approximate numbers. 



ATK Launch Systems Report (195 pages): 

____1Q_ page(s) are being released in full (RIF); 2 

__ 6_page(s) are being released in part (RIP); 
----1§2. page( s) are withheld in full (WIF). 

Lockheed Martin Corporation Report (142 pages): 

~ page(s) are being released in full (RIF); 
__ 2_page(s) are being released in part (RIP); 
~ page(s) are withheld in full (WIF). 

Analytical Mechanics Associates Report (197 pages): 

__ O_ page(s) are being released in full (RIF); 
__ O_page(s) are being released in part (RIP); 
---1.21._ page( s) are withheld in full (WIF). 

Aerojet-General Corporation Report (149 pages): 

-----11._ page(s) are being released in full (RIF); 
__ O_page(s) are being released in part (RIP); 
_____§_[_ page( s) are withheld in full (WIF). 

United Launch Alliance Report (92 pages): 

____li_ page(s) are being released in full (RIF); 
__ 3_page(s) are being released in part (RIP); 
___.1±_ page( s) are withheld in full (WIF). 

Andrews Space Report (166 pages): 

----12._ page(s) are being released in full (RIF); 
__ 5_page(s) are being released in part (RIP); 
___lll_ page( s) are withheld in full (WIF). 

Pratt & Whitney Report (71 pages): 

28 page(s) are being released in full (RIF); 
-~2~ page(s) are being released in part (RIP); 

41 page(s) are withheld in full (WIF). 

2 All page counts above are provided in approximate numbers. 



Orbital Sciences Report (184 pages): 

129 page(s) are being released in full (RIF); 3 

__ 2_3_ page(s) are being released in part (RIP); 
_____ 32 ___ page(s) are withheld in full (WIF). 

Please be advised that release of report NNMl lAAl lC, awarded to Northrop Grumman Systems 
Corporation, will be released separately within the next 10 business days. 

NASA redacted from the enclosed documents information that fell within the following FOIA 
Exemptions explained below. 

Exemption 3, 5 U.S.C. § 552(b)(3) 

Exemption 3 concerns matters that are "specifically exempted from disclosure by statute ... provided 
that such statute (A) requires that matters be withheld from the public in such a manner as to leave no 
discretion on the issue, or (B) establishes particular criteria for withholding or refers to particular types 
of matters to be withheld." See 5 U.S.C. § 552 (b)(3). Pursuant to the Export Administration Act of 
1979, in conjunction with the Export Control Act of 2018 (P.L.115-232, Subtitle B, Part I), NASA 
withholds export controlled information, including items on the Commerce Control List (15 C.F.R. § 
774). 

Exemption 4, 5 U.S.C. § 552(b)(4) 

Exemption 4 protects trade secrets and commercial or financial information obtained from a person that 
is privileged or confidential. See 5 U.S.C. § 552(b)(4). Courts have held that this subsection protects (a) 
confidential commercial information, the disclosure of which is likely to cause substantial harm to the 
competitive position of the person who submitted the information and (b) information that was 
voluntarily submitted to the government if it is the kind of information that the provider would not 
customarily make available to the public. Thus NASA invokes Exemption 4 to protect contractor 
proprietary information. 

Exemption 6, 5 U.S.C. § 552(b)(6) 

Exemption 6 allows withholding of "personnel and medical files and similar files the disclosure of 
which would constitute a clearly unwarranted invasion of personal privacy." See 5 U.S.C. § 552(b)(6). 
NASA is invoking Exemption 6 to protect personal signatures. 

You have the right to treat this delay as a denial of your request. Under 14 CFR § 1206.700, you may 
appeal this denial within 90 calendar days of the date of this letter by writing to: 

Administrator 
NASA Headquarters 
Executive Secretariat 

3 All page counts above are provided in approximate numbers. 



1 All page counts above are provided in approximate numbers. 
MS 9R17 
300 E Street, SW 
Washington, DC 20546 
ATTN: FOIA Appeals 

The appeal should be marked "Appeal under the Freedom of Information Act" both on the envelope and 
the face of the letter. A copy of your initial request must be enclosed along with a copy of the adverse 
determination and any other correspondence with the FOIA office. In order to expedite the appellate 
process and ensure full consideration of your appeal, your appeal should contain a brief statement of the 
reasons you believe this initial decision to be in error. 
For further assistance and to discuss any aspect of your request you may contact NASA's Chief FOIA 
Public Liaison at: 

Stephanie Fox 
Chief FOIA Public Liaison 
Freedom of Information Act Office 
NASA Headquarters 
300 E Street, S.W., 5P32 
Washington D.C. 20546 
Phone: 202-358-1553 
Email: Stephanie.K.Fox@nasa.gov 

Additionally, you may contact the Office of Government Information Services (OGIS) at the National 
Archives and Records Administration to inquire about the FOIA mediation services it offers. The contact 
information for OGIS is as follows: Office of Government Information Services, National Archives and 
Records Administration, 8601 Adelphi Road-OGIS, College Park, Maryland 20740-6001, e-mail at 
ogis@nara.gov; telephone at 202-741-5770; toll free at 1-877-684-6448; or facsimile at 202-741-5769. 

Important: Please note that contacting any agency official including the undersigned, NASA's Chief 
FOIA Public Liaison, and/or OGIS is not an alternative to filing an administrative appeal and does not 
stop the 90 day appeal clock. If you have further questions, please feel free to contact me at 
martha.e.terry@nasa.gov or 202-358-2339. 

In accordance with§ 1206.804 (c), after consultation with the NASA Marshall Space Flight Center 
General Counsel Office, I am the official responsible for the denial of your request. Ifl can be of further 
assistance, please feel free to contact me at martha.e.terry@nasa.gov or Stephanie Fox at the contact 
information provided above. 

Sincerely, 



Martha Terry 
NASA FOIA Officer 
Headquarters, Office of Communications 



National Aeronautics and Space Administration 

Headquarters 
Washington, DC 20546-0001 

Office of Communications 

FOIA: 19-MSFC-F-00098 

November 15, 2019 

Thank you for your Freedom of Information Act (FOIA) request dated November 12, 2018, and 
received November 13, 2018, at the George C. Marshall Space Center FOIA Office. Your request was 
assigned FOIA Case Number 19-MSFC-F-00098 and was for: 

A copy of each report produced under each of these Heavy Lift and 
Propulsion Technology (HLPT) tradeoffs contracts awarded by NASA 
(MSFC) 

NNMl 1AA09C awarded to Boeing 
NNMl 1AA08C awarded to ATK Launch Systems 
NNMl lAAlOC awarded to Lockheed Martin Corporation 
NNMl 1AA06C awarded to Analytical Mechanics Associates, Inc. 
NNMl 1AA05C awarded to Aerojet-General Corporation. 
NNM11AA16C awarded to United Launch Alliance, LLC 
NNM11AA07C awarded to Andrews Space Inc. 
NNMl lAAllC awarded to Northrop Grumman Systems Corp. 
NNM11AA14C awarded to Pratt & Whitney Rocketdyne/ United 
Technologies 
NNM11AA13C awarded to Orbital Sciences Corp. 

On October 25, 2019, responsive documents for all companies listed in your request were released to 
you. We informed you at that time that the report under contract NNMl lAAllC (awarded to Northrop 
Grumman) would be released separately. The program office located a total of 79 pages in response to 
your request for the Northrop Grumman report. Processing of these pages is now complete. We have 
reviewed the responsive records under the FOIA to determine whether they may be accessed under the 
FOIA's provisions. Based on that review, this office is providing the following: 

~page(s) are being released in full (RIF);1 
--1.i. page(s) are being released in part (RIP); 

1 All page counts above are provided in approximate numbers. 



__ 1 page is withheld in full (WIF). 

NASA redacted from the enclosed documents information that fell within the following FOIA 
Exemptions explained below. 

Exemption 3, 5 U.S.C. § 552(b)(3) 

Exemption 3 concerns matters that are "specifically exempted from disclosure by statute ... provided 
that such statute (A) requires that matters be withheld from the public in such a manner as to leave no 
discretion on the issue, or (B) establishes particular criteria for withholding or refers to particular types 
of matters to be withheld." See 5 U.S.C. § 552 (b)(3). Pursuant to the Export Administration Act of 
1979, in conjunction with the Export Control Act of 2018 (P.L.115-232, Subtitle B, Part I), NASA 
withholds export controlled information, including items on the Commerce Control List (15 C.F.R. § 
774). 

Exemption 4, 5 U.S.C. § 552(b)(4) 

Exemption 4 protects trade secrets and commercial or financial information obtained from a person that 
is privileged or confidential. See 5 U.S.C. § 552(b)(4). Courts have held that this subsection protects (a) 
confidential commercial information, the disclosure of which is likely to cause substantial harm to the 
competitive position of the person who submitted the information and (b) information that was 
voluntarily submitted to the government if it is the kind of information that the provider would not 
customarily make available to the public. Thus NASA invokes Exemption 4 to protect contractor 
proprietary information. 

You have the right to treat this delay as a denial of your request. Under 14 CFR § 1206.700, you may 
appeal this denial within 90 calendar days of the date of this letter by writing to: 

Administrator 
NASA Headquarters 
Executive Secretariat 
MS 9R17 
300 E Street, SW 
Washington, DC 20546 
ATTN: FOIA Appeals 

The appeal should be marked "Appeal under the Freedom of Information Act" both on the envelope and 
the face of the letter. A copy of your initial request must be enclosed along with a copy of the adverse 
determination and any other correspondence with the FOIA office. In order to expedite the appellate 
process and ensure full consideration of your appeal, your appeal should contain a brief statement of the 
reasons you believe this initial decision to be in error. 
For further assistance and to discuss any aspect of your request you may contact NASA's Chief FOIA 
Public Liaison at: 

Stephanie Fox 
ChiefFOIA Public Liaison 



Freedom of Information Act Office 
NASA Headquarters 
300 E Street, S.W., 5P32 
Washington D.C. 20546 
Phone: 202-358-1553 
Email: Stephanie.K.Fox@nasa.gov 

Additionally, you may contact the Office of Government Information Services (OGIS) at the National 
Archives and Records Administration to inquire about the FOIA mediation services it offers. The contact 
information for OGIS is as follows: Office of Government Information Services, National Archives and 
Records Administration, 8601 Adelphi Road-OGIS, College Park, Maryland 20740-6001, e-mail at 
ogis@nara.gov; telephone at 202-741-5770; toll free at 1-877-684-6448; or facsimile at 202-741-5769. 

Important: Please note that contacting any agency official including the undersigned, NASA's Chief 
FOIA Public Liaison, and/or OGIS is not an alternative to filing an administrative appeal and does not 
stop the 90 day appeal clock. If you have further questions, please feel free to contact me at 
martha.e.terry@nasa.gov or 202-358-2339. 

In accordance with§ 1206.804 (c), after consultation with the NASA Marshall Space Flight Center 
General Counsel Office, I am the official responsible for the denial of your request. lfl can be of further 
assistance, please feel free to contact me at martha.e.terry@nasa.gov or Stephanie Fox at the contact 
information provided above. 

Sincerely, 

Martha Terry 
NASA FOIA Officer 
Headquarters, Office of Communications 
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DRD ............... Design Requirements Document 
ESAS .............. Exploration Systems Architecture Study 
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NEO ............... Near Earth Object 
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SYSTEM ANALYSIS 

1 TECHNICAL APPROACH 
Alliant Techsystems Inc. (ATK) conducted system analyses and trade studies to objectively trade 
appropriate key attributes that support human space flight exploration. ATK followed a systems 
analysis approach po11rayed in Figure 4 that uses probabilistic analysis to effectively and 
objectively allow system architecture trades of key decision attributes/figures of merit/measures 
of effectiveness, ground rnles and assumptions, and weighting factors. The cyclic nature of this 
approach also allows for the process to be repeated as knowledge and insights increase. 

The architecture trade space sta1ted with an initial assessment of the NASA architectures 
smnmarized in the Heavy Lift Lallllch Vehicle (HLL V) study provided with the broad agency 
annollllcement (BAA). Upon completion of the first technical interchange meeting (TIM-1) ATK 
nanowed the architecture trade space to the leading candidate architectures and refined the figures 
of merit (FOM) based on what was learned through the initial iteration of the trade study and 
development of the probabilistic analysis tool. Additionally, an evaluation of potential in-space 
mission architectures was perfo1med to identify capability gaps that must be bridged to achieve 
manned exploration beyond Eai1h orbit. 

• Analyze results 
• Define alternative 

groundrules and 
assumptions 

• Sr.t!""A • Sf. ~'11 ! 

{ZI] 

am~ 
ize to goal ,[ZS] 

Figure 4. System Optimization Tool and Trade Study Approach 
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2 PROBABILISTIC ASSESSMENT TOOL 
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4 PROBABILISTIC ASSESSMENT OF HEAVY LIFT LAUNCH VEHICLE 

Heav Lift Launch Vehicle Characteristic Architectures 
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The results of the IOC FOM as prepared for TIM-I are listed in Table 11. For TIM-2, no update 
was perfonned on the analysis. The data for the three down selected architectures remained 
unchanged. 

4.2.4 Cost 
Three FOM were established to assess affordability for this study. These were the Funding Profile 
FOM, Life Cycle Cost FOM, and the DDT &E FOM 

4.2.4.1 Funding Profile 

4.2.4.1.1 Funding Profile FOM rationale 

The Funding Profile FOM was initially established with a weighting of 15% based on the desire 
to meet an affordable funding profile. The concern here is to not have an architecture that requires 
more funds in a given annual budget cycle than can be expected. 

4.2.4.1.2 Analysis Description 
The FOM was designed to capture the impact aggressive schedules for the IOC FOM might have 
on the year to year funding availability. IOC was calculated without regards to the availability of 
funds in any given year; therefore a given architecture could theoretically have an early IOC but 
require substantially more funds than are available during its compressed development timeline. 

The available funding profile was calculated by taking the Human Exploration Framework Team 
(HEFT) projected budget bogeys and their Design Reference Mission 4 Heavy Lift Launch Vehicle 
yearly allocation, adjusted with a knockdown factor based on the projected available budget (ie if 
HLLV had $500 allocated in 2015, while all of HEFT had $1,000 and there was only $800 
available, the overage was allocated equally such that the HLL V line was adjusted down with a 
20% knockdown factor to $400). The assumed available funding profile is shown in Table 12 
below (values in millions). Note these values are in line with or substantially less than the amounts 
authorized in the National Aeronautics and Space Administration Authorization Act of 2010 for 
the first 3 years covered by the act. 

21 
Export Controlled - See title page for distribution restrictions. 



HLPT Systems Analysis and Trade Study 

Next a crude funding required table was built for each architecture based on evenly distributing 
the DDT&E cost over the time from ATP (assumed to be the start of FY12) to the IOC date for 
each architecture. This was intended to be a crude approach for the TIM-1 analysis, with the idea 
of coming back during TIM-2 to build more realistic time-phased cost models. However, the 
results from this crude approach (shown in Table 13 below) revealed that only the architecture 
with the shortest development schedule (shuttle derived w/ no upper stage) managed to trip the 
funding profile, however this overage occurs after the IOC date and is therefore not relevant. Based 
on these results, it was determined that our cost models were far enough below NASA's estimates 
that the funding profile was not likely to be tripped even with more accurate time-phased cost 
models. In order to make the funding profile FOM a useful discriminator between architectures, 
we would have needed to come up with a new, lower assumed funding profile. Instead, we chose 
to eliminate this FOM and reallocate its overall weight as discussed in the FOM weighting Section 
4.3. 

4.2.4.2 Life-Cycle Cost 

4.2.4.2.1 Life Cycle Cost FOM rationale. 

In the HLPT BAA request, NASA identified low DDT&E and Life Cycle Costs as parameters of 
primary importance. The Life Cycle FOM was established with weighting of 15% based on the 
desire to meet a total life cycle cost. 

4.2.4.2.2 Life Cycle Cost Analysis Description 

All costs were determined through research of current and historical programs, open source data 
and engineering estimates. Two different business practice models were assumed: a government 
and commercial model. The primary difference between the two business models are in the area 
of government oversight which also contribute to the staffing levels required by the contractor. 
Since the tool used in this study is based on a probabilistic assessment, cost variation inputs were 
based on the fidelity of the costs source data, the vehicle complexity and the known demonstrated 
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performance of the various vehicle elements. All vehicles were given a-10% variation on the low 
side since under running a complex technical development program has been shown to be 
optimistic. The variation on the high side (Overrun) differed with each vehicle concept. Appendix 
B.2.2 contains the detailed costs assumed for each of the vehicle elements for both DDT&E and 
recurring costs and the source of the data. 

The life cycle for the launch vehicle portion of this study was assumed to be the DDT &E and 
flights required to place 800 metric tons of payload in a 30 Xl30 nm LEO. The data was gathered 
in two areas; 1st for the DDT &E phase of the vehicle design and 2nd the projected recurring costs 
times the number of flight required to place the required amount of payload into orbit. 

4.2.4.3 Design, Development, Test and Evaluation Cost 

4.2.4.3.1 DDT&E FOM rationale. 

The Life Cycle FOM was established with weighting of 15% based on the desire to meet a DDT &E 
cost target. This FOM is one of three FOM established to assess affordability for this study. 

4.2.4.3.2 DDT&E Analysis Description 

All costs were determined through research of current and historical programs, open source data 
and engineering estimates. Two different business practice models were assumed: a government 
and commercial model. The primary difference between the two business models are in the area 
of government oversight which also contribute to the staffing levels required by the contractor. 
Since the tool used in this study is based on a probabilistic assessment, cost variation inputs were 
based on the fidelity of the costs source data, the vehicle complexity and the known demonstrated 
performance of the various vehicle elements. All vehicles were given a-10% variation on the low 
side since under running a complex technical development program has been shown to be 
optimistic. The variation on the high side (Overrun) differed with each vehicle concept. Appendix 
B.2.2 contains the detailed costs assumed for each of the vehicle elements for both DDT&E and 
recurring costs and the source of the data. 

The DDT &E cost target is for the development of the vehicle to includes full development and 
resulting in the first flight of the resulting vehicle. The target level for this FOM was $11.SB for 
this effort. 

4.2.4.4 Life Cycle cost and DDT&E FOM Results 

The initial results of both the Life Cycle Cost FOM and the DDT &E FOM are shown below in 
Table 14 and Table 15 
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Table 16 and Table 17 summarize the results of the study for the architectures down selected for 
TIM-2. The cost assessment results indicate that the three remaining architectures all meet the 
DDT&E requirement of being equal to or less than $11.5B. On a life cycle cost the SDLV scored 
the best. 

Table 16. Final Commercial Cost Model Results (TIM-2) 
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Table 17. Final Government Cost Model Results (TIM-2) 
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5 READINESS LEVEL ASSESSMENT SUMMARY 

5.1 In-space architectures 

The entirety of the in-space propulsion related architectures are currently at very low readiness 
levels. All of these technologies have been discussed at length in academic papers and theoretical 
research. Some have been previously tested, including nuclear thermal Rockets, but do not have a 
current use or industry base to draw from. Especially in the case of nuclear thermal rockets, there 
may even be significant restrictions on the development and testing of these technologies. 

Other technology gaps, related to propulsion, are the need for reliable automated rendezvous and 
docking, advanced propulsion in-space cryo-cooling and zero gravity fluid transfer. NTR and 
LOX/LH2 propulsion require large amounts of LH2 to be stored in the hostile environment of space. 
LH2 must be kept pressurized and at a temperature of -252.87°C (-423. l 7°F). Hydrogen boil off is 
a common occurrence due to heat leaks and it is estimated that a hydrogen loss of 0. 5 to 1.0% per 
month would not be uncommon. The technology for cooling of large amounts of propellant for a 
period of over two years needs to be established and qualified. Some additional information can 
be found in Appendix A. 

Heavy lift launch capability is an enabling technology for providing opportunities to develop and 
test other technologies in a real space environment. Technology development missions also serve 
to exercise and mature the heavy lift launch system in preparation for manned missions beyond 
Earth orbit. 
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7 CONCLUSIONS & RECOMMENDATIONS 
This study shows that the probabilistic analysis tool can be instrumental in guiding decision 
processes, and can provide NASA with additional insight into the uncertainties and risk associated 
with varying trade space options, ground rules and assumptions. 

A Space Shuttle derived architecture utilizing heritage hardware and infrastructure is consistently 
identified as the most cost effective solution with the least schedule uncertainty. Opportunities 
exist for significant reduction in heritage Space Shuttle program costs through reduced material 
costs, process optimization, design-for-cost modifications, controlled government-contractor 
interactions and utilization of right-sized facilities. Additionally, Space Shuttle derived 
architectures provide the optimum use of solid and liquid propulsion to minimize launch delays, 
maximize workforce retention, and provides a clear path for evolvability from 70mT to 130+mT 
payload capabilities. 

When evaluating reliability, the SDL V were competitive with the other architectures. The small 
gains in reliability that may be achievable through non-heritage technology come with 
considerable cost investment and schedule risk. The maturity growth of new systems significantly 
impacts the probability of success for large, multiple launch, missions such as manned exploration 
of Mars. This risk can be bought down through additional, and smaller, pre-cursor missions. These 
precursor missions could include demonstrations of on-orbit assemblies or destinations such as the 
International Space Station, Moon or near Earth objects. 

Space Shuttle derived architecture can be operational by 2016 and stay within the projected budget 
constraints. ATK encourages NASA to verify this study, and others like it, by challenging the 
assumptions and techniques used. Finally, ATK recommends that NASA proceed with 
development of a Space Shuttle derived heavy lift launch vehicle leveraging existing contracts to 
the maximum extent possible; targeting operational capability in 2016. 
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OROS/DELIVERABLES 
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APPENDIX A DETAILED IN SPACE-ANALYSIS 

63 

Export Controlled - See title page for distribution restrictions. 



HLPT Systems Analysis and Trade Study 

64 

Export Controlled - See title page for distribution restrictions. 



HLPT Systems Analysis and Trade Study 

65 

Export Controlled - See title page for distribution restrictions. 



HLPT Systems Analysis and Trade Study 

66 

Export Controlled - See title page for distribution restrictions. 



HLPT Systems Analysis and Trade Study 

67 

Export Controlled - See title page for distribution restrictions. 



HLPT Systems Analysis and Trade Study 

68 

Export Controlled - See title page for distribution restrictions. 



HLPT Systems Analysis and Trade Study 

69 
Export Controlled - See title page for distribution restrictions. 



HLPT Systems Analysis and Trade Study 

70 

Export Controlled - See title page for distribution restrictions. 



HLPT Systems Analysis and Trade Study 

71 

Export Controlled - See title page for distribution restrictions. 



HLPT Systems Analysis and Trade Study 

72 

Export Controlled - See title page for distribution restrictions. 



HLPT Systems Analysis and Trade Study 

73 

Export Controlled - See title page for distribution restrictions. 



HLPT Systems Analysis and Trade Study 

APPENDIX B DETAILED FIGURES OF MERIT ANALYSES & DATA 
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Executive Summary 

NASA has a mandate for human exploration beyond Earth's orbit. In the last four decades, NASA's 
two biggest obstacles to achieving its mandate have been obtaining adequate funding and capturing the 
public imagination with its human exploration missions. Aerojet's approach to this study was to focus, 
not on expanding the limits of current technology, but rather on developing a sustainable and affordable 
architecture that would capture the public's interest and that would be within the financial reach of 
NASA's expected budgets. To accomplish this, Aerojet developed several core tenets of affordable and 
sustainable beyond LEO space transportation architectures. 

Tenet #1 - The architecture must support early (this decade) missions of public interest and 
must continue regularly schedoJed missions that engage the public. Aerojet chose a series of 
exploration missions beginning with a crewed long duration lunar orbit mission in 2018 and then 
increasing in challenge and public interest up to a Mars surface landing in 2033. In addition, each 
exploration campaign involves significant milestone launches and mission events occurring at a regular 
tempo from the initial launch up to and including the human exploration phase. The Mars surface 
campaign begins in 2025 with the first cargo launches occurring while the human Phobos exploration 
campaign is still underway. The Mars surface campaign lasts until 2036 when the crew returns from their 
50o+ day stay exploring the Martian surface. 

Long Duration 
Lunar Orbit 

NEO (2008 EVS) 
Surface 

Phobos Surface 

Mars Surface 

2018 

2024 

2025 

2033 

Tenet #2 - The in-space architecture must be f1exible and each element must support multiple 
missions. NASA cannot afford to develop unique elements for each mission. The elements must be 
linked to the selected missions and demonstrated with an incremental approach to pennit the step-wise 
development of multipurpose architectural elements. Our architecture maximizes the use of common 
elements such as the 70 mT launch vehicle, the common cryogenic in-space propulsion stage, the 150kW 
SEP Module, and the Space habitat to keep the major engine, stage, and habitat production lines active 
with continuing production to support a series of missions using the same common elements. This also 
avoids having years with no production, and the associated sustaining engineering costs of keeping the 
production lines available. 
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Tenet #3 - The driving cost of missions is the cost of placing payloads in Low Earth Orbit 
(LEO). The architecture must reduce the mass required in LEO through the use of near term technology. 
Prepositioning cargo at the destination enables most of the mission elements to be transported to the 
destination using rna,;;s-efficient space electric propulsion (SEP). This greatly reduces the mass required 
in LEO. As a slower method of payload delivery, SEP also has the benefit of spreading mission 
milestones and spending over a longer time base, rather than requiring a large salvo of launches all in one 
year. Propellant logistics at the destination can also be used to reduce the mass required in LEO. The 
propellant for crew return from Mars to Earth can be prepositioned using mass-efficient SEP tugs, and 
verified ready before the crew departs Earth. The use of in-situ manufactured propellants for Mars ascent 
is also important for saving the mass of Mar<. ascent propellant delivered from Earth. Finally, for truly 
robust crew transportation infrastructure beyond 2033, capable of providing crewed missions to Mars at 
every launch opportunity, the fuel efficiency provided by nuclear thermal rockets is indispensible. 

Tenet #4 - Because the driving cost of missions is the cost of placing payloads in LEO, the 
launch architecture must also minimize infrastructure costs by making maximum use of 
commonality ~ith other launch systems and with the in-space systems. Aerojet also found that with 
SEP cargo delivery to the destinations, a 70 mT launch vehicle is capable of meeting all the mission 
requirements up to the Mars surface campaign. The 70 mT vehicle size also allows hardware 
commonality with other users such as launch vehicle engines, in space engines, and stage hardware 
shared by Air Force and commercial users. This distributes the fixed costs of production among users 
outside the NASA budget and lowers recurring costs for all users. The use of multiple, modular launch 
vehicles also increases the production rate of each launch vehicle element enabling lower costs and 
competition during production. 

Another key feature of the commonality in the architecture is the separation of the earth departure 
stage from the launch vehicle stage. This separation allows a smaller upper stage engine on lhe launch 
vehicles and also allows the tailoring of the earth departure stage to the payload size in Earth orbit. 

Commonality is increased through the separation of crew and cargo. This separation allows a smaller 
launch vehicle for the crew and allows the larger cargo vehicle to avoid the extra expense of man-rating. 

Using these tenets, Acrojct developed an architecture that meets our goal of fitting within NASA's 
Exploration budget while providing regular exciting missions. Figure 1 provides a summary of the mass
produced hardware elements, and how they are shared with other users. The recommended engines are 
summarized in Figure 2, and explained in detail in Section 6. Other architecture clements are common to 
multiple missions, but their production rates are not very high. Steady, medium-rate production of the 
engines and vehicle!'. for the exploration architecture and other users will ensure hardware reliability and 
workforce stability. 
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Figure 1. Exploration Architecture Hardware Commonality 
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Figure 2. Exploration Architecture Engines 

• 
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Engine Name AJ26-500 NGE MarsAscent SEP 150 kW NTR AJ-1M 
Engine Module 

Propellants LOX/RP LOX/LH2 LOX/ Kror Xe LH2; LOX/RP 
Methane (U, Zr)C in 

Graphite 
Composite 

Cycle Ox-Rich Augmented Augmented Hall Thruster Expander Ox-Rich 
Staged Expander Expander Staged 
Combustion Combustion 

Thrust 500,000lbf 35,000lbf 35,000 lbf 1.351bf 20,000lbf 1,000,000 lbf 
(SL) (Vac) (Vac) (Vac) (Vac) (SL) 

Specific Impulse 332sec 467sec 375sec 3,000sec 913sec 331 sec 
(Vac) 

Mixture Ratio 2.7 5.88 3.5 0 0 2.7 

Chamber 2,280psI 1,800psi 1,800psi NIA t,OOOpsi 2,280psi 
Pressure (2,7001<) 

Area Ratio 27 288 288 NIA 300 27 

Dry Mass 4,4951bm 655tbm 8351bm 300Ibm 5,700Ibm 9,800Ibm 

Throttling Range 50%!0 108% 70%to 100% Non-throttling 10%to 150% Non-lflrott!ing 50o/oto 100% 

Exit Diameter 69in 51 in 60in 40in 5Bin 69in(150in 
overall dia.) 

length 170 in tOO m 105 in 24in 208,n 174 in 

The architecture is sustainable over the long haul. Launches are scheduled in almost every calendar 
year, and at least one human exploration campaign is always in progress. Figure 3 shows a summary 
schedule for the overall architecture. A fleet of space electric propulsion (SEP) tugs will be built to ferry 
vehicles and supplies to Mars and back. Each tug is capable of three round trips to Mars in its IS year 
design life. Crew transportation to Mars will be done initially with cryogenic propulsion for the Phobos 
mission, and later with nuclear thermal rockets that wiU be capable of mounting a crew mission to Mars . 
with as few as three launch vehicles, and will be positioned to continue crewed Mars exploration on two
year centers after the fiist Mars surface mission in 2033. 

This architecture also meets NASA budget profile as shown in Figure 4. Average spending from 
2012 through the Mars surface campaign in 2033 is $2.7b in constant 2010 dollars, inclusive of all launch 
vehicle and in-space hardware development. Peak spending is $5.lb in 2022, which can be leveled by 
early procurement of launch vehicle and in-space hardware. 
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Figure 3. Exploration Architecture Schedule 
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In this report, we have described a plan and architecture that meets the ultimate destination goal of 
putting humans on the surface of Mars. We have shown that this can be done with a 70 mT launch 
vehicle. We have shown that we can do it within the time and budgetary constraints, including even more 
severe assumptions than what the NASA HEFT team assumed. 

How is it that we were able to do this? We did it the way that Werner von Braun and Ernst Sruhlinger 
said it should he done. Von Braun was famously quoted as saying "I would not be at aJl surprised ifwe 
did noi fly to Mars electrically." And he dispatched Stuhlinget to go off and explore the potential of 
electric propulsion - which resulted in his classic book on ion propulsion. The Von Braun team \Vas also 
heavily involved in the planning and motivation for the NER VA program to develop the nuclear thermal 
rocket They knew that these technologies were critical to any exploration program that proposed to take 
human:- further into the solar system. 

In doing this we paid attention to three fundamental subjects: Physics, Economics, and History. 

The physics of transporting large amounts of material to destinations far beyond low earth orbit drove 
us to consider highly efficient fonns of in-space transportation such as SEP and NTR. We took 
maximum advantage of these in our architecture. This is necessary to limit the amount of propellant 
reqt1ired to accomplish these transfers, which becomes the predominant driver of the Initial Mass in LEO 
(IMLEO) and therefore the cost of executing the missions. 

The economics of producing hardware in sufficient quantities to achieve an affordable unit cost is 
what drove our approach of commonality (including looking beyond just NASA to DoD and commercial 
users). 1t is also what made us selei.:t a launch tempo and production rate that kept the workforce 
productively employed and not reliant on large periods of sustaining engineering. 

And finally history showed us that the right path is an evolving one. Just as Apollo did not start with 
Saturn V launches to the moon, but rather with a Mercury/ Redstone launch into a suborbital trajectory, 
followed by subsequently more capable Mercury/ Atlas flights and then by a whole series of Gemini/ 
Titan flights - each one proving critical elements and steps along the path to the moon. This was our 
motivation for our evolving path to Mars. Each one of the missions in our manifest proves another 
element or critical aspect before we attempt the next more ambitious mission. 

We at Acrqjct are grateful for the opportunity to share our thoughts with NASA, and we look forward 
to continued collaboration with NASA as we implement thi,; exciting vision of human exploration beyond 
low earth orbit. 
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Section 1.0-lntroduction 

The overall objective of this study is to identify an affordable and sustainuble architecture, including 
all launch and in-space elements, for human exploration beyond Low Earth Orbit (LEO), including high 
Earth orbits, cis-lunar space, Near-Earth Objects, the Martian muons, and ultimakly the surface of Mars. 
A key to the study is an understanding of how the in-space element" dirccLly impact the launch 
requirements: use of innovative but practical in-space power and propulsion systems dramatically reduce 
the launch vehicle requirements, resulting in an affordable and sustainable human exploration campaign. 
This report summarizes the assessment of the Concept of Operations (CONOPS) considered by Acrojet, 
including architecture element data, in~space transportation options, trade evaluations, and results which 
demonstrate that the human deep-space exploration can be realisticallv accomplished within the current 
NASA exploration budget bv properlv investing in the architecture elements. 

AH exploration architecture assessments must start by selecting the target destinations and 
establishing the delivered mass requirements to complete the planned missions. Once the required 
delivered mass is established, the transportation architectures are traded to identify the most affordable 
and sustainable delivery approach which accomplishes the mission objective. The transportation trades 
arc perfonncd by selecting propulsion options, establishing mass models for the transportation vehicles, 
and using appropriate mission analysis and trajectory codes to establish vehicle requirements for each 
option. It is critical to remember that the 6 V for a given mission depends on the selected transportation 
architecture, departure dates, and other constraints (gravity losses, orbital alignment, trip times, etc). The 
result of this effort is a table of launch mass and date requirements and trip times between the Earth 
departure orhit and the destination. These results represent the delivery requirements for the launch 
vehicle trade study: how much do you need to launch and when do you need to launch it? The results of 
the overall architecture trades are then. evaluated against the affordability and sustainability requirements 
described above. It is critical to note that all costs must be included in this evaluation: technology 
lkvelopment, vehicle design, development and build, all launch an~ ground operations costs (including all 
required demonstration missions), and the costs of the exploration missions themselves. The fact that 
many required capabilities and vehicles do not yet exist drives a phased approach to human deep~spacc 
exploration: it is critical that the early missions demonstrate the capabilities required bv later missions. 

1.1 The von Braun Paradigm 

In 1994 the phrase "von Braun paradigm" was coined to describe the early approaches laid out by 
Dr. Werner van Braun for human space exploration that has been largely followed by NASA until present 
day. This approach is as follows: 

• Build a Space Shuttle to enable routine space access 

• Build a Space Station to learn how to work in space for long durations and to stage future 
missions 

• Build a lunar outpost to learn how to work off-world and to stage large missions beyond Earth 
orbit 

• Explore Mars 

This approach, while not intended to be strict or exactly linear, was leap-frogged by the Apollo 
program. In the years after Apollo, NASA went on to develop the Space Shuttle and International Space 
Station (TSS) both of which were disconnected from either Moon or Mars exploration, but which have 
served to establish capabilities for in-space assembly oflarge structures and long-term human space 
habitation. Among the issues plaguing the Space Shuttte and TSS programs are the lack of gruns in 
propulsion beyond pure chemical approaches, the combination of crew and cargo missions, and the 
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enormous ground infrastructure required to support vehicles that are not used by any organizations other 
than NASA. Only recently, with the advent of the European A TV and Japanese HTV, has NASA started 
launching crew and cargo separately to take advantage of the lower cost of unmanned launchers. While 
many studies have considered mission to the Moon and Mars, this work primarily relied on the most 
recent ESAS1 and ORA 5.02 reports from NASA. The work presented herein represents a reevaluation of 
the von Braun paradigm using new propulsion technologies and separate crew and cargo approaches to 
establish an affordable and sustainable human exploration campaign. 

1.2 Apollo Reference 

The Apollo mission to the moon provides an excellent reference for capabilities and a maturation plan 
as shown in Table 1-1. This section documents some of the basic aspects of the Apollo space architecture 
for later comparison. 

Table 1-1. Apollo Reference Metrics 

Architecture -
Element IMLEO, mT Function -

Apollo CM 5.8 Crew habitat for up to 6d 
Apollo SM 24.5 Lunar capture and Earth Return (AJ10-137 NTO/Aerozine 50@ 271s lsp) 
Apollo LM 14.7 Lunar descenVascenVsurface habitat for 3 day stay 
S-IVB 120 Earth departure (J-2 LOX/LH2 @ 421 s lsp) 

lt is important to note that Apollo did not start with a Moon landing - they developed and 
demonstrated increased capabilities in a series of increasingly difficult missions, starting with. This did 
not stop after Apollo 11, but rather continued with the introduction of improved engines and other 
capabilities providing ever greater capability, culminating in a 3-day, multi-excursion stay on the lunar 
surface with Apollo 17. 

1.3 Study Design Approach 

Time constraints dictated that our study evaluate the launch and in-space architectures in parallel, 
following the core tenets of our study described above: using the in-space architecture to drive toward 
smaller launch vehicles, which in turn enables launch vehicle element commonality across NASA, DoD, 
and commercial markets to dramatically reduce the overall cost of exploration. For each architecture 
considered, we carefully matched the boundary conditions for the launch vehicle and in-space elements. 
The design and analysis approach for the space architecture and exploration campaign are as follows: 

1. Design the Architecture 

a. Define the candidate destinations and delivered mass requirements 

b. Defme the propulsive mission phases (from launch to Earth return) 

c. Estimate the fl V requirements for each mission phase and destination 

d. Define the architecture trade space 
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2. Analyze the Architecture 

a. Optimize propulsion options for each mission phase 

b. Perform sensitivity analysis for each mission 

c. Estimate the maximum condition of each architecture element 

3. Design the Exploration Campaign 

a. Define the campaign objectives 

b. Design each mission 

i. Define the mission objectives 

ii. Define the concept of operations 

iii. Estimate the manifest 

iv. Estimate the mission timeline 

v. Estimate the mission cost 

c. Estimate the campaign timeline 

d. Estimate time-phased exploration campaign cost 

The following sections review the detailed approach and results for each of these sections, beginning 
with the launch vehicle. 
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Section 2.0-Launch Vehicle Architecture Desi n 
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One of the major objective~ of this study was to perform a life cycle cost analysis on the selected 
exploration architecture. The study divided the architecture costs into categories, including propulsion, 
launch vehicles, in-space elements, ground operations, mission operations, and NASA program 
management. Each category was investigated in detail, based on the assumed exploration destinations, 
mission plans, and required launch manifests ilS defined elsewhere in this report. Constant 2010 dollars 
were used throughout the study. The study cost categories are addressed separately in the following 
sections. 

7 .2 Launch Vehicle Costing 

The two main drivers for the launch vehicle costs were the booster and upper stage engines, and the 
launch vehicles themselves. Ground operations were a third significant cost element on the launch 
vehicle side. The derivation of cost estimates for these categories is described in the following sections. 

7.2.J Engine Cost Model 

. Aerojet provided an engine.development and recurring cost model to NASA and the other study 
participants at the beginning of the present study. We used our own model for estimating the engine costs 
of the selected architecture, including booster engines, upper stage engines, and th~ in-space engines for 
applications including cryo stages and Mars descent and ascent vehicles. Our costs for the nuclear 
thermal rocket program were developed using a different model, which was created based on work from a 
concurrent proposal to NASA. The resulting engine life cycle costs are shown in Figure 7-1. 

Figure 7-1 . Main Engine Life Cycle Cost Summary 

Costs lnduded 
From Start of 
Engine 
Development 
Through 2033 or 
End of Program 

Engine 

Life Cycle Cost 

AJ26+ NGE 

55,580m $1 ,749m 

~ ~ti~\ 
.. lu1

• 
•:,. 

MarsAscent SEP 150kW NTR 
Engine modules (HCT, 

PPU,XFC) 

S510m $540M $1,765m 

AJ-1M 
(Optional)* 

S3,341m 

h1 the Aero jet engine cost model, a production rate of 10 units per year was assumed sufficient to 
meet the minimum recurring cost for a given engine. Based on the required launch manifest, this 
production rate was met for both the AJ26-500 booster engine and the NGE upper stage and in-space 
engine. The life cycle costs in Figure 7-1 do not reflect additional production of these engines required to 
meet requirements of other users. For example, the AJ26-500 engine also serves the Taurus II program 
and potentially the EEL V program. The NGE also serves the EEL V program with projected demand of 9 
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engines per year. In fact, production Jevels significantly above 10 units per year would resu]t in 
additional decreases in the engine unit cost, but this decrease was not reflected in the engine cost model. 

The non_-recurring cost for the NOE was assumed to be paid by the US Air Force for their EEL V 
upper stage engine requirement. This is a longstanding program requirement that must be fil1ed for the 
national interest, whether an exploration program uses the engine or not. We assumed a thrust level for 
the NGE that is compatible with the Air Force customer requirements, even though a somewhat higher 
thrust level would be better for the exploration architecture from a purely technical standpoint. 

The launch manifest included several years with no ]aunches. This did not result in interruptions to 
the engine production lines for AJ26-500 and NGE. The production lines were s]ightly front loaded with 
higher production rates in the early years to meet the overlapping NEO and Phobos campaigns, then 
reduced to lower levels that were stiH above 10 units per year through 2033 .. As a resu]t, we found that 
there were no sustaining engineering costs associated with maintaining these engine production lines in 
years with no production - thus illustrating one advantage of a moduJar, hardware rich launch vehicle 
architecture. 

The AJ-1 M one miHion pound thrust engine was costed on the basis of its use in the Block lI I 00 mT 
and Block III 130 mT class launeh vehicJes. The number of engines required was calculated based on a 
revised flight manifest that used fewer launches to put essentially the same set of payloads into the 
reference LEO. The average production rate was just below the 10 unit benchmark for minimum unit 
cosl However, in this scenario, development of the AJ26-S00 engine was still required to meet the 
requirement for a 2017 demonstration flight. The AJ26-500 was also used for crew launches in the Block 
0 launch vehicle through the Mars surface campaign in 2033. This approach had the advantage that the 
AJ-IM was never required to be a man-rated engine. The drawback was that the AJ26-500 became a low 
rate production engine, with average production of about three units per year, and resulting unit cost 
increased. 

The other engines in Figure 7-1 also had Jower production rates. The SEP 150 kW module was built 
for the SEP tugs, which were reuseable with a 15 year service Jife. Therefore, we assumed this line would 
be shut down after the launch of the last reuseable tug. SmaU sustaining costs were included to keep the 
Bne open during years of no production between the initial 300 kW tug production, and the later 600 kW 
tug production. The Mars ]and.er engine was incJuded in the production totals for the NGE, since the 
lander engine was an NOE modified for2:1 throttling. The Mars ascent engines asswned very Jow 
production, since the architecture on]y incJuded one NTR vehicJe and one Mars ascent vehicJe, We 
deferred sustaining engineering costs for these engines, since the definition of exp]oration activity beyond 
the first Mars surface landing was outside the scope of the study. In a robust exploration program enabled 
by the approaches described in this study, it would be anticipated that additional NTR and Mars ascent 
engines would be buiJt on 2-year or 4-year centers, resulting in production and sustaining engineering 
costs for both Jines in Jater years. 

7.2.2 Lllllnch Vehicle Cost Model 

For launch vehicle cost modeling, Aerojet worked with Ares Corporation to take advantage of their 
experience with the Launch Vehicle Cost Model (LVCM) tool. LVCM was used by the Air Force to 
estimate the costs for the Evolved Expendable Launch Vehicle (EEL V), and later updated by the National 
Intelligence Center(around 1998). Recently. LVCM was updated and used, along with other cost 
models, by NASA to estimate the cost of the Constellation Program. LVCM uses Cost Estimating 
Relationships (CERs) based on actual costs from the Atlas HAS, Delta ll, Titan IV, Minuteman. 
Peacekeeper, Space Shutt1e, and IUS programs. The CERs in the LVCM use parameters that are known to 
drive costs, e.g., thrust for engines, bit-rate for telemetry, and loads for structura] elements. Recuning 
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CERs in the model estimate a first unit cost that includes direct labor, material, other direct costs, 
overhead, general and administrative (G&A), fee, and ·com.mission. The non-recurring CERs use the first 
unit cost and the number of development units. Three development were assumed for the present study. 
A learning curve of 85% was also added for similar elements within a single launch vehicle such that 
multiple tanks and boosters within a Vehicle Block would benefit from the "rate-effect." Aerojet used an 
internal model for engine costs, as described above, rather than the L YCM results. 

For conservatism, the L VCM first unit cost for launch vehicle elements was applied for all vehicles 
produced throughout the exploration architecture. No credit was taken for economy of scale at higher 
production rates of multiple launch vehicles per year. The learning curve of 85% was only applied within 
a single launch vehicle; for example, the Block l launch vehicle with five nearly identical liquid booster 
cores benefitted from this. On the other hand, the L VCM derives avionics costs from data rate as the key 
requirement driver. Since we did not specify data rate for the LV at the time of the study, the model 
defaulted to the lowest value and produced fairly low avionics costs. 

Other groundrules and assumptions for launch vehicle costing included a development timeframe of 
5-6 years, and a production cycle length of three years for stages and two years for engines. Sustaining 
engineering labor costs of 40% of production cost were applied in years with no launch vehicle 
production. However, 1his only added a total of$155m to the program for the years 2028-2030 leading 
up to the Mars surface campaign. L VCM included the cost of spares at the stage level. One unassigned 
or "white-tail" Block I launch vehicle was also added to the program cost to allow for prompt recovery 
and relaunch in case of a failure. 

The results of the launch vehicle cost analysis are shown in Table 7-1. Launch vehicle spending over 
the duration of the exploration architecture is shown in Figure 7-2 .. 

Table 7-1. Launch Vehicle Cost Model Results 

. ; 

I
-Recurring Cost of I Recurring Cost of : 

Block ( ,Cargo LV Block O Crew LV ' 
•(70 mT) _ (25 mT) 

LRBModule 912.3 329.9 196.2 

LV Stage 1 102.5 17.4 17.6 

Upper Stage 129.3 90.2 

LVOther 240.2 88.6 19.4 

Total 1384.3 526.1 233.2 
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Figure 7-2. Projected Launch Vehicle Spending 2012-2033 
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CmiElement En11lne llebide MBE Vehide V,.hi,.1,. S11.5tiliolllll ED11i11ei!d08 Ialal~cYuc 

2012 150.0 125.0 275.0 

2013 200.0 175.0 375.0 

2014 658.6 12.S.O 54.0 o.o 837.6 

2015 SS8.6 100.0 161.9 0 .0 820.S 

201~ 435.9 75.0 215.9 lU.2 838.9 

2017 435.9 34.0 215.9 224.4 910.1 

2018 435.9 215.9 785.4 1437.l 

2019 435.9 161.9 673.2 Wl,O 

2<r.ZO 435.9 215.9 897.6 1549.3 

2021 435.9 161.9 673.2 1271.0 

2022 435.9 215.9 1122.0 1773.7 

2023 435,9 107.9 1234.2 1778.0 

2024 435.9 54.0 897.6 1387.4 

2025 326.9 54.0 673.2 1054.1 

2026 286.0 54.0 224.4 564.4 

2027 245.2 54,0 224.4 523.S 

2028 245.2 0.0 0.0 111.3 356,S 

2029 245.2 o.o 224.4 21,6 491.2 

2030 245.2 o.o 448.8 21.6 715.6 

2031 245.2 54.0 561.0 860.1 

2032 54.0 336.6 390.6 

2033 54.0 112.2 166.2 

Cost Elem1mtim.il SM 7329.0 634.0 2104.7 9424.8 154.5 19647.0 
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7.2.3 Launch Operations Cost Mo<J,el 

Aerojet's approach for the ground operations cost estimate was to perform analysis by similarity to an 
operationally successful commercial program using similar types of hardware. Sea Launch performed 30 
launches of commercial satellites between 1999 and 2009. Although price competition with subsidized 
competitors led to their eventual bankruptcy, from an operational standpoint the Sea Launch program was 
a success. Owing to the bankruptcy, some financial data about the venture reached the public domain. 
Sea Launch sold 30 launches at market rates averaging approximately $65m per launch, for total revenue 
of$ I .95b. Their total accumulated debt at bankruptcy was $2.02b, for total program expenses of revenue 
plus debt of $3.97b. In July 2010, Sea Launch's Kjell Karlsen stated publicly that the reorganized 
company can operate profitably on two launches per year, and that their operating costs are $2m per 
month. Given the current market pricing of commercial launches at $_1 OOm, this implies that a total 
revenue of $200m will ·cover $24m of operating costs plus two complete launch vehicles at $86m apiece. 
Projecting these vehicle and operating costs backwards over the 30 launches in 10 years, we obtain a total 
cost of$2.84b for vehicles and operations. The balance of total program cost, $3.97b minus $2.84b or 
$930m, represents the approximate non-recurring cost to establish the program. The estimated Sea 
Launch costs were then scaled for vehicle size and complexity as shown in Table 7-2 to estimate the costs 
for an analogous approach for the Block 0/Block l launch vehicles. 

Table 7-2. Ground Operations Cost Estimate Breakdown 

Assumed LV Complexity Estimated 
Cost Element ($m) Sea Launch Sea Launch Scope Size Block OlBlock I LV 

Cost Factor Factor 
Cost 

Development/NRE Costs 
Launch Control Center 233 Command Ship 20 466 
Launch Platform 

93 
Converted Drilling NIA 

Acquisition Platform 
Launch Vehicle Design 93 

Upper Stage Mods, 2.0 2.0 372 
Adaptation Fairing, Adapter 
Ground Facilities 233 Port, Processing 6.0 1398 
Development Facility 
Launch Platform Automation, Fueling 6.0 1668 
Modification and 278 Equipment, 
Installation Propellant Supply 
Total NonRecurring 930 3904 
Recurring Costs 
Annual Operations 24 Two launches per 5.0 2.0 240 

year 

The cost exercise we performed assumed that launch vehicle operations development, planning, and 
execution would be conducted on a commercial basis by one of the major US prime contractors, much as 
Boeing handled the development of the Sea Launch facilities. The level of insight and oversight 
exercised by NASA was assumed to be less than was done for the shuttle and other past programs. The 
resulting annual operations cost of$240m is approximately 50% of the expected operations cost to 
maintain a shuttle derived a~chitecture. This is a reasonable result in tenns of the number of facilities 
supported. The shuttle derived architecture uses two full service pads, the V AB, several mobile service 
platforms, and the command center. The architecture of this study uses only one pad, converted to a clean 
pad with no payload access capability, a minimum size launch vehicle integration facility, the command 
center, and retires the remaining shuttle program assets. 
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7.2.4 Alternative Launch Vehicle Architecture With 130 mT Payload Capability 

Aerojct studied an altcmativc launch vehicle architecture using the Block TI 100 ml and Block Ill 
130 mT launch vehicle designs described earlier in thi:. report. These vehicles used an 8.3 meter diameter 
core stage, with the 6.8 m diameter hydrogen upper stage identical to the version used on the Rinck l 
launch vehicle. The Block m differed from the Block ll only by the addition of two liquid rocket booster 
stages based on the common booster module of the Block 0/Block I launch vehicles. 

The E3lock II/Block III launch vehicle architecture required the development of a one million pound 
class booster engine, the AJ-IM, described in detail above. This was required to reduce the total number 
of engines per vehicle back to quantities comparable to the Block I launch vehicle for equivalent engine 
reliability. Additionally, development of the Block II/Block III did not obviate the need to develop the 
Block O launch vehicle with its AJ26-500 engine. Both the separation of crew from cargo philosophy and 
the need for a 2017 initial launch capability required the development of the Block O launch vehicle, even 
though the Block l was never developed or used in the alternative architecture. This resulted in a 
requirement for two sets oflaunch pad and ground processing infrastructure, since the Block O and Block 
11/III vehicles were not geometrically similar and could not use the same launch pad and ground 
processing infrastructure. 

A cost compari~on was perfonned by allocating the required manifest of in-space elements to Block 
II/Block III launch vehicles instead of the 70 mT Block I vehicle. Mission elements were combined to 
take maximum advantage of the JOO mT and 130 mT vehicles. The 100 mT vehicle was used when 
possible to eliminate the cost of the strap-on liquid boosters for those launches. Table 7-3 shows the 
comparison ofthe tv,,o alternative launch manifests. The total number oflaunches required was reduced 
from 41 to 26 by the use of the larger launch vehicles. 

Table 7-3. Comparative Launch Manifests for 70 mT and 130 mT LVs 

Ye.ir Basel; r; e c.ill;~c:, Ll'l'l;J~!g n AJtemait;'i.•e Ls:.1nc!'i {arno.aigr: 

:Wll BlotkOLV slc<'<tlV Black O tV Block II L'i :.\·la.cl'.IIILV 

2011 

2013 

2014 

Z(.'15 

2C16 1 1 
2017 l 1 

2C'18 1 l 1 1 

2Q19 1 1 1 

2'!20 2 :-:, 1 2 

2C21 
2C2.2 2 3 l 1 

10B 1 3 1 1 1 

2024 1 4 1 1 2 

2025 4 2 

2026 

2027 1 2 1 

2028 

2023 

2030 

20~1 2 2 

2032 2 1 

:2033 1 1 1 l 

SLtbtotal! 13 2.8 7 5 1.J -
Gra11d Tot.I 41 26 --
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The launch vehicle and ground operations combined costs were compared for the two alternative 
architectures. Launch vehicle and engine. costs were built up for the 100 mT and 130 mT launch vehicles 
using the same approach as for the 70 mt launch vehicle architecture. Sustaining engineering costs of 
engine and launch vehicle production lines were more significant than for the 70 mT architecture, and . 
amounted to $1.2b over the 18 year period of analysis. This was due to generally lower quantities of 
flight hardware and the corresponding lower production rates. Operations costs assumed development 
and operation of two launch vehicle processing facilities and two pads. The cost of the second facility 
and pad was assumed to be 50% of the cost for the first, due to commonality of infrastructure and support 
personnel. The results of the 130 mT architecture study are shown in Figure 7-3. 

Figure 7-3. Comparative Costs of 70 mT and 130 mT LV Architectures 
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..,._ 6lock 0/Block 
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Architecture 

Total$32.3b 

From the figure, the 130 mT architecture, in red, has a significant spending peak in the early years 
due to additional engine, launch vehicle, and ground facility development. The 70 mT architecture, in 
blue, has a higher peak in the middle years, due to the higher numbers of launches required to meet the 
NEO and Phobos campaign requirements. Finally, the sustaining costs of the additional engine lines and 
ground facilities lead to higher costs for the 130 mT architecture in the later years, due to the lower launch 
rate. The total spending for the two architectures over the 18 year period was approximately the same. 
Our conclusion was that the 130 mT architecture did not show promise of significant cost savings over 
the 70 mT architecture, despite the lower number of launches. 
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7.3 In-Space Element Costing 

The in-space portion of the exploration architecture contained a number of various vehicle types. We 
defined the schedule and cost of these architecture elements using NAFCOM-based estimates or scaling 
from comparable programs, including consultation with other contractors. The hardware demand list 
used for costing the in-space part of the architecture is shown in Table 7-4. 

Table 7-4. Hardware Demand List for In-Space Architecture 

Destination Year Launch In-Space Elerrief1ts 
Vehicles 

;: ; 

"' w ' kl 

i ~ ~11? "' a. ' 
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iii E w .,. .. 
u <II> 

i :a I ! ii "" st, a ., 
.... .... o,:; :c: 

~ E 0 al "' ... '1) ,,,, ,-.. w 0 ,:: ... ., 
i "' ~ :i:i I I 

'l:i. ·;;; ~ In ~· ~ "' .. E .!!I 

~ 0 0 I- ~ :c: 3! ::i: ~ 
:::, <11 

0 
~ ~ = .,s ..,., 

i ;;: "' -tl :;;: 8 0 a. fl 0 ~ t? -b t? 
.,, 

I:? =i ::! u 'S ... 
0 ::li 1h ~ "' ~ no '.5 "' "' "' 0: 

., 
ii:i:i 

.&! E a Cl. :ii: :ii: :ii: :ii: ::ii: 0 
!!! :ii: Oil .... ..., ... VI u u Cl: 

- ·-
' 

f----·--·· ··-- -
ISS 2016 1 l 
LunarOrlJlt 2017 2 1 1 1 1 j -·-! I --

2:018 1 1 1 l I 

NEO 2019 1 1 1 1 1 1 1 1 I 

NEO/Phobo5 2020 2 5 2 2 2 2 I 1 1 i 
2021 
2022 2 3 1 1 1 ,1. 2 I 
2023 1 :. 1 1 2 I 

Phobos 2024 1 4 1 1 3 1 ! 

Mars 2025 4 2 i 1 2 1 1 2 1 1 

2026 I 
2027 1 2 1 1 i 1 1 1 
2028 
2029 
2030 
2031 2 1 l 
2032 2 2 
~ 1 1 1 1 1 

The development timeframe of most elements was 5':' 7 years., although 10 years was asswned for the 
NTR due to its unique attributes. The production cycle for in space elements was three years, and 
recurring costs were divided evenly across the three years preceding flight. When gaps in production 
occurred for elements in ongoing seria1 production, sustaining engineering costs equivalent to one unit per 
year were added to maintain the line. It was assumed that contractor personnel beyond this level would 
be shifted to other customers' programs due to commonaJity. Finally, spare hardware was allocated to 
allow for recovery from some anomalies. One unassigned 70 mTspace cryogenic stage was costed, and 
each SEP tug included one spare 150 kW engine module in the flight configuration to accommodate 
failure of other modules. 
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7.4 Other Exploration Architecture Cost Elements 

Other exploration architecture costs included the Orion program, NASA program management 
expense, and mission operations. For the Orion program, we estimated the non-recurring cost to complete 
the design as $2b, with a recurring cost per unit of$200m based on two units per year. For most of the 
architecture, Orion production was one unit or zero per year, so sustaining costs were imposed at 40% of 
production cost during inactive periods. Total Orion expense worked out to $1.6b for the campaign, with 
sustaining costs equal to $2b spread ov~r the 18 year period considered. 

NASA program management costs were estimated at $100m per year on average. This is a 
significant change from the shuttle derived baseline value of $419m per year, and reflects implementation 
of a commerciaJ approach to procurement ofmass~produced launch vehicle and in-space hardware. For 
major hardware items in serial production, the NASA level ofpartkipation was assumed to be equivalent 
to a commerciaJ customer, with attendance at major reviews, but reduced oversight into production details 
and no parallel analysis. 

Mission operations costs were also assumed to be reduced compared to past practice. A mission ops 
budget was assumed to begin at $50m per year in 2012 to support planning, then rise to $300m at steady 
state during the exploration missions. This compared to $ l .1 b per year for the shuttle derived baseline. 
The assumed reduction reflected the reduced operations tempo compared to the STS era, smaller mission 
operations staffing, and greater use of autonomy by the exploration crews, partly to save costs and partly 
of necessity due to the great distances involved. 

7A.1 Cost Sharing 

In a few areas, it appeared reasonable to share exploration architecture costs with other budget 
accounts or different end users. The most important example of this was the NGE engine development. 
The US Air r'orce has a finn requirement for a production hydrogen/oxygen upper stage engine in the 25 
klbf to 3 5 klbf thrust class. The incumbent RL-10 engine is not in current production, and a new engine 
production line will have to be established for future hardware deliveries in the next few years, whether 
the incumbent RL-10 engine line is re-established, or a new engine such as the Aerojet NGE is built 
NASA could greatly benefit from splitting the cost for this engine, as well as reaping the perfonnance 
dividend of a new engine designed from the beginning with modern technology. For our cost analysis, 
we assumed use of the Air Force's NGE with all non-recurring cost paid by the Air Force given their finn 
requirement for this engine. 

Another area where cost sharing was assumed was in the technology development and validation 
programs for some of the in-space elements. In particular, the Mars sample return mission in 2020 was 
assumed to be partly paid for by the NASA technology or space science budgets, rather than the human 
exp]oration budget. The Mars sample return mission will demonstrate some important technologies 
applicable to human exploration, such as subscale aeroshell and lander design, and a pilot plant for Mars 
ISRU. 

For development of the nuclear thermal rocket engine, the nudear fuel is one of the most expensive 
program elements, but we assumed the fuels cost would come from the NASA exploration architecture, 
and these costs are reflected in our cost projection. However, some of the engine technology cost and test 
facilities cost was assumed to be shared with the DoE and NASA technology budget. 
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7,5 Costing Analysis Results 

Based on the cost analysis described in the previous sections, an overall exploration architecture 
spending profile or "sand chart,. was generated. This allowed for a comparison of projected spending 
against the previous budget guidance supplied by the Human Exploration Framework Team, or HEFT. 
Figure 7-4 shows the projected totaJ program spending. 

The sand chart had three distinct peaks of spending. The first occurred In 2014 and reflected the 
significant non~recurring spending required for enginei launch vehicle, and ground facilities development. 
The second peak occurred in 2022 with a number of important launches required to support the NEO and 
Phobos exploration campaigns, which had some overlap. All of the years from 2020 to 2025 had a higher 
total spending figure than the 2014 peak. FinaHy, a third peak occurred in 203 i during the Mars surface 
campaign. This peak, and spending in general from 2026-2033, was much lower than the earlier spending 
because by that point all of the non-recurring expense was retired for launch vehicle and in-space 
elements. Additionally, the 2033 Mars launch window was much more favorable than the 2024 Phobos 
window, and required significantly fewer launches to meet It should be noted that the highest peak in the 
sand chart. around 2024, couJd be leveled without additional expense by bringing production of some 
launch vehicle and in-space hardware forward ahead of the need date. 

The sand chart in Figure 7-4 assumed that only the Block 0 (25 mT) and Block I (70 mT) launch 
vehicles were developed. All of the exploration missions were flown using a maximum payload bit size 
of 70 mT, although the nominal performance of the Block I launch vehicle was actually 77 mT. 
SubstantiaJly all the expJoration equipment, with the exception of the crew space habitat itself, was 
prepositioned at each exploration destination using space electric propulsion tugs. This allowed the mass 
of the crewed deep space transportation system to be absolutely· minimized. Crew transportation to the 
NEO, Phobos, and Mars was perfonned using long tenn storable cryogenic stages with NOE engines. 
However, given tlle need for a more robust crew transportation system pennitting more frequent and less 
costly Mars transit opportunities., the cost of developing the NTR engine and transportation stage was also 
included in the sand chart, including one NTR flight stage. This stage would be available to support the 
Mars surface campaign beginning in 2033. For the sand chart, the cost of both the cryogenic stages and 
the NTR stage were included, The launch vehicles needed for the heavier cryogenic stage approach were 
used in the cost projection. 
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Figure 7-4. Overall Cost Projection for Exploration Architecture 
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2013 100 50 176 105 375 787 700 100 2,393 
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2016 100 50 369 345 839 443 213 160 2,519 
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Section 9.0-Conclusion 

9.l Conclusion 

Aero jet has completed an assessment of an 1ntegrated architecture for human deep space exploration, 
from launch to Earth return. We have established that we can meet the objects of an affordable and 
su~iainable deep space exploration campaign by focusing on the tenets described at the beginning of this 
report: 

• Support early (this decade) missions of public interest and continue regularly scheduled missions 
that engage the public 

• Use an in-space architecture that minimizes the required launch mass, is flexible and for which 
each element supports multiple missions 

• Use a launch architecture that minimizes the cost of placing payloads in Low Earth Orbit (LEO), 
and 

• Selecting a launch architecture that minimizes infrastructure costs by making maximum use of 
commonality with other launch systems and with the in-space systems. 

\Vhilc our initial trade space was quite hroad, the absolute requirement for affordability quickly 
narrowed the field to those systems with large impact on launch cost: 

• Use of a hydrocarbon-based launch vehicle and maximize vehicle commonality across 
NASA/DoD(Commercial markets to distribute fixed costs and ensure continuous production 

• Separate cargo and crew, and utilize the most efficient propulsion system available for each•
high thrust LOX/H2 or NTR for crew, Solar Electric Propulsion for cargo 

Following these principles we have demonstrated that an exciting and viable human space exploration 
campaign, with missions to the Moon, NEOs., Phobos, and the surface of Mars, can be readily 
accomplished within NASA's Exploration budget. 

Our studies revealed the following critical technology developments: 

• The next generation hydrocarbon ORSC 1aunch vehicle engine to provide for increased launch 
vehicle commonality 

• Long-tenn {>lyr) storage of Hquid hydrogen in space or a means for local production at the 
destinations 

• A high power Solar Electric Propulsion Tug for efficient cargo transport 

• A high performance LOX/H2 engine for crew transport 

• Nuc1ear thermal rockets for sustainable crew exploration of the surface of Mars. 

With these technologies, all of which arc well within our reach with credible development ptsns, 
humanity can embark on a true exploration of the solar system. 
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1. Executive Summary 

1.1 Introduction 

Andrews Space, Inc. is pleased to present this report at the completion of its study of Heavy Lift and 
Propulsion Technologies. This study has been far-reaching, encompassing human exploration elements, 
in-space propulsion elements, as well as earth-to-orbit launch elements as part of a plan to provide 
heavy-lift capability to support human exploration for the next several decades. 

Andrews has developed and compiled assessments of a wide range of both in-space and launch 
elements, leading to recommendations for architecture development paths as well as technologies that 
will most benefit those paths. This report is a compilation of the processes, analyses, and assessments 
of those architectures and technologies. 

1.2 Study Process 

At the beginning of the study, top-level objectives were identified to provide direction for subsequent 
architecture and technology evaluation and selection. It was Andrews' goal to provide an unbiased look at 
heavy-lift propulsion technologies, both for in-space and Earth to orbit capability, to provide an affordable 
and sustainable path for human exploration. Those top-level objectives include: 

• Determine capabilities required to support innovative human space exploration 

• Ensure capability to multiple destinations: Moon, Mars & environment, near-Earth asteroids, and 
Lagrange points 

• Determine technology, research, and development required to meet system goals 

• Determine heavy-lift launch vehicle and in-space propulsion elements for a complete architecture 

• Explore multiple alternative architectures, including expendable and reusable elements 

• Assess affordability, operability, reliability, and commonality of the considered architectures 

• Determine space launch propulsion technologies that will enable a more robust exploration 
program, support commercial ventures as well as related national security needs. 

1.3 Architecture Assessment 

Andrews' approach during the HLPT study was to research potential human exploration missions, define 
required mission elements required for those missions, derive the necessary transportation requirements, 
and then define and assess a variety of in-space and earth-to-orbit transportation architectures that would 
meet those requirements. 

1.3.1 Mission Models 
A variety of Design Reference Missions (DRMs) were developed with the goal of eventually supporting a 
flagship human mission to Mars, the Moon, or other exploration destination (Figure 1-1 ). Precursor 
missions provide a near-term testbed for technologies and processes eventually needed for the flagship 
mission. Four potential flagship missions were studied, encompassing widely different mission goals: A 
science mission to a near-earth asteroid investigating solar system origins, a shorter term science outpost 
at a Lagrange point, a lunar mining mission that involves the retrieval of rare elements and minerals that 
are currently running in short supply on Earth, and a mission to Phobos, with tele-operated Mars rovers 
and science equipment emplaced on Mars. The goal of understanding these mission models was to 
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derive requirements for the heavy-lift and in-space transportation systems that will be needed to carry out 
the missions. 

1.3.2 

,=I. \~. Potential Exploration Objectives . 6'-~. . 
\(:V.-. ~ ... / t2

'\. ' / I Phobo- ;<\ ..,_

1 
' 

.-.... Jeep Sp2ce / / .• 
·• "-. r .. .. AsterCiCJ Pl~c'.)OS • •• 

. ...... \ st.;J~l~\J elp'::>'J"'("1 EX!J,:, 13; 0'.7 •••••••• ~.~.o-·· 

•• LLO ••••• ,; 

0 

~ , ~ :,: \' \ \ ••• 2 ... .J.'." ::.:: .. ''..' .. J ~ 
0 

' :'.: .' ~'. ' '. : ••••• 

••••••• •• • ••••••• ,·,+-egrat c:n 
HE0/ 1.1 .................................. r:··2 

O.itpo?t 

.. g.;.9. ................................................................... ····························L··2· ........ ~~;~~··--··········•--...... . 
Neat~t11-rh SJ:e

1
1
1
te 

Tr )flSCOrtnt,o·-- C'e•,,er1 
•. LEO ............................................................ ······· ·········--·--·······--···· ·· ·········'$ies"rt'.rn·g········•--......... . 

Figure 1-1 Possible Human Exploration Destinations 

Mission Elements 
The selection of mission elements early in the transportation architecture development cycle is important 
since mission element dimensions and masses drive requirements to in-space propulsion systems, Earth 
to orbit launch vehicles, and eventually ground systems and operations. Andrews derived mission 
element designs from previous studies for both lunar and Mars missions, and developed a database of 
potential mission elements, with mass, dimensions, and functionality characteristics that would drive 
transportation needs. 

1.3.3 In-space Propulsion Elements 
The development of an efficient, reusable in-space propulsion technology is needed for any affordable 
long term human mission architecture. Four in-space transportation options were studied to determine 
suitability for use in the proposed DRMs (Figure 1-2). 
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Figure 1-2 In-Space Propulsion System Options 
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A conventional LO2/LH2 chemical stage was compared in terms of performance, cost, reliability, and 
mission time metrics to stages using solar electric propulsion, nuclear electric propulsion, and nuclear 
thermal propulsion. Andrews also looked at the current state of technology readiness for each of these 
propulsion types in order to understand the development needs. 

1.3.4 Earth-to-orbit Launch Elements 
The primary focus of the HLPT study was to determine an optimum heavy-lift launch system with its 
associated ground operations, and to understand its technical and performance requirements, while 
meeting serious budget constraints. Variants of six launch vehicle architectures were considered by 
Andrews over the course of this study. Each vehicle family was developed to address one or more 
Figures of Merit (FOMs), with the ultimate goal to understand how a heavy-lift launch system might be 
developed to meet human exploration needs and still be affordable under the expected budget 
constraints. 
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Figure 1-3 Candidate Launch Vehicle Options 

The characteristics of each launch architecture are: 

• Option 1 - EELV-derived LOX/RP modular booster with LO2/LH2 upper stage 

• Option 2 - EELV-derived LOX/LH2 modular booster with LO2/LH2 upper stage 

• Option 3 - Shuttle-derived LO2/LH2 booster with side-mounted payload carrier and LO2/LH2 
upper stage 

• Option 4 - Shuttle-derived LO2/LH2 booster with in-line payload fairing 

• Option 5 - 8.4-m LO2/LH2 partially-reusable core vehicle with LO2/RP strap-on boosters and 
LO2/LH2 upper stage 

• Option 6- Fully expendable 10-m LO2/RP first stage with LO2/LH2 upper stage 
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The infrastructure needs and associated costs of ground systems and operations were assessed for each 
of the launch architectures and compared to current Space Shuttle operations. Comparisons were made 
based on vehicle dimensions, mass, complexity, and facility usage. Fixed costs were assessed to 
understand where improvements could be made, and to understand what changes would need to be 
made to reach operations and recurring cost goals. 

1.3.6 Heavy Lift and Propulsion Technologies 
The ultimate goal of the study was to identify and quantify the technologies and processes needed to 
move forward with a heavy lift capability that will meet the needs of a robust human exploration program. 
Andrews has assessed the mission needs, in-space transportation needs, and the launch architecture 
needs to arrive at a set of technologies that can be implemented within the budget constraints. 

1.4 Study Recommendations 

1.4.1 Mission Model Development 
A near term investment in serious systems engineering studies to reach consensus on what the flexible 
path to human space exploration should be undertaken in the near term. These systems engineering 
studies should be widely subscribed to and include international partners. The systems engineering 
studies should be used to determine: if future lunar resources are adequate to justify going back to the 
Moon, why humans are needed for Near-Earth Objects (NEO) exploration, and how a future Mars mission 
can be made affordable. 

1.4.2 In-Space Propulsion Technology Application 
In terms of technology development, the most important technologies relate to the in-space propulsion 
system. Early development of modular solar electric power (SEP) systems and variable lsp thrusters are 
necessary to meet future exploration needs and keep launch costs to a minimum. Later development of 
nuclear power systems will enhance the capability to explore further into the solar system. Modular SEP 
designs will allow incremental development of array and thruster technologies with potential commercial 
applications. In concert with this, any planned Mars exploration will require aero-capture and entry, 
descent, and landing (EDL) technologies to drastically reduce the amount of transportation propellants 
required. 

1.4.3 Launch Capability 
A primary finding of the Andrews HLPT study was that by developing a high-performance in-space 
propulsion system, the need for super-heavy-lift (100 mT to 150 mT class) launch systems goes away. In 
fact, all expected launch requirements for human exploration missions can be met by an 80-mT class 
launch system. This not only helps the program meet development cost goals, but it also maintains a 
more robust flight rate, improving the efficiency of the ground operations. Expected benefits of payload 
margin and assembly reliability of the larger capacity launch vehicle are outweighed by the cost, risk, 
availability, and extensibility benefits of the smaller launch vehicle. 

1.4.4 Modularity and Extensibility 
Another recommendation is to develop a modular launch vehicle capable of launching a wide range of 
payload classes, ranging from 25 mT to 80 mT capability. This allows for cost reductions over the course 
of the system lifetime through increased flight rate of vehicle elements, and it improves the sustainability 
of the launch system by meeting stakeholder needs other than human exploration. Andrews' preferred 
launch concept is a modular LO2/RP booster with a LO2/LH2 upper stage. Multiple booster and upper 
stage engines allow engine-out capability off of the launch pad, dramatically improving the overall mission 
reliability. 
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Andrews recommends the development of a LO2/RP staged-combustion engine in the 500 - 600 klb 
thrust class, derived from existing engine technologies (AJ26). Using a derivative RL 10 upper stage 
engine draws on the heritage of the RL 10 and provides maximum extensibility across all national upper 
stage assets. 

1.4.5 Operations 
Thirdly, operations costs must be drastically reduced from current Shuttle levels by implementing 
automated launch processes and vehicle health monitoring systems to reduce the number of personnel 
and facilities needed to support ground and launch operations. 

1.4.6 Launch Vehicle Technology Application 
For launch systems, Andrews found that most technologies exist or are relatively mature to implement 
cost-effective launch architectures. Combining existing "best-practice" automated ground processes and 
production capability, vehicle health monitoring and system management processes, as well as 
automated mission planning processes will allow the Heavy-lift system to be cost effective and capable of 
meeting human exploration needs. 
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The NASA Heavy Lift and Propulsion Technology Study, while focused on transportation for human 
exploration, became a far-reaching study due to the fact that future human exploration goals and 
objectives are not well-defined. Andrews Space undertook this study with an eye to providing an 
unbiased look at how those goals might drive the transportation system design and development. 

2. 1 Study Philosophy 

Because future human exploration paths are not well-defined, Andrews embarked on the HLPT study with 
a few basic principles in mind. These principles are derived in part from our understanding of NASA's 
desires and goals, as well as our past experience in system architecture development. 

• Requirements: Mission objectives drive transportation requirements; therefore a study of 
transportation needs must start at the end, not at the beginning. Understanding the mission 
requirements and the logical building blocks needed for exploration missions is critical to 
understanding how those mission elements will be transported from earth to their destinations. 

• Cost: HLPT is a design to cost study in that costs must be kept under the budget limits. Early in 
the study it became clear that we couldn't keep trying the same approach and expect different 
(cheaper) answers. 

• Commercialization: Some developments may be best shared between NASA and other 
commercial/government interests. If commercial interests are involved, they must be able to 
operate the system at a profit. This requires adequate flight rates and revenue potential for those 
interests to even consider involvement. If commercial interests are met, NASA may be able to 
benefit by significantly reduced operations and/or hardware costs. 

• Technology application: Selected high risk, high payoff technologies (i.e. game changing) can 
make a big difference in the outcome of the program. If new technologies are to be applied, they 
must "buy" themselves onto the program. The benefits must outweigh the risk and cost. 

• Sustainability: A key stakeholder is the public. Keep the public engaged with significant 
program milestones and clear progress toward a worthwhile goal. This also relates to political 
support. 

• Flexibility: Maintain a flexible path that includes options and feedback loops. Expect setbacks 
and include backups in the plan. 

• International Participation: Plan for potential international participation, but with well defined 
interfaces 

2.2 Architecture Development Process 

Using standard systems engineering principles, it was advantageous to construct the overall architecture 
by working from a set of Design Reference Missions (DRMs) to determine which mission elements drive 
the sizing of the transportation elements. In the case of human exploration there are the additional in
space Transportation elements, which can vary the Integrated Mass In Low Earth Orbit (IMLEO) mass by 
about 50% even after the mission elements are defined. Therefore Andrews' approach was to research 
various candidate human exploration missions, define required mission elements (e.g. Mars Transit 
Habitat) and then define the initial in-LEO configuration for each of the candidate In-space transportation 
concepts. This process is shown schematically in Figure 2-1. Once we understood what needed to come 
together in LEO it was possible to design the H LV options and associated ground infrastructure to meet 
the range of sizes and masses needed to be launched to enable on-orbit assembly of an Exploration 
mission package. 
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It was apparent early in the study that launching an entire mission package in one launch was not 
possible due to volumetric and mass requirements (masses in excess of 200 metric tons are required). It 
also became apparent once costing of heavy lift architectures was initiated that modifications to ground 
infrastructure could be a major contributor to nonrecurring costs, and that the HL V program would need to 
share development costs with other launch systems or utilize existing hardware elements (e.g. existing 
stages, engines, tooling, etc.) as much as possible to make any HLVarchitectures affordable. This is 
reflected in the design-to-cost feedback loop in Figure 2-1. 

Destinations 
/ Exploration 
Objectives 

Design-to-Cost 
Feedback 

Requirements 
Drive Capability 

Mission 
Elements 

Definition of mission objectives 
and in-space transportation can 

significantly influence 
requirements on expensive 

launch systems 

Earth-to-orbit 
transportation 

Ground/ 
Infrastructure 

Figure 2-1 Exploration Requirements Flow Diagram 

With the basic study philosophy in place, Andrews determined the architectures that would support a set 
of human flagship missions, whether they be to the moon, to Near-Earth Asteroids, or to Mars. In order to 
prepare for the ultimate flagship missions, as well as for an exploration path beyond those missions, a 
series of incremental steps must be taken. Those steps must include development of the mission 
elements and transportation systems themselves, early robotic precursor missions to understand 
environments and resources, then early human precursor missions to test system functionality while still 
in a relatively safe environment (Figure 2-2). With these elements in mind, Andrews developed full 
exploration architectures that included these steps, and that figured into our assessments. 

2. 3 Architecture Assessment Process 

Andrews Space typically uses a complete systems engineering process to conduct conceptual trade 
studies and assessments (Figure 2-3). This process includes requirements development, mission model 
development, trade option development, then assessment of the options against a set of FOMs. We then 
use an Analytical Hierarchy Process (AHP) that allows us to compare trade options and make decisions 
based on a set of defined Figures of Merit (FOMs). With the AHP we are also able to perform sensitivity 
analyses and understand the influence of technology applications. 
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For the HLPT study, this process was used at several levels to assess in-space transportation options as 
well as heavy-lift launch vehicle options. We used this process to assess in-space transportation options, 
as well as Heavy-lift Launch Vehicle options. 
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Figure 2-2 Exploration Architecture Development Path 
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NASA Objective 1: Provide a recommended list of key decision attributes and 
rationale associated with each. 

The first step in the HLPT AHP process was to define and weight Figures of Merit. Primary figures of 
merit (FOMs) were developed to encompass a large variety of system attributes. Primary FOMs are 
typically generic and can be applied to almost any trade-set. These FOMs, along with a rationale for their 
applicability can be seen in Table 2-1. The primary FOMs were then broken down further into secondary 
FOMs, each identified with metrics that were used to assess the trade options Secondary FOMs are 
typically more specific to a particular trade-set, and may vary depending on the options being studied. In 
this case, the FOMs were driven by perceived NASA objectives, as well as the expected system 
attributes. 

Table 2-1. Figure of Merit Definition. 

Rationale Proposed Metric Primary FOM Secondary FOM 
-------------------------------------------

1.1 DOTE Cost 
DOTE cost, excluding 

Cost is the primary driver in the development and operation infrastructure 

1.0 Cost of an extensive transportation system. The system must fit 1.2 Infrastructure Cost Facilities and GSE cost 
within the available NASA budget constraints. 

1.3 Recurring Cost 
Expendable Hardware 

+ operations cost 

This FOM is a measure of how well the system can be 2.1 Hands-on crew time 
Total crew hours to prepare 

2.0 Operability operated, both in terms of routine flight operations, as well launch 

as availability to meet the desired flight rate. 2.2 Availability Min. time between launches 

This is a measure of how well the operational system meets 3.1 Capability 
Delivered payload / System total 

3.0 weight (ref. missions) 
Performance 

the system objectives, in terms of mass, volume, and 
Available payload diameter and 

throughput capability. 3.2 Volumetric efficiency 
shroud height 

4.0 Safety and 
Reliability relates to the operational system. High reliability 4.1 Loss of mission Percent mission success (PLOM) 

Reliability 
is a must for human exploration transportation systems, 
especially for relatively low flight-rate systems. 4.2 Loss of Crew Catastrophic failure rate (PLOC) 

This FOM applies to the development ofthe system, in how 5.1 Time to human flight Months to first human flight 
5.0 Mission quickly and how effectively the system captures the desired Range of addressable payload 

Capture mission model; as well as how the system can be applied 5.2 Extensibility capability (minimum to 
over a range of payloads. maximum) 

6.1 Technical Risk 
Risk score of performance or 

An important attribute of any system development is risk, in 
cost drivers 

Combined risk score of non• 
6.0 Risk terms of technical and programmatic risk. This FOM applies 6.2 Programmatic Risk 

t echnical cost risks 
mainly to the system development. 

Average time betw een 
6.3 Sustainability 

exploration milestones 

2.3.2 Figure of Merit Weighting 

NASA Objective 2: Provide a recommendation for the weighting of the 
recommended key decision attributes. 

Determination of the weightings of each of the FOMs was performed by pair-wise comparison using 
Expert Choice software. These weightings were used for the initial assessment of each architecture 
option. For the HLPT study, it was determined that there are two potential paths that might lead to 
different weightings of the FOMs. One case would relate to the launch of crew on board the heavy lift 
system, as opposed to being launched on a separate crew-launch system. The other case would relate 
to a system that is strictly used for cargo, and not crew. 

The relative weightings for the case of crew launching on the newly designed HL V can be seen in Figure 
2-4. In this scenario, crew safety and system reliability is paramount, with cost being a close second 
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place, and risk coming in third . When broken down to secondary FOMs, again loss of crew is most 
important, with sustainability (risk) and DOTE cost being highly valued. Alternately, weightings for cargo
only usage of the HLV can be seen in Figure 2-5. Weightings for each of the secondary FOMs are also 
shown. In this case, cost is most highly weighted, with design, development, testing, and evaluation ( 
DOTE) cost as the most significant portion; followed by Risk (sustainability) and mission capture (Time to 
flight and Extensibility). A later variation of the cost weighting placed higher emphasis on recurring cost 
as opposed to DOTE cost, but the primary FOM weighting remained the same. Going into the HLPT 
study, Andrews assumed as a baseline case that crew would not be launched aboard the HLV, but rather 
on a separate launch vehicle. 

1.0Cost 
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Figure 2-4 Crew Launch Figure of Merit Weightings 
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3. Mission Model Development 

--mANDRE\NS 
SPACE 

Use or disclosure of data is subject to the restrictions on the notice 
posted on the title page. 

Rev A 

22 



Heavy Lift and Propulsion Technology 

Final Report, ORD No. 1374MA-003 

AS-4107-RPT-00003 

--mANDRE\NS 
SPACE 

Use or disclosure of data is subject to the restrictions on the notice 
posted on the title page. 

Rev A 

23 



Heavy Lift and Propulsion Technology 

Final Report, ORD No. 1374MA-003 

AS-4107-RPT-00003 

--mANDRE\NS 
SPACE 

Use or disclosure of data is subject to the restrictions on the notice 
posted on the title page. 

Rev A 

24 



Heavy Lift and Propulsion Technology 

Final Report, ORD No. 1374MA-003 

AS-4107-RPT-00003 

--mANDRE\NS 
SPACE 

Use or disclosure of data is subject to the restrictions on the notice 
posted on the title page. 

Rev A 

25 



Heavy Lift and Propulsion Technology 

Final Report, ORD No. 1374MA-003 

AS-4107-RPT-00003 

--mANDRE\NS 
SPACE 

Use or disclosure of data is subject to the restrictions on the notice 
posted on the title page. 

Rev A 

26 



Heavy Lift and Propulsion Technology 

Final Report, ORD No. 1374MA-003 

AS-4107-RPT-00003 

--mANDRE\NS 
SPACE 

Use or disclosure of data is subject to the restrictions on the notice 
posted on the title page. 

Rev A 

27 



Heavy Lift and Propulsion Technology 

Final Report, ORD No. 1374MA-003 

AS-4107-RPT-00003 

--mANDRE\NS 
SPACE 

Use or disclosure of data is subject to the restrictions on the notice 
posted on the title page. 

Rev A 

28 



Heavy Lift and Propulsion Technology 

Final Report, ORD No. 1374MA-003 

AS-4107-RPT-00003 

--mANDRE\NS 
SPACE 

Use or disclosure of data is subject to the restrictions on the notice 
posted on the title page. 

Rev A 

29 



Heavy Lift and Propulsion Technology 

Final Report, ORD No. 1374MA-003 

AS-4107-RPT-00003 

--mANDRE\NS 
SPACE 

Use or disclosure of data is subject to the restrictions on the notice 
posted on the title page. 

Rev A 

30 



Heavy Lift and Propulsion Technology 

Final Report, ORD No. 1374MA-003 

AS-4107-RPT-00003 

--mANDRE\NS 
SPACE 

Use or disclosure of data is subject to the restrictions on the notice 
posted on the title page. 

Rev A 

31 



Heavy Lift and Propulsion Technology 

Final Report, ORD No. 1374MA-003 

AS-4107-RPT-00003 

--mANDRE\NS 
SPACE 

Use or disclosure of data is subject to the restrictions on the notice 
posted on the title page. 

Rev A 

32 



Heavy Lift and Propulsion Technology 

Final Report, ORD No. 1374MA-003 

AS-4107-RPT-00003 

--mANDRE\NS 
SPACE 

Use or disclosure of data is subject to the restrictions on the notice 
posted on the title page. 

Rev A 

33 



Heavy Lift and Propulsion Technology 

Final Report, ORD No. 1374MA-003 

AS-4107-RPT-00003 

--mANDRE\NS 
SPACE 

Use or disclosure of data is subject to the restrictions on the notice 
posted on the title page. 

Rev A 

34 



Heavy Lift and Propulsion Technology 

Final Report, ORD No. 1374MA-003 

AS-4107-RPT-00003 
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4.2 Mission Element Descriptions 
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Observations made over the course of the HLPT program as a result of analysis are summarized in the 
following sections. 

8.1 Mission Model Observations 

The following observations were made in regard to overall mission model considerations: 

• Mission objectives drive the in in-space transportation requirements, which in turn drive Earth to 
orbit heavy lift requirements 

• Current mission models for human exploration result in launch rates of less than one launch per 
year on average, and require 500-S00mT to be delivered to LEO (more for chemical in-space 
propulsion). 

• Flexible path human exploration objectives can be met with a variety of in-space propulsion 
types. SEP provides the best mixture of cost, reliability, and performance (50% mass and 25% 
volume reduction when compared to chemical option) 

8.2 Architecture Assessment Observations 

The following observations were made in regard to results of the architecture assessments: 

• The winning HL V option appears to be Option 1 - a modular LO2/RP first stage with LO/LH2 
upper stage. This option is preferred only when equipped with multiple engines per stage (e.g. 
AJ26 derivatives) to improve launch reliability with engine-out capability. This option also has 
good recurring cost, extensibility, and sustainability characteristics due to the relatively small 
common stages and "dial-up" payload capability. 

• Launch vehicle fixed and operating costs must be dramatically reduced (<10% of Shuttle levels) 
in order to allow the HL V and exploration program to meet program goals. This would apply to 
any HLV option. This is more of a political issue than it is a technical design issue. 

• HLV modularity allows for commonality with other stakeholder needs and can save up to 11 % of 
the total exploration launch life-cycle cost. 

• HLV development must maximize the use of existing assets and design knowledge in order to 
meet schedule and cost goals (EELV and Shuttle derived). The preferred Option 1 vehicle can 
be built using EEL V production capacity (5-m stage diameter), and may use Delta-IV logistics 
infrastructure. 

• An incremental HLV upgrade process can meet exploration objectives while maintaining 
development cost limits. An engine block change for Option 1 could allow early flights of Block I 
vehicles using existing RD-180 engine technology, then transition to more reliable Block II 
vehicles with multiple smaller engines for increased reliability. 

8.3 Propulsion Observations 

The following observations were made in regard to propulsion system requirements: 

• Near term needs (S0mT or less) can be met by existing main engine technology. New booster 
engines are only needed to mitigate supply risks (RD-180) or to increase performance (RS-25E) 
for some vehicle Options. 

• New upper stage engines are not needed for payloads <S0mT. RL 1 0 derivatives (RL 1 DC) provide 
good commonality with other national launch needs and will reduce cost. Multiple upper stage 
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engines also provide capability for engine-out in the event of engine losses, increasing upper 
stage reliability overall. 

• In-space propulsion development should focus on solar-electric in the near-term, then nuclear for 
later term needs. Low-thrust, high performance propulsion technologies provide a clear reduction 
in earth-to-orbit mass requirements, and allow the in-space elements to be reusable, further 
reducing life cycle costs. 

8.4 Technology Development Needs 

The following technologies are considered by Andrews to be enabling of future Exploration missions: 

• Large lightweight solar power and supply systems 

• Variable lsp electric propulsion systems 

• Integrated vehicle health monitoring (IVHM) for launch vehicles and in-space systems 

• Non-toxic RCS propellants for launch vehicles and in-space systems 

• Zero-g propellant management for in-space low thrust systems 

• Automated rendezvous and docking for assembly of exploration elements 

• Automated launch pad fluid and monitoring systems 

8.5 Recommendations 

Andrews makes the following recommendations for heavy-lift development strategies. 

8.5.1 Mission Model Development 
A near term investment in serious systems engineering studies to reach consensus on what the flexible 
path to human space exploration should be undertaken in the near term. These systems engineering 
studies should be widely subscribed to and include international partners. The systems engineering 
studies should be used to determine: if future lunar resources are adequate to justify going back to the 
Moon, why humans are needed for NEO exploration, and how a future Mars mission can be made 
affordable. 

8.5.2 In-Space Transportation Technologies 

The exploration infrastructure will take considerably longer to develop than a new launch system, so the 
launch system decision should be postponed until consensus is reached on what needs to be launched. 
The in-space transportation segment is an integral part of the flexible path so it needs to be addressed 
during the systems engineering studies. In the short term, it makes sense to start some planned 
technology developments to support the most likely future transportation scenarios. Andrews would 
recommend technology development studies for Electrodeless Lorentz Force (ELF) Thrusters, a Solar 
Electric Tug (SEP is identified as a good option to support science missions and as a bridge to future 
missions), and generic high-performance Nuclear Electric Power-plants. 

8.5.3 Launch Capability 
A primary finding of the Andrews HLPT study was that by developing a high-performance in-space 
propulsion system, the need for super-heavy-lift (100 mT to 150 mT class) launch systems goes away. In 
fact, all expected launch requirements for human exploration missions can be met by an 80-mT class 
launch system. This not only helps the program meet development cost goals, but it also maintains a 
more robust flight rate, improving the efficiency of the ground operations. Expected benefits of payload 
margin and assembly reliability of the larger capacity launch vehicle are outweighed by the cost, risk, 
availability, and extensibility benefits of the smaller launch vehicle. 
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8.5.4 Modularity and Extensibility 

In terms of an Earth to orbit launch system that will enable a wide variety of mission types, it is 
recommended to begin development of an incremental or modular vehicle family similar to that of our 
study Option 1 vehicle. This family should be extensible over a wide range of payload classes and 
maximize the use of existing best practices and facilities (experience, design, production) in order to 
constrain costs. 

Andrews also recommends development of a oxygen-rich, staged combustion hydrocarbon rocket engine 
in the 500 to 600 klb thrust-class, suitable for both exploration and USAF reusable booster programs. 
This recommendation is based on the finding that an HLV with engine-out capability has significantly 
better reliability and safety than the HLV options with million pound engines. 

8.5.5 Operations 
Serious effort must be placed into launch cost reduction strategies. The current high operating costs of 
the Shuttle architecture is driven by jobs (15,000 at KSC in 2007). It is recommended that some form of 
austere operations (<500 crew) be implemented combined with automated launch processing (e.g. 
Sealaunch) in order to sharply reduce costs. These technologies exist - they need to be implemented in 
any new launch system. 

8.5.6 Launch Vehicle Technology Application 
For launch systems, Andrews found that most technologies exist or are relatively mature to implement 
cost-effective launch architectures. Combining existing "best-practice" automated ground processes and 
production capability, vehicle health monitoring and system management processes, as well as 
automated mission planning processes will allow the Heavy-lift system to be cost effective and capable of 
meeting human exploration needs. 
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Long Term Scenarios for Human Lunar Presence (2) 

SPACE COLONIZATION, A STUDY OF SUPPLY AND DEMAND 
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Abstract 

Rev A 

The last fifty years has nurtured the dream of living and working in space. Unfortunately, that dream 

appears to be moving further and further into the future, as financial resources become increasingly 
scarce and space program budgets shrink. This paper steps back and looks at the fundamental 
economics of people working (and playing) in space, and shows scenarios where colonization could, and 
should, succeed. The key to success for any economic scenario (plan) is correctly predicting supply and 
demand versus various pricing points. We based our supply and demand analyses on dozens of previous 
publications and surveys as well as extensive personal experience. Economic scenarios evaluated 
include commercial development of lunar resources from lunar LOX, through platinum group metals, 
energy metals (uranium and thorium), and He-3. Various tourism-based scenarios have been examined; 
from space hotels in LEO, through lunar tourism, and space settlements for telecommuters. Eventually, if 
one or more of these scenarios are successful, enough people will be living in space to justify pure 
colonization, where people migrate to space to provide goods and services to other people living in 
space. There are numerous near-term technologies that are important to driving down costs and 
improving the safety and reliability of transportation system elements as well as some surface elements. 
The cost and impact of these technologies are shown. Also the cost and impact of some more speculative 
technologies like space elevators are included. 

Problem Statement 
Space Colonization requires Fully Reusable Earth-to-Orbit Systems (FRETOS) and a market large 
enough to purchase frequent flights (i.e. daily launches). FRETOS have been studied since the late 
1970s 1-

4
, but a large profitable space market has never developed. Space tourism is often mentioned as 

the anchor tenant for the enabling space market, but the required destination space resorts are still on 
paper5

-
6

. Space Solar Power Satellites could provide another large potential market, but ground solar 
thermal combined with natural gas seems to have stolen the market opportunity 7

-
9.We would propose 

that mining increasingly scare rare metals on the moon and Near Earth Objects (NEOs) may provide the 
anchor tenancy required to enable commercial development and operation of FRETOS, and thereby open 
up space to the masses. We begin by making the economic case for using space resources on earth. 

Limits to Growth 
Numerous studies 10

-
13 have shown that there are limits to the population that the planet can sustain at a 

decent Gross Domestic Product (GDP) per capita. The underlying issue is whether improvements in 
manufacturing, mining, farming, and pollution prevention technologies over time can overcome 
diminishing nonrenewable resources and eroding or degrading farmlands. We explored this issue using 
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an updated version of the World3 model available from the Laboratory for Interactive Learning (603) 852-
2186. We programmed the world model to create the current 2010 situation with a 4.0 %/year technology 
improvement rate, and the simulation showed a population collapse in 2035 from starvation (too much 
capital required to obtain increasingly scarce resources and prevent crippling levels of pollution). Even 
introducing worldwide family planning immediately and focusing capital resources on replacing fossil fuels 
with renewable energy sources, only delays the population collapse 

until 2040. Significant changes to 
Antimony 15-20 years the scenario are required. 
Gallium 5 years 

Hafnium 10 years 

Indium 5-10 years 

Platinum 15 years 

silver 15-20 years 

Tantalum 20-30 years 

Uranium 30-40 years 

Zinc 20-30 years 

COPYRIGHT 2008 Society of 

The significant change we propose 
to explore is to move the mining and 
smelting of key nonrenewable 
resources to the moon. This 
accomplishes two things. First, we 
get access to very high grade ores 
which reduces both the capital cost 
and energy cost of obtaining critical 
resources, and second, we're 
polluting the moon instead of the 
earth which reduces the capital cost 

of pollution prevention on earth. The materials we propose to import 
are elements critical to modern technologies and that will run out far 
sooner than 2040 because their usage is increasing with expanded 
technology as shown in figure 1 on the left. None of these elements 
will be used up completely, but as the richer ore bodies are depleted, 
the prices will soar. For example, the price of rhenium, used for fuel-

2006 GNP 

Antimony 
Tin 
Tantalum 
Gallium 
Gold 
Platinum 
Hafnium 
Germanium 
Uranium 
Rhodium 
Silver 
Nickel 
Lead 
Indium 
Zinc 
Chromium 
Copper 
Phosphorous 
Aluminum 

$37,574 2000 $ 
kg Lifetime kg per year 

7.13 9.16E-02 
15 1.93E-01 

0.18 2.31E-03 
0.005 6.43E-05 
0.04 5.14E-04 

0.045 5.78E-04 
N/A N/A 
0.01 1.29E-04 
5.95 7.65E-02 

0.004 5.14E-05 
1.58 0.02 
58.4 0.75 
410 5.27 

0.032 4.11E-04 
349 4.5 
131 1.7 
630 8.1 

8322 107.0 
1576 20.3 

efficient aircraft engines, has jumped to a record $11, 250/kg, almost 12 times its price in 2006. It is now 
only half the price of gold, which is a major boon to the main countries that mine rhenium ore: Chile and 
Kazakhstan. Reserves of indium, used for solar cells and LCDs, along with those of hafnium, an essential 
component of computer chips and in nuclear control rods, may literally run out within 10 years 14

. 

Small amounts of these PGMs and rare earth metals are required in today's smart infrastructure (see 
figure 2 on the right) and the amount returned from the moon would eliminate the upcoming shortages 
and enable the high productivity the world is going to need in the future. 

Our hypothesis is that if we add lunar resources, we can afford to maintain the switch to plug-in hybrids 
throughout the world, thereby increasing productivity and reducing persistent pollution Even though the 
flow of lunar resources is relatively small, these critical metals have a large impact on productivity, 
resulting in a potential soft landing for the world population. 

This shows the magnitude of the problem, but can space resources provide a solution? About two-thirds 
of all known meteorites contain iron-nickel (FeNi) metal. "Iron-nickel" means that the metal is 
mostly iron but it contains 5-30% nickel as well as a few tenths of one percent cobalt, plus high 
concentrations (by terrestrial standards) of strategic metals such as the platinum group, gold, gallium, 
germanium, iridium, and others. Interestingly enough the lower the Fe-Ni metal content in the meteorite, 
the more enriched the Fe-Ni metal is in these rare and precious metals and elements. These elements 
readily dissolve into the metal that exists, and the less metal that exists, the less diluted they are. Many 
asteroids are richer in most of these precious metals than the richest Earth ores which we mine. Further, 
these metals all occur in one ore when it comes to asteroids, not in separate ores. Many of the richest ore 
bodies on earth are meteorite impact craters from geological times. In particular, the impact crater at 
Sudbury, Ontario, is rich in iron, nickel, cobalt, copper and platinum group metals. Are similar metals 
present in impact craters on the Moon? Geologists at Sudbury say that the valuable metals at Sudbury 
did not come from the impactor, but welled up from deep within the Earth. If this is so, why don't more 
volcanic upwellings contain rich ores of nickel, cobalt, copper and PG Ms? Until we go to the Moon and 
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study more impact craters to determine whether or not they are rich in these metals we cannot be 
certain. Particles of Fe-Ni metal make about 0.5% of the regolith and can be magnetically separated, but 
copper is present only in traces in the regolith. 

The amount of minable rare earth elements on the moon is unknown, but all asteroid impacts on the 
moon since its formation are still on or near the surface since the moon has no plate tectonics. Therefore 
there is a high probability the rare earth metals are present, but they may not be present in minable 
concentrations. For the purpose of this study we modeled mining the PGMs and assumed a comparable 
effort could obtain similar quantities of rare earth metals (a stretch goal). 

Lunar Mining 
Many unknowns exist regarding mining on the Moon, beginning with what's there to exploit. As 
discussed, one promising source is the asteroidal nickel-iron that is found (as far as we know) all over the 
lunar surface. Metallic asteroid impact sites exist on Earth; some are exploited as ores. However, over 
geologic time Earth impact sites will be submerged by plate tectonics and nickel-iron, being a siderophile, 
will find its way to the Earth's core. The Moon does not exhibit plate tectonics. Metallic asteroid impacts, 
depending on impact velocity, will scatter metals globally over the Moon, or more locally. Some material 
will be launched to escape velocity by the impact and will not return. Sample data, as noted, indicate the 
regolith averages about 0.5% nickel-iron. Not very many sites have been sampled and those that have 
been are all near the equator. Therefore, our knowledge of "rich" ores, if there are such, is nil. 

The regolith itself is about 10% iron, but our interest in asteroidal metal is that it also contains nickel, 
cobalt, and platinum-group metals. The composition varies considerably, and it is reported that in 
meteorite samples, the metallics richest in platinum-group metals are found in meteorites with less total 
metal, as if the platinum-group metals are absorbed by whatever nickel-iron is available. Cobalt content 
is also reported as quite variable. Therefore, it is vital to perform prospecting as the first step to strategic 
metals acquisition from the Moon, to find good sites with adequate amounts of nickel-iron of favorable 
composition. 

We constructed a simple cost model to explore the characteristics of mining and processing lunar 
materials for shipment to Earth. The model did not include descriptions of processes, but characterized 
the end-to-end process as consisting of six steps, each with six generic characteristics, and seven cost 
elements. The processes are mining, hauling, preprocessing (such as beneficiation), processing (to final 
product(s)), packaging, and shipping. The output of each step is the input to the next. The output of the 
final step is delivery of the product to Earth. 

Descriptions of the six steps are given in Table 1, the six characteristics in Table 2, and the seven cost 
elements in Table 3. The output of each step is the input to the next. The model is solved in reverse. It 
is explicit; no iteration is required. This model is easily implemented on a spread sheet. 
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I _J_ Table 3: Cost Parameters 
t Spe-clfk Cost I Cc>st of !!tJUlpment built on Earth for shipment to the Moon, In dollars 

Q_er kg._ Does not lncltide transJ)orta!:fon cost to the Moon. 
Lunar Specific Co-st of !!tJUlpment built on the Moon, tor now In dollars per kg out we 
Cost reall need a measure that's lunar operations on,-'-e=n=t=ed=.'--------1 
Resupt)IY Cost CGst per kg or resupply_; trans ortatlon cost computed s aratel 
S\lpport Cost Cost per kg or product f'or support operations on Earth; this Is mainly a 

labor cost 
Transport Cost Net cost of space transportation to the Moon; per kg of' usable delivered 
to the Moon J)roduct,_!P-J)lied to equlp_ment built on Earth and to reSUJ)J'l'I'._•_ 
Annual A percentage applied to .all nonrecurring costs such as cost of 
Wrlteoff Rate equipment and for Its t.ransportatlon to the Moon as a~llcable. 
Product Value Feaslb-le sellln i:,l"ice for the roduct delivered to Earth. 

As an illustration, the model was applied to a case of platinum-group metals extracted from lunar 
asteroidal material. Results are given in the two bar charts below, figures 4 and 5. 
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Figure 4. Mass Output through Process Steps 
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Figure 5. Cumulative Cost of Product for $30,000/kg Lunar Delivery 

The two large stepdowns in mass throughput are because (1) the fraction of regolith that is asteroidal 
nickel-iron is small; we assumed 3% which is a relatively rich ore; the average is less than 1%; (2) the 
fraction of nickel-iron that is platinum-group metals is very small; we assumed 200 ppm which again is a 
rich ore. 

The cumulative product cost shows how much cost has been added by each step. For this product, 
which is present in the regolith in small amounts, the cost added by the early steps is large even though 
these are relatively simple steps; the reason is that a lot of material must be handled. Also, it is essential 
that these steps involve very little equipment made on Earth, and very little resupply or support from 
Earth. 

Costs of equipment that are feasible are a few thousand per kg, whether made on Earth or the Moon. 
This example used transport cost to the Moon of $30,000 per kg. The model is also sensitive to that 
figure. Cutting it in half reduced the final product cost by about 25%. 

This is an example of production of a scarce but very valuable material. Platinum itself currently sells for 
close to $40,000 per kg, and the price is escalating because the supply is small and there are many 
industrial uses. For products that are more plentiful but less valuable, such as cobalt which currently sells 
for tens of dollars per kg, the final steps of packaging and shipping, which do not appear very important 
here, become very important. 

A very important lesson learned is that most resource production equipment must be made on the Moon. 
Shipping it is unaffordable. For example, we assumed 90% of the mining and hauling equipment was 
made on the Moon. Even though this equipment is very productive (our estimates were that a miner or 
hauler could process on the order of 100,000 times its own mass in a year) so much of it is needed that 
indications are about 90% must be made on the Moon. That probably means electronics, electric motors, 
gears and bearings made on Earth and everything else on the Moon. 

A likely early product, much easier to exploit, is propellant made on the Moon. Producing oxygen and 
hydrogen from water will use processes we understand. Since water and its constituents are a single 
compound, once the water is extracted and purified equipment we understand can produce the 
propellants. Propellants made and used on the Moon have the value of the cost of shipping them there 
from Earth, comparable to the value of platinum on Earth. Propellants made on the Moon and used 
elsewhere in cislunar space are of less value because the cost of shipping from the Moon must be added 
in, and the cost of delivery from Earth is less. 

Our present ignorance is great. 
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(1) We do not know the quality of ores or their location. This is even true for early products such as 
propellants made from water. We know water is there, but we don't know the form (ice may be a 
reasonably safe assumption), how deep, what fraction of the regolith where it resides, what other volatiles 
are present, and how accessible. 

(2) We have not tested any processes in situ. Some oxygen-making processes such as hydrogen 
reduction and carbothermal reduction have been tested on Earth, but if significant amounts of water are 
present, we can probably just use electrolysis, which is one of the steps in these other processes, and it 
will presumably work just as it does on Earth. 

(3) We do not know the properties of asteroidal nickel-iron as made into metal products. We need to 
know the variability of properties as dependent on ore composition and production means, and whether 
those properties will suffice for making parts and equipment, or whether (and to what degree) we will 
need to produce engineered alloys to get the properties we need. 

Delivery to Earth 

The enriched rare metals will be sent to earth using high technology slings. Modern high strength fibers 
can sustain the loads to whirl a 180 kg nickel-iron balloon at 3050 m/sec using a 200 m radius sling. The 
balloon is weighted with rare metals foam for rigidity and to maintain a predetermined center of gravity for 
earth entry. The balloons contain a thick central disk the diameter of the balloon that contains cast 
pressure bottles and distributes the rotation loads. On each side of the disk, foil hemispheres of nickel are 
welded on. The hemispheres are made by spraying molten nickel into a hemispherical mold using 
plasma/powder metallurgy. The forward section of the disk is filled with foamed rare metals for structural 
support and placement of the center of gravity. The cast pressure bottles are welded together, and 
pressurized to high pressure with nitrogen gas propellant. The entire balloon is pressurized to 
approximately one atmosphere with nitrogen to maintain stiffness for Earth entry. The front half of the 
sphere is covered with sintered regolith ablator and back half of the central disk has redundant 
recoverable control packages embedded in it. Each control package has a deployable antenna, solar 
cells plus battery, small GN&C, and a steerable nozzle for cold gas rocket RCS and OMS. The mass of 
each control package is 3 kg and the propellant gas is 24 kg. The control packages can vent gas from the 
balloon during aerodynamic heating and refill the balloon from the bottles as the balloon cools off after 
entry. 

A 200 m radius sling shown in figure 6 will generate 4750 gees at the payload just prior to release. A 180 
kg counterweight of lunar-produced iron is carried on the counter arm and is captured in an impact tunnel 
(the counterweight is destroyed each launch. The counterweight arm is fully functional and serves as a 
backup in case of problems. 
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Figure 6. Lunar Sling for Launching :\[eta! Products to Earth (Shown with 200 m radius and launching from 45 deg latitude) 

Spinning up the sling requires 3600 kW-hrs of power of which about 2400 kW-hrs is recoverable with 80% 
efficient combination motor generators and flywheels. Assuming quad-redundant 200 kWe motors, it will 
take 4.5 hours to load, spin up and release, and three hours to slow down and stop while recovering the 
energy. During the 4.5 hours spin up, a 300 kWe array could make up the energy shortfall. At a rate of 
one launch every 8 hours during daylight, a single sling delivers seventy-five tons of useful metal every 
year. Assuming 10 tons is PGM and rare earth metals and 65 tons is mostly nickel with some cobalt(~ 
500 kg), the current value per year per mine is about $400M for the PGM, $1.4M for the nickel, and 
$45,000 for the cobalt. These numbers will mostly likely be factors higher in twenty years. The hub with 
motors, arms, flywheels, and power control units masses about ten tons and would be delivered in one 
piece. The tower, the base, and the guy wires would be lunar manufacture. 

The concept of operations (CON OPS) is to launch the balloon spacecraft into an earth intercept trajectory 
and then fine tune the trajectory as it flies by the L 1 transfer station, so that the balloon enters into 
restricted regions of the Pacific and Indian Oceans. With a ballistic coefficient of 20 kg/m2 (4 m diameter) 
the balloons should survive earth entry and be salvageable after a splashdown at 22 m/sec (the foil 
hemisphere entry body halves will probably tear away on impact, but the built-in flotation foam will keep 
the core disk floating). 

Delivery to Moon 

Earth-to-Orbit - The goal is to achieve truly low cost access to space though a combination of a FRETOS 
coupled with a tether upper stage (TUS) and optimized in innovative ways to get the best use of available 
technologies. The proposed FRETOS concept uses near-term, low risk, propulsion elements in a simple, 
robust operationally efficient launcher, with streamlined operations designed to achieve a 24 hour 
turnaround. Once fully matured, a fleet of 5 FRETOS launchers could support a flight rate of 1,000 
launches per year using four tethers. At that flight rate, the target price would be $250 per kg for 15 metric 
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tons of useful payload delivered to either a 1,400 km circular orbit or to a 26,750 km highly-elliptical
transfer orbit (HETO). This price point is considered the "holy grail" of space operations that would 
enable several viable commercial space markets such as supplying orbital propellant depots, lunar and 
NEO in-situ resource utilization, building massive space based solar power systems, as well as 
assembling large space exploration systems for human and robotic missions beyond LEO. 

Our FRETOS concept works well because the tether upper stage allows payloads to achieve orbit with an 
ideal delta V of just 7.0 km/sec, which is 30% less than conventional Earth to Orbit launchers. This lower 
delta V relaxes the required launcher propellant mass fraction from an extremely challenging 0.945 to 
very doable 0.865. The proposed FRETOS space segment involves 4 main elements ... a Skyhook 
capture device located at 300 km orbital altitude, a LEO Station located at 1,000 km, a Powered Winch 
Module located at 1,700 km, and a Counter-Balance located at 2,400 km orbital altitude. The total mass 
of the fully operational FRET OS space segment is estimated to be 190 metric tons, including 2,100 km of 
tether lines, ultra-high speed winches, motor/generators, power generation arrays, energy storage 
flywheels, counter balances, and various station "housekeeping" components. A schematic for the LEO 
Station portion of the space tether concept is shown in Figure 7 and the overall TUS in figure 8. 
Figure 7. TUS Schematic (Not to Scale) 

The proposed TUS is designed for quick deployment (ten Heavy EELV launches), so that there is a fast 
return on the large capital investment. The TUS components are launched separately and docked 
together in a 400 km orbit. The assembled system is then slowly boosted to 1,400 km for deployment 
using solar electric propulsion. Once at 1,400 km, the entire tether system is deployed and is ready for 
operation. 

Tethe r rib b ons 

D ept oymen t/Rew Ind 
Motot'tGenerator 1 

Space Operarion s 
Center Enclosure 

Skyhook Capture 
M e c h~n ism 

l T o Counterweights 
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Solo:r P ower 
(250 k W e) 

D e ptoymenr/R e wlnd 
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S kyhook T e ther 
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Figm·e 8. TUS Schematic showing Acceleration Loads 

As currently envisioned, the Skyhook B space elements are connected by 3 sets of non-rotating tether 
lines totaling 2,100 m long. The tether lines are made of high strength, Spectra (Dyneema TM SK75), a 
commercial product used primarily for high strength marine applications because of its low density (it 
floats on water) and its high UV tolerance. Each tether line is designed with a safety factor of 2, and uses 
redundant cabling to reduce the potential for space debris damaging or severing it. In addition to this 
safety factor and redundancy, the tether is based at the LEO Station roughly 1,000 km high (it moves up 
and down during operations), which is above 99% of the LEO space debris threat. 

In operation, the Skyhook Tether process starts with all tether lines in the positions described in Figure 8. 
The FRETOS launcher delivers fifteen tons of useful payload to the Skyhook and then reenters for 
turnaround and reuse. The capture process uses the very robust "probe and gate" approach used 
successfully for decades on a wide variety of dynamic capture applications such as air-to-air refueling. 
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. The staging condition for this first stage is 
nominally Mach 0.56 at 12.6 km altitude which is low enough to use well proven, low cost aircraft designs 
and standard aircraft recovery with the second stage still attached. This would allow a simple abort 
capability if for some reason the second stage rocket fails to start or the stage fails to separate as 
planned. 

(b) (4) 

(b) (4) 
(much less than any of the previous major FRETOS concepts), with engine-out capability from ignition. 
After payload capture, the second stage renters and glides to a landing at the launch and recovery base 
which is located roughly 3,200 nm west of the launch site. The 5 meter diameter payload fairing, (massing 
1.8 tons or 4,000 lbm) can be either jettisoned to be destroyed during reentry about 1,500 nm from the 
launch point, or retained as a shipping container and carried to the final destination. 

The FRETOS launcher concept of operations (CONOPS), starting from launch go ahead, is to install the 
deliverable payload into the Payload Fairing, mate the payload fairing onto the front of the 2nd stage, mate 
the 2nd stage under the carrier aircraft wing, fuel all systems, and then takeoff and climb to the launch 
initiation point. Once at the launch initiation point, the carrier aircraft lights its rockets and does a zoom 
climb maneuver to the staging point where the 2nd stage lights its engine, separates, and boosts the 
Payload package to the tether rendezvous point. The shroud fairings nominally separate at an altitude of 
about 80 km during this boost phase. Once at the tether rendezvous point, the 2nd stage aligns the 
payload with the tether capture "gate" and separates as capture takes place. The 2nd stage then reenters 
the atmosphere, slows down at very high angle of attack, and glides on to the recovery base about 3,200 
nmi down range. The carrier launch aircraft meanwhile flies back to the launch base, and begins 
refurbishment of its hybrid rocket motors. The flowtime at this point is less than one hour. At the recovery 
base, the second stage is mated to a transport version of carrier aircraft, which takes off and flies back to 
the launch base. At the launch base the 2nd stage is de-mated, the inflatable nose is deflated and stowed, 
and payload processing started. Meanwhile the transport Carrier is refueled and flies back to the recovery 
base to prepare for the next flight. Our current assessment indicates the entire recovery, turn around, 
launch and tether lift cycle could be completed within 24 hours, enabling 1,000 missions per year with a 
fleet of 5 FRETOS launchers and four tethers. 

The TUS is an integral part of this low cost access to space architecture. It allows the FRETOS launcher 
to be built and operated efficiently using existing propulsion and materials technologies. Capturing 
payloads with the TUS saves roughly 1.7 km/sec (5,566 fps) or about 25% of ideal delta velocity to reach 
orbit. It also reduces the required propulsion 

·-•RT 
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Figures 9 and 10. Airframe and rocket engine DDT &E Costs are reduced by improved practices and large design margins 
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system mass fraction from an extremely difficult 0.945 to very doable 0.864. The combined effect 
reduces the carry mass of the 2nd stage from 300 tons to 200 tons, with a proportional decrease in the 
development risk and cost. 

FRETOS Costs - The single most expensive transportation element to develop is the Air-Launched 
Single-Stage-to-Tether Vehicle. It has new long-lived Rocket Engines and uses LOX-Hydrogen 
propellants. The estimated Design, Development, Test and Evaluation (DDT&E) cost estimates for the 
airframe and engine in 2006$ versus historical programs is shown in figures 9 and 10. The ALSSTT falls 
below the historical line because much of the design and development process has been automated and 
fewer manhours are required. 

Ear·th Orbit to Lunar Surface 

characteristics are shown in figure 11 to the right. The trip time 
from tether release orbit to L 1 is about 145 days. The goal is to 
eventually fuel the ReSET using lunar-generated water. 
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L 1 Station - The transfer station at L 1: 1) collects payloads Figure 11 . ReSET Characteristics 
coming up from earth and repackages them unto lunar landers 
going to individual mining sites, tourist destinations, or research centers, 2) collects, stores, and 
processes propellants for lunar landers, ReSETs, and probably deep space exploration missions, and 3) 
directs traffic transiting through L 1 space, especially the metal balloons leaving the lunar surface and 
targeted towards areas of the Pacific and Indian Oceans. The L 1 station would use ISS type elements 
launched to the tether and outfitted on-orbit. Most of the processing would be tele-operated from earth, 
but we still mass allocated 50 tons for L 1 Station to support occasional crew. 

Lunar Lander - Our lunar lander is a heavy mass version of the Altair Lander designed by NASA. It lands 
with 60 to 65 tons of payload instead of 12 tons, because landing is by far the riskiest part of the entire 
mission, and we wanted to minimize program risk. A mass of 180 tons leaving L 1 station also allows us to 
design the lander with engine-out mission completion using proven RL-10 LOX-LH2 engines. Also, with 65 
tons of payload, one lander could provide enough equipment to outfit a mining site to initial operations. 

Supply and Demand 
We built a ROM economic model of the entire infrastructure needed to acquire and return lunar resources 
and operated it over a twenty year period. Past twenty years we assumed the resource flow continued to 
grow at the same rate (constant number of mines added each year). The twenty-year Life cycle Cost 
(LCC) is shown below (2000$). 
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Conclusions 

Using the World3 model, our best efforts to 
stabilize the world's population led to a 
collapse about 2040 caused by a lack of 
capital to maintain the high crop yields with 
degrading arable land. We purposely limited 
growth/year in technology effectiveness to 4% 
because the critical metals to maintain 
technology development and expand the 
replacement of fossil fuels will be extremely 
scarce and therefore too expensive for 
general use in twenty years. This scenario is 
the blue line in figure 13. 
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Figure 13 World3 Population Simulation with 
and without Lunar Resources 

If we obtain sufficient lunar resources, there will be abundant CMs to keep the world's rolling stock and 
smart infrastructure expanding. Therefore, we allowed the growth/year in technology effectiveness to 
increase to 9% over a twenty year period and avoided much of the cost of obtaining increasingly scarce 
nonrenewable resources. Together, these two changes make all the difference in generating enough 
capital to keep expanding crop yields, reducing pollution, and increasing standard of living (GDP/capita). 
The red line in figure 13 represents this scenario. Even though the population reaches nine billion in this 
scenario the GDP/capita has reached the level where the population is starting to fall under standard 
demographics. 
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EXECUTIVE SUMMARY 

The Boeing Company has completed the Statement of Work (SO\V) associated with the Heavy 
Lift and Propulsion Technology (HLPT) Broad Agency Announcement (BAA) Contract 
#NNM 11 AA09C. The results of this study are summarized in the main body of this report, with 
the details provided in multiple separate referenced technical reports which are attached to this 
report. 

During the HLPT BAA study period of performance the issues surrounding our nation's Heavy 
Lift Launch Vehicle have become increasingly urgent. Boeing has endeavored to inform the 
government's approach to provide a Launch Vehicle (LV) with capabilities which meet the 
nation's exploration objectives. Key findings include: 
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APPENDIX A - DETAILED SOW COMPLIANCE 

I I References I I Final 
Attached # TIM2 Report 

4.0. Study Tasks *HLPT Statement Of Work) 1 ✓ ✓ 

4.0.a The Contractor shall identify and analyze 1 ✓ ✓ 

multiple alternative architectures (expendable, 
reusable, or some combination) on which a 
Heavy Lift System addressing the NASA HLPT 
study technical objectives can be based. The 
"identify" requirements below pertain to topics to 
be included in the final reports and TIM briefing 
packages rather than to the manner of the 
performance of systems analysis or trade study. 

4.1. Key Decision Attributes and Weighting 2 ✓ ✓ 

Assessment 

4.1.a. The Contractor shall provide a recommended 2 ✓ ✓ 

list of key decision attributes and rationale 
associated with each. 

4.1.b. The Contractor shall identify how alternative 2 ✓ ✓ 

Heavy Lift System solutions address key 
decision attributes (figures of merit, measures of 
effectiveness, etc.). 

4.1.c. The Contractor shall provide a recommendation 2 ✓ ✓ 

for the weighting of the recommended key 
decision attributes. 

4.1.d. The Contractor shall identify how changes to 2 ✓ ✓ 

the weighting of key decision attributes affect 
the identified alternative architectures. 

Figure 1-20. Detailed SOW Compliance - Task 4.0 to 4.1.d. 

I I I I Final 
Reference# TIM2 Report 

4.2 Alternative Ground Rules and Assumptions 5 ✓ ✓ 

Assessment 

4.2.a. The Contractor shall define sets of nominal and 5 ✓ ✓ 

alternate ground rules and assumptions for 
deriving design reference missions (DRMs), 
architectures, and Heavy Lift System solutions. 

4.2.b. The Contractor shall identify how alternative 5 ✓ ✓ 

ground rules and assumptions impact the 
identified alternative Heavy Lift System 
solutions. 

4.3 Alternative Architecture TRADES 1,3,5 ,6,7,8 ✓ ✓ 

4.3.a. The Contractor shall define a set of primary and 5 ✓ ✓ 

secondary DRMs derived from the study 
nominal and alternate ground rules and 
ass um pt ions. 

ITAR Controlled - 24 -



<t1-IIDEIND BAA Response For 
Heavy Lift & Propulsion Technology. 

I I I I Final 
Reference# TIM2 Report 

4.3.b. The Contractor shall define mult iple alternative 1 ✓ ✓ 

architectures potentially capable of performing 
some to all of the primary and secondary DR Ms. 

4.3.b.1 At least one architecture shall include one or 6 ✓ ✓ 

more in-space propellant depots. 

4.3.b.2 At least one architecture shall include a 6 ✓ ✓ 

gateway node (e.g., ISS) to serve as a place of 
rendezvous and/or assembly. For example, 
between launch vehicle and in-space v ehicle 
elements, or between in-space vehicle element 
and propellant depot. 

4.3.c. The Contractor shall derive and assess Heavy 3 ✓ ✓ 

Lift System solutions for the multiple alternative 
architectures. 

4.3.c.1 The Contractor shall allocate performance and 7 ✓ ✓ 

other functions among the launch vehicle 
element, in-space vehicle element, and any 
other architectural elements (e.g. , propellant 
depot) for each alternative architecture. 

4.3.c.2 The Contractor shall assess incremental launch 8 ✓ ✓ 

capability for one or more Heav y Lift System 
solutions. 

Figure 1-21. Detailed SOW Compliance - Task 4.2 to 4.3.c.2. 

I I I I Final 
Reference # TIM2 Report 

4.4 Innovative or Non-Traditional Processes 9 ✓ ✓ 

Assessment 

4.4a. The Contractor shall identify how innovative or 9 ✓ ✓ 

non-traditional processes or technologies can 
be applied to the Heavy Lift Systems to improv e 
its affordability and sustainab ility. 

4.5 Commonality Assessment 10 ✓ ✓ 

4.5 .a. The Contractor shall identify how aspects of a 10 ✓ ✓ 

Heavy Lift System (including stages, 
subsystems, and major components) could 
have commonality with other user applications. 

Figure 1-22. Detailed SOW Compliance - Task 4.4 to 4.5.a 
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I I I I Final 
Reference# TIM2 Report 

4.6 Heavy Lift System Capability Gap Assessment 11 ✓ ✓ 

4.6 .a. The Contractor shall identify capab ility gaps 11 ✓ ✓ 

associated with the Heavy Lift System, and for 
each capability gap identify specific areas 
where technology development may be needed. 

4.6.a.1 For those capability gaps identified as requiring 11 ✓ ✓ 

technology development, the Contractor shall 
quantitatively evaluate each capability gap 
using established metrics: NASA Technology 
Readiness Level (TRL), Capability Readiness 
Level (CRL), Manufacturing Readiness Level 
(MRL), and/or Process Readiness Level (PRL). 

4.6.a.2 The Contractor shall identify manufacturing and 11 ✓ ✓ 

launch process capability gaps for each Heavy 
Lift System studied. 

4.6 .b. The Contractor shall identify capab ility gaps 11 ✓ ✓ 

associated with the first-stage main engine 
functional perform ance and programmatic 
characteristics required to support each Heavy 
Lift System studied. 

4.6.b.1 The minimum set of functional performance 11 ✓ ✓ 

characteristics identified shall include engine 
thrust, specific impulse (lsp), mixture ratio, 
mass, throttle range, and physical envelope 
estimates. 

4.6.b.2 This assessment shall include, but is not limited 11 ✓ ✓ 

to, LOX/RP main engine systems. 

4.6.b.3 The minimum set of programmatic 11 ✓ ✓ 

characteristics identified shall include overall life 
cycle cost, developm ent schedule, and 
production rate estimates. 

4.6 .b.4 The Contractor shall identify any impacts to 11 ✓ ✓ 

overall life cycle costs of the Heavy Lift System 
based on the first-stage main engine studied. 

4.6.c. The Contractor shall identify capab ility gaps 11 ✓ ✓ 

associated with the upper-stage main engine 
functional perform ance and programmatic 
characteristics required to support each Heavy 
Lift System studied. 

4.6.c.1 The minimum set of functional performance 11 ✓ ✓ 

characteristics identified shall include engine 
propellants, thrust, specific impulse (lsp) , 
mixture ratio, mass, throttle range, and physical 
envelope estimates. 

4.6.c.2 The minimum set of programmatic 11 ✓ ✓ 

characteristics identified shall include ov erall life 
cycle cost, development schedule, and 
production rate estimates. 
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4.6.c.3 

4.6.d. 

4.6 .d.1 

4.6 .e. 

4.6 .e.1 

4.6 .e.2 

4.6.e.3 

4.6.e.4 

ITAR Controlled 

I I I I 
Final 

Reference# TIM2 Report 

The Contractor shall identify any impacts to 
overall life cycle costs of the Heavy Lift System 
based on the upper-stage main engine studied . 

11 

Figure 1-23. Detailed SOW Compliance - Task 4.6 to 4.6.c.3. 

Reference# 

The Contractor shall identify capability gaps 11 

associated with non-engine technical aspects of 
the heavy lift launch vehicle element of the 
Heavy Lift System: tanks, propellant and 
pressurization systems, integrated system 
health management, auxiliary propulsion 
systems, avionics and control systems, and/or 
structures. 

The Contractor shall identify test and integrated 11 

demonstrations to mitigate risk associated with 
the identified capability gaps. 

The Contractor shall identify capability gaps 11 

associated with the in-space propulsion 
elements functional performance and 
programmatic characteristics required to 
support each Heavy Lift System studied. 

This assessment shall include, but is not limited 11 

to, LOX/H2 and LOX/CH4 propulsion systems. 

The minimum set of functional performance 11 

characteristics identified shall include propellant 
definition, thrust, specific impulse (lsp), mixture 
ratio, mass, throttle range (if any), and physical 
envelope estimates. 

The minimum set of programmatic 11 

characteristics identified shall include overall life 
cycle cost, dev elopment schedule, and 
production rate estimates. 

Identify any impacts to overall life cycle costs of 11 

the Heavy Lift System based on the engines 
studied. 

Figure 1-24. Detailed SOW Compliance - Task 4.6.d to 4.6.e.4. 
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I I I I Final Reference# TIM2 Report 
4.6.f. The Contractor shall identify capability gaps 11 ✓ ✓ 

associated with non-engine technical aspects of 
the in-space propulsion element of the Heavy 
Lift System: tanks, propellant and 
pressurization systems, cryogenic fluid 
management, integrated system health 
management, auxiliary propu lsion systems, 
avionics and control systems, structures, and/or 
autonomous rendezvous and docking. 

4.6.f.1 The Contractor shall identify test and integrated 11 ✓ ✓ 

demonstrations to mitigate risk associated with 
the identified capability gaps. 

4.7 Test and Demonstration Assessment 12 ✓ ✓ 

4.7.a. The Contractor shall identify how incremental 12 ✓ ✓ 

development testing, including ground and flight 
testing, of Heavy Lift System elements can 
enhance the heavy lift system development. 

4.7.b. The Contractor shall identify those in-space 6 , 12 ✓ ✓ 

space propulsion elements (if any) for 
demonstration via space flight experiments. 

Figure 1-25. Detailed SOW Compliance -Task 4.6.fto 4.7.b. 
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EXECUTIVE SUMMARY 

The Boeing Company identified and analyzed multiple alternative launch vehicle (LV) architectures. The emphasis 
of this effort centered on the LVs which were in NASA Marshal Space Flight Center (MSFC) SLS trade-space while 
other expendable systems, reusable systems and combination systems were considered. 

The analysis evaluated various upper stage, first stage and booster options. The evaluation begins with performance 
analysis including the predicted payload mass ( delivered) to Low Earth Orbit (LEO) and/ or to Beyond Earth Orbit 
(BEO). These analyses address BEO performance requirements (50mT) and LEO performance requirements 
(130mT) derived from mission analysis and government requirements. Representative analysis cases are included in 
HLPT paper #1. Launch vehicle configurations with promising performance capabilities were analyzed against a 
broad range of programmatic and technical Figures of Merit including affordability, schedule, payload performance, 
industry base and others. The results of those trades are included in HLPT paper #2. Summary findings of both of 
these evaluations are summarized below: 

General-
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Executive Summary 

This paper summarizes the formal trade study process applied to the evaluation of 
Space Launch System heavy lift launch vehicles - the Space Launch Vehicle. 
Figures of Merit (FOMs) are based on NASA data from the Preliminary Report to 
Congress, dated 11 January 2011 and other public information. The category of 
FOMs are held constant, and three cases are studied utilizing different weighting 
factors for each FOM. 
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EXECUTIVE SUMMARY 

The Heavy Lift and Propulsion Technology (HLPT) study provides consistent assessment 
of multiple trajectory runs based on a wide variety of engine, propellant, size and launch 
vehicle architecture options. For this study, those objectives were defined as a minimum 
of 70 metric tons initial capability, desired early service ca abilit of 100 metric tons, and 
potential for growth to 130 metric tons for exploration. 
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Executive Summary 

This document defines the Design Reference Missions (DRMs) for the Heavy Lift 
and Propulsion Technology Broad Agency Announcement (BAA) activities. These 
DRMs have been divided into a set of primary and secondary DRMs. The primary 
DRMs are human missions to the moon, NEOs, and Mars. The set of secondary 
DRMs were developed to establish the in-space infrastruture to support the primary 
DRMs. 

The primary Design Reference Missions selected for this study include a: 

Moon Landing in 2026 
Near Earth Object rendenzvous in 2028 
Mars Moon/Fly-by in 2032 
Mars Landing in 2040 

These DRMs represent a series of missions which systematically expand human 
space exploration out from LEO to a neighboring planet. Executing these DRMs 

. th f HLV d "b db NASA f, th S L h S t 
(b) ( 4) 

These DRMs require a series of supporting development missions which also allow 
for a series of human mission opportunities as the various propulsive elements are 
developed and deployed. While the primary DRMs require the development of non
propulsion elements, these are not within HLPT study scope and are therefore treated 
only at a summary level. 

(b) ( 4) 
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Executive Summary 

The HLPT study addressed how potential use of different gateways and in-space 
prnpulsion options would affect the 1equirements driving the design of a Heavy Lift 
Vehicle (HL V) (Shuttle Launch System (SLS)). Gateways considered he1ein include the 
following options: non-use of an in-space gateway, use of Low Earth Orbit (LEO) as a 

atewa and the use of the Ll oint as a atewa . 
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Executive Summary 

This white paper summarizes the architectural elements and the top-level functionality 
for the Heavy Lift and Propulsion Technology (HLPT) study. The functionality and 
performance allocation for the major elements have been documented to the level 
necessary to compare heavy lift vehicles and other in-space technologies for a variety of 
alternative architectures, Design Reference Missions (DRM) and ground rules and 
assumptions. 

This paper also addresses the statement of work (SOW) section 4.3.c. l. "The Contractor 
shall allocate performance and other functions among the launch vehicle element, in
space vehicle element, and any other architectural elements (e.g., propellant depot) for 
each alternative architecture". This task is typically called functional analysis. 

The top 17 functions have been mapped at the architecture level against 20 independent 
elements which comprise an architecture to meet the study DRMs. Each element has 
been defined and important performance allocations have been documented. 

By packaging actual payloads into the HL V and in-space propulsion elements instead of 
idealized infinitely divisible masses, the advantage and disadvantages of various 
propulsion technologies can be better assessed. Addressing specific elements drives out 
key technology limitations and capability gaps. 
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Executive Summary 

In the area of innovation, Boeing provides infonnation from om technical experts and 
supplier base and we b1ing "reach back" from om large scale production, operations, 
upgrade history, and requirements and design experiences. Our study approach draws 
from om broad expe1ience in the development, production and decades-long operation of 
s ace and launch s sterns vehicles. 

This innovation is balanced with the rigor derived from om 
long experience in development, design and operation of human-rated systems, such as 
Space Shuttle and the International Space Station. 

This report provides a smvey of innovations from recent goveflllilent and Boeing 
programs which are applicable to SLS heavy lift latmch vehicle development and 
propulsion technology, and desc1ibe several specific technology innovations which 
rep1esent opportunities for improvement of latmch vehicle performance and cost. 

The effective application of innovation and 'non-traditional' approaches in NASA 
rep1esents a significant advantage fm many activities conside1ed requi1ed f OJ HLPT. 
Specific innovations, demonstrated in Jecent programs within Boeing and the US 
government (many in partnership with MSFC) provide substantial advantage in 
development, production and operation of a Space Launch System. 

Additionally, several promising technologies provide opportlmity to improve launch 
(b) (4) 

(b) (4) 
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EXECUTIVE SUMMARY 

This paper discusses the incremental testing approach to the Space Launch System (SLS). 
This approach is directed by program-level requirements. Implementation will be based 
on a combination of structural, component and subsystem development activities. These 
will be followed by component, subsystems and structural qualification and integrated 
stage-level analyses, verification tests and finally acceptance tests. The key elements of 
this test approach include maximum reuse oftest articles, and a "test early"- ''test what 
you fly" philosophy. 
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3.0 CONCLUSION 

This paper summarizes the Boeing approach to SLS test and evaluation. The goal was to 
understand NASA's needs and the expected requirements. ortunities for 
improvement and efficiency gains have been identified. 

The SLS test approach provides an affordable, timely and evolvable solution for meeting 
NASA's requirements while minimizing life cycle cost. This will be accomplished by 
leveraging the test planning, facility upgrades and infrastructure improvements NASA 
made during the Ares I program and finding innovative ways to minimize the number of 
large scale articles through re-use and commonality. 
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FOREWORD 
This report is prepared and submitted in accordance with Data Requirement Document 1377MA-
003 of the Heavy Lift and Propulsion Technology Systems Analysis and Trade Study Data 
Procurement Document, DPD 1377, dated November 22, 2010, to Contract NNMllAAlOC. 
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1.0 EXECUTIVE SUMMARY 

Lockheed Martin appreciated the opportunity to support NASA through their Heavy Lift 
Propulsion Trade (HLPT) Systems Analysis and Trade Study (SATS) Broad Agency 
Announcement (BAA). An outstanding interchange occurred, which provided meaningful and 
insightful information and data that will enable NASA to make informed decisions as we move 
forward together in our nation's human space exploration of Low Earth Orbit (LEO), Beyond 
Earth Orbit (BEO), our Moon and ultimately Mars. 

This Final Report documents the approach followed to assess the critical areas required to 
establish the foundation for defining and assessing a "Building Block" or evolutionary path for 
the definition of the Heavy Lift Launch Vehicle (HLLV) configuration. We began by initially 
reviewing, ranking and assessing the NASA provided Figures of Merit (FOMs ), Ground Rules & 
Assumptions (GR&As) and Goals. The results of this assessment showed that Affordability, 
Safety & Reliability and Schedule are the three key FOMs. The NASA provided FOMs and 
GR&A were found to be adequate and LM did not recommend any additions or changes. 

The next step in the process was an assessment of the NASA provided Design Reference 
Missions (DRMs), which were reviewed and determined to be similar to LM developed DRMs. 
We then began an assessment of HLLV configurations against the FOMs, GR&A, Goals and 
DRMs. We leveraged previous HLLV studies that traded: 

• 33 ft. and 27.6 ft. dia. and nominal (External Tank) and stretch length Core Stage 

• LOi/LH2 (RS-68 and RS-25) and LO2/RP-l Core Stage engines 

• LOi/LH2, (J-2X, SSME and XX-100), LOi/RP-1 and LOi/CHi 2nd Stage engines 

• Dedicated In-Space propulsion stages as a part of the payload 

• 4 and 5 segment steel case/ PBAN boosters and 5 segment Advanced Composite 
Boosters (ACBs) with HTPB and LO2/LH2 (RS-68 and RS-25) and LOi/RP-1 boosters. 

Shuttle-derived HLL V configurations are an optimal solution for satisfying the FOMs, GR&A, 
Goals and DRMs provided by NASA. These configurations are based on a "Building Block" 
approach which can be evolved from an uncrewed test vehicle to HLL V configurations that can 
provide 64.5 mT to 135 mT to LEO. These configurations are 27.6 foot in diameter with 
nominal length and leverage existing Shuttle ET designs, certifications, tooling and facilities. 
The configurations also leverage Shuttle RS-25 engines for both the Core Stage and 2nd Stage 
and 4 and eventually 5 segment boosters. This approach achieves Affordability, reduces 
Program Risk and achieves schedule milestones, such as initial flight in 2016. 

33 foot and stretch length Core Stage added significant cost and schedule and were not required 
to meet the requirements. LOi/RP-1 introduced significant cost, risk and schedule impacts with 
little performance improvement. Use of LO2/LH2 for the 2nd Stage engine was logical with its 
high Isp and the commonality of the Core Stage and 2nd Stage engines also became attractive. 
Multiple stage launch vehicles are very effective in providing the greatest performance. As the 
BAA progressed, developing a 2nd Stage configuration for optimal ascent and In-Space 
capability became difficult to achieve as the Stage would be large and bum half of its propellant 
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during ascent, making loiter a difficult design environment, especially for deep space missions. 
It became evident that a better solution is to design the 2nd Stage for ascent only and have a 
dedicated In-Space Stage be a part of the payload. This approach also provides affordability as it 
stretches out the near-term need for a 2nd Stage. This allows the 2nd Stage development to be 
spread over a greater period of time, which smoothes the funding profile requirements. 

4 segment steel case booster HLL V configurations can put over 80 mT into LEO and Advanced 
Composite Booster (ACB) can achieve 135 mT to LEO. Liquid boosters were assessed and 
determined to have significant Affordability issues due to Design Development Test and 
Evaluation (DDT&E) costs or recurring costs due to the number of engines required and liquid 
boosters also increase the possibilities of launch scrubs and delays, which also impact 
Affordability. 

Affordability discusses program cost associated with a 135 mT LEO HLLV. The Life Cycle Cost 
(LCC) addresses DDT &E, Program Management (PM) and Systems Engineering and Integration 
(SE&I), Launch Site activation, as well as the cost associated with production. This is based on 2 
uncrewed test flights 2 crewed test flights and 3 crewed flights from the period of 2016 thru 
2022. These costs are in the $12. lB to $14.5B range in 2011 dollars. These numbers are based 
on traditional LM program data and data from several studies of similar type vehicles. These 
numbers do not reflect potential savings in NASA over-site/insight as demonstrated on the 
Multi-Purpose Crew Vehicle (MPCV) program, which could potentially yield 10 to 15% savings. 
The manufacturing flow was assessed and an overall reduction of workstations (lean 
manufacturing approach) could be accomplished over the heritage ET manufacturing flow. This 
reduction in workstations and required facilities affects Affordability by reducing operations and 
maintenance (O&M) costs at the Michoud Assembly Facility (MAF). Commonality, System 
Engineering, KSC Ground and Launch Operations, and extensibility also provide ways of 
improving Affordability and reducing Program Risk. 

No technical Capability Gaps were identified for configurations with DRMs in LEO, Lunar or 
several BEO DRMs. A Mars DRM identified the need to develop cryogenic fluid management 
due to mission duration. Non-technical Capability Gaps (i.e. reduced funding, schedule slide and 
loss of resources due to these gaps) require innovative Con Ops and business models. 

Innovations are proposed in several areas (i.e. avionics, TVC, alternative heat shield materials 
and manufacturing processes). Virtual manufacturing and digital inspection are highlighted as 
methods of offering additional Affordability and reducing Program Risk through leaner 
manufacturing approaches. A list of additional innovations that are not large contributors but 
which should be considered for the HLL V program is included. These innovations are based on 
lessons learned from the Shuttle ET and MPCV production at MAF. 

A discussion of Incremental Testing and In-Space Demonstration and Certification is provided, 
with lessons learned from the Shuttle ET certification and testing programs. A detailed 
discussion on the Main Propulsion System (MPS) testing is provided with a testing methodology 
that eliminates the need for a Main Propulsion Test Article (MPTA). This approach reduces cost 
and provides the necessary confidence and certification of the MPS design and systems. 

A compliance matrix to the original BAA Statement of Work (SOW) and a list of 
recommendations for further study and actions are provided as Appendix D. 
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2.0 INTRODUCTION 

The LM effort on the NASA HLPT SATS BAA focused on providing recommendations in the 
area of configurations with an eye to Affordability, satisfying the FOMs, GR&A, Goals and 
DRMs and providing an HLLV by 2016. 

The LM core team is located in Huntsville (HSV), AL and has been supporting HLLV studies 
since 2008 with IRAD funds. The IRAD activity complemented the BAA activities by providing 
generic vehicle studies/assessments that were enhanced and tailored to meet the more specific 
objectives of the HLPT BAA.. 

The LM HSV team consists of members previously on the Shuttle ET Project in the areas of 
Safety & Product Assurance, Management, Engineering Design Analysis, Systems Engineering, 
Manufacturing, Test and Checkout. The HSV team was supplemented by LM personnel at other 
sites for Mission, Performance, and LCC Analyses. 

10% of the BAA contract value was allocated to local small businesses. These small businesses 
were selected because of their experience in the areas that were required for HLLV design trades. 
This effort allowed us to develop a working relationship that would be beneficial during the 
design and analysis phase of HLL V. These businesses were: 

Small Business 
Ares Engineering 
KT Engineering 
Victory Solution 
Watring Engineering 

Task 
Configuration Probability Risk Assessment 
Thrust Vector Controllability Study 
System Engineering 
Heat Shield Concept Study 
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3.0 FOMs, GR&A AND GOALS ASSESSMENT 

3.1 Scope 

The discussion in this section covers GR&A that were taken into consideration for this study and 
the approach that was used to determine the key FOMs and their weighting. 

3.2 Approach 

The LM team reviewed relevant documentation to capture applicable GR&A with respect to the 
development of a HLL V. The following list of NASA provided documentation containing 
HLL V GR&A was reviewed and assessed during this study: 

• HLL V Architecture Study - ETO Launch Vehicle Team Ground Rules & 
Assumptions- Block 1 Vehicles 

• HLL V Architecture Study - Safety and Reliability Ground Rules & Assumptions 

• HLL V Architecture Study - Cost Team Preliminary Estimating WBS and Ground 
Rules & Assumptions 

• HLLV Summary of NASA Studies -Overview to HLPT BAA Participants 

• Kennedy Space Center Key Driving Constraints 

• Preliminary Report Regarding NASA's Space Launch System and Multi-Purpose 
Crew Vehicle 

In addition, applicable HLLV FOMs were captured and the following list of NASA provided 
documentation containing HLL V FOMs was reviewed and assessed during this study: 

• Space Launch System Goals for use by HLL V Study Teams 

• HLLV Summary of NASA Studies -Overview to HLPT BAA Participants 

• Preliminary Report Regarding NASA's Space Launch System and Multi-Purpose 
Crew Vehicle 

3.3 Discussion 

3.3.1 FOMs 

The following is a list of the FOMs, with definitions, used by LM and suggested for future use: 

• Affordability - Focused on minimizing Life Cycle Cost. 

o Initial Human Flight (IHF) - The financial expenditures required to 
successfully complete the first flight of a crewed HLLV. 

o Recurring - The recurring costs required to operate and maintain a HLLV 
capability. 

• Schedule - Focused on minimizing Cycle Times. 

o Initial Human Flight (IHF) - The time required to successfully complete the 
first flight of a crewed HLL V. 
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• Performance - Focused on meeting the required payload mass goals to accomplish a 
given mission while still meeting the Affordability and Schedule goals. 

o Payload - The payload required to be placed in LEO to achieve all mission 
goals. 

• Safety and Reliability - Focused on maximizing HLLV safety and reliability while 
still meeting the Affordability and Schedule goals. Minimum safety and reliability 
requirements shall be met. 

o Loss of Crew (LOC) - The probability of a Loss of Crew for the HLL V. 

o Loss of Mission (LOM) - The probability of a Loss of Mission for the HLL V. 

• Commonality - The ability to leverage hardware, software, workforce, etc. between 
the HLL V and other Government agencies, commercial partners and international 
partners, as well as, between the elements of the HLLV. 

• Extensibility - The ability of the HLLV architecture to extend its capability through 
incremental upgrades to increase performance, enabling challenging BEO missions. 
In addition, the use of existing infrastructure such as MAF, MSFC, KSC, Ares I 
tooling/facilities and existing Constellation Program contracts. 

• Operability - Focused on a Concept of Operations that meets all operability goals 
while still meeting the Affordability and Schedule goals. 

o Ground Operations - The resources required for ground operations in support 
ofthe HLLV. 

o Flight Operations - The resources and logistics required for flight operations 
in support of the HLLV. 

o Manufacturability - The resources and logistics required to manufacture the 
HLLV. 

• Reus ability - The ability of systems/subsystems/components of the HLLV to be 
reused for future missions. 

• Industry Base -The impact of the HLLV design concept on the Industrial Base that 
would be needed to design, build and operate the HLLV. 

3.3.2 GR&A and FOM Assessment and Recommendations 

Once GR&A and FOMs were captured, an evaluation was performed to validate that they 
bounded and were within the scope of the study. The results of this evaluation did not show any 
gaps or inconsistencies in the GR&A or FOMs NASA had used in the HLLV trade studies and 
analysis tasks completed to date. 

Following the previously described gap assessment, the recommended FOMs were ranked using 
the Pair-Wise Comparison tool, which is a part of the LM Rapid Affordability and CAIV 
Exploration (RACE) Toolkit. 
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Input FOMs into Pair
Wise Comparison Tool 

Heavy Lift and Propulsion Technology BAA Final Report 

Perform Individual 
Assessments 

r 
I 

Define Level of 
Expertise 

Ra nk FOMs in 
Numerical Order 

Define Relative Importance 

'-> of Each FOM using Pa ir-W ise 
Comparison Mat rix 

Combine Individual 
Assessments 

Figure 3-1: Figure a/Merit Ranking/Weighting Process 

Completed FOM 
Ranking\Weighting 

The Pair-Wise Comparison tool provided a process to quantify the relative importance of the 
recommended HLL V FOMs based upon a diverse group of experts. The output of this process 
was a list of FOMs ranked and weighted in order of relative importance. Figure 3-1 describes 
the steps of this process: 

The results of the FOMs Ranking are presented in Figures 3-2, 3-3 and 3-4: 

overall Score 

W/ Expertise W/0 Expertise 

Binned Metrics Weillht Weight 

Affordability 5.93 6.07 

[ Initial Human Flight(IHF) 1.03 1.09 

Recurring 1.53 1.49 

Schedule 3.50 3.71 

L lnitlal Human Flight {IHF) 1.00 1.00 

Performance 3.16 3.14 
L payload 1.00 1.00 

Safety & Reliability 4.27 4.34 

[ Loss of Crew (LOC) 2.20 2.28 

Loss of Mission (LOM) 1.00 1.00 

Commonality 2.02 2.02 

Extensibility 2.09 2.14 

Operability 2.45 2.53 

t Gmund Ope,atlon, 1.78 1.60 

Flight Operations 1.08 1.09 

Manufacturability 1.52 1.44 

Reusabilit y 1.13 1.13 

Indust ry Base 1.37 1 .37 

Figure 3-2: Figure of Merit Numerical Weighting Results 
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Flight Operations 

Figure 3-4: Sub-Tier Figures of Merit Relative Importance 
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The results, provided in Figure 3-4 above, show that the top three FOMs are: 

1. Affordability 

2. Safety and Reliability 

3. Schedule 

Performance was ranked No. 4 in this assessment, which is typically a major driver for Launch 
Vehicle designs. However, the LM team concluded that Affordability, Safety and Reliability and 
Schedule are the primary FOMs. An evolutionary "Building Block" approach can satisfy these 
FOMs and enable additional performance to be added later if required. 

3.4 Summary 

After a review of the available data, it was determined that the NASA provided FOMs and 
GR&A are complete and no gaps were identified. The recommended FOMs previously 
discussed in this section, regardless of GR&A, are sufficient for defining the criteria necessary to 
perform HLL V trade studies. The weighting provided in this assessment is highly dependent on 
the definition of the GR&A and therefore, this weighting should be repeated for any studies that 
consider any additional, deleted or changed GR&A. For this assessment the GR&A focused on 
Affordability, which heavily influenced the FOMs weighting and the results reflected this. 
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5.0 CONFIGURATIONS 
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6.0 AFFORDABILITY 

6.1 Introduction 
This section discusses the Life Cycle Cost (LCC) of the proposed configurations, as well as other 
aspects of Affordability which include Operability, Extensibility, Commonality and Reusability. 

6.2 Discussion 

6.2.1 Life Cycle Cost 

This section presents the life cycle cost (LCC) estimate for the 130 mT HLLV architecture. 
Section 6.2.1.2 provides an overview of the reference architecture and a detailed list of GR&A 
associated with the Life Cycle Cost Estimate (LCCE) estimate in Section 6.2.1.3. Section 
6.2.1.2 also provides an ove1view of the cost estimating methodology used to develop the LCCE. 

6.2.1.1 Approach 

Cost Estimating Methodology 
LM used a multitude of cost estimating approaches and data sources to develop the LCCE for 
HLL V. Figure 6-1 summarizes the various HLLV elements and specific cost estimating 
approaches utilized. We have consulted with element providers (i.e. , boosters and liquid engines) 
and received inputs from ATK and PWR, respectively. For the Core Stage, 2nd Stage and 
shroud, we used NAFCOM, but calibrated the results to LM program historical data (i.e., ET, 
Atlas) and/or contractor inputs. Avionics was based on a combination of historical launch 
vehicle data, including our recent Ares 1 experience, as well as results from the 2005 Shuttle
derived Launch Vehicle (SDLV) study. Launch site activation and operations cost is based on 
Atlas experience, the SDL V study and engineering estimates developed by LM KSC personnel. 
SE&I/PM cost estimating relationship (CER) $-to-$ factors were derived from the SDL V study. 

LM LVdb I NAFCOM I SDLV Studl I Contractor I Public Data IEn~r Estimate! 

SRBs I jt .. 
Core Engine (RS-68) 

I I Core Engine (RS-25) 

Core Airframe I 
2nd Stage Airframe m ' Shroud II II 
Avionics II Ill 
Integrated Ops II II II 
SE&I /PM II n 111 II 

F;gure 6-1: Cost EsthnaNng Methodology per Ele111e11t 

Ground Rules & Assumptions 

' I 

~I I 
7 

The LCCE is based on the Block 2 vehicle shown in Figure 6-2 below. The launch vehicle 
consists of the following elements: 
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• 5-segment SRBs 

• 27.6' diameter ET-derived LO2/LH2 Core Stage 

• 27.6' diameter LO2/LH2 2
nd Stage 

• RS-25 (SSME) used for both Core Stage (4) and 2nd Stage (1) 

• 1 Om diameter PLF 

Launch \/eh/de va.rtant Included In LCC Assessment 
~ 

1 stage 1 Stage 1 Stage 2 Stage 1 Stage p, 2 Stage 
X Vehicle Bloctl:O Bklck1 Bl<ick 2.C. Block 3 Block4 _ ---- -

~ 
.... i i ~ -- - - = = = = -

::::: ~ ,., ,., - ~ /I --- ~ /\ -

I' - I\ I', - I', ~ - - ~ - - - -..... 
- -- - - - - - - - - -
- - - - - - - - - - - -- - - - - - - - - - - --
~ -... u _ Lu-=- rm, nn n n 

C1,111fiy1.11111tii,1n X-NomCore 1- Nom Core 2-Nor.t Core 8d8~om Se/8#-Nom Core 4-Stretdl Core fl-Stretch Core 8h-Streteh Core 
c .... 

4 5991teel~ 4HgS\wl/ 6n9SteeV i,e91\ee\J 6 ,9i i\eell ing StH'it \n9 Co,np) 6n9Com,:f 
Soc•t•" Pl>.W PBAII PSAN PBANN5r.~ 

Compl'HTPB 
PD.Vi or ,,99 
Comp/HTPB 

PIMN H"'ll 
,.,,,.,, 

Core (.2-7 .$ rt db .} 1 R!,-68 tSSM'E 4 SSME-. 4$.SMl:O i 1~ ~SSMC 4$$.ME 4\SME: C,I\~ HSM'E 

2n4Sugt llA NA NA 'I SSME 1 SSM.E NA I SSME I SSME 

30x130nmi @29.5" LEO{ml) 2,_o 64.5 82_5 124.2 132.9 104.5 148.4 160-2 
f UU 142.3 

131lX130Jlml @28.5" NA NA NA .... .... NA S1.9 .... 
l1 for C3=3 k~/s: •u 48.5 

ATP ?011 NFTmu NFT?Ot.'i NFT?n1~ NFT?l 1fi NFT?OU N.FT fft1A NF-T?018 NF'T?018 

M.r< Q{pt,f) 771 .,. ,., ll00(793 798fl97 800 785 , .. 
M.M g lJ6 u o 3-89 3.ou,.94 l.2"'3.06 3.98 t.62 2.83 

Mi1;;iQn LE.~ / Lwttar LEO/ Lon,rllll:0 111•" \.EOJ\.i.,n~r Li O fl unarJH'EO>l.\1r5 

Figure 6-2: Reference HLLV Architecture (130 mT) 

The LCCE mission model, shown in Figure 6-3, assumes 1 uncrewed test flight in 2016, 
followed by 1 flight/ year through 2022 (3 crewed, 3 uncrewed)- total of 6 operational flights. 

2Stage 
Block Sc 

Vehicle Block 8c - Test Flight 

Vehicle Block Sc - Operational - Human-Rated 

DDT&E 1 

1--------------+--t PROD/OPs 1-+-...-a.+----+---+----+-"--ii---..--+---1 

Vehicle Block Sc - Operational - Non Human-Rated 3 

Figure 6-3: Reference Vehicle (I 30 111T) Mission Model 
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The following is a detailed list of additional GR&A used in the development of this Life Cycle 
Cost estimate. 

1. LCCE is intended for architecture / trade study purposes only and should not be 
construed as an offer by Lockheed Martin. 

2. LCCE includes DDT &E, Production and Operations phases. 

3. Contractor costs only. 

• Includes applicable contractor burdens (through fee) 

• Excludes NASA Oversight. 

4. LCC Analysis period of performance: ATP ( 10/2011) through 12/2022. 

5. Costs provided in 2011 $'sand TY$'s 

6. Launch Vehicle hardware quantities as indicated in Figure 6-4 

IN¥if1•1Glf1•l~IINIIINfllNl=il1•IEll1•H•lf1•tJll1•til 
Element 

Bstr-4Seg 
Bstr- 5 Seg 
RS-68 

SSME 
SSME-Core 
SSME- 2nd Stage 

Core 
2ndStg 
Avionics 
LVHM 
Shroud 

DDT&E 

Reference Vehicle (BOT)@ 1/YR 

2.0 2.0 2.0 

5.0 5.0 5.0 
4.0 4.0 4.0 

1.0 1.0 1.0 

1.0 1.0 1.0 

1.0 1.0 1.0 

1.0 1.0 1.0 

0.7 0.7 0.7 

0.6 

D New Build D Residual Asset D Wtd Average 

Production 

2.0 2.0 2.0 

5.0 5.0 5.0 
4.0 4.0 4.0 

1.0 1.0 1.0 

1.0 1.0 1.0 
1.0 1.0 1.0 

1.0 1.0 1.0 

0.7 0.7 0.7 

0.6 0.6 0.6 

Figure 6-4: Time-phased Launch Vehicle Hardware Quantities 

7. Assumes use of 12 SSME residual assets from STS program. 

8. No dedicated industrial base protection funds included. 

- i.e. , HLLV peculiar hardware and operations cost only. 

9. Key program milestones assumptions 

• FSD ATP 2011 

• PDR 2012 

• CDR 2013 

• Test Flight2016 

• IOC 2017 

Page 49 of 142 

2.0 

5.0 
4.0 

1.0 

1.0 

1.0 

1.0 

0.6 

asa 
0 

14 
0 

35 

28 

7 
7 
7 
7 
4 
3 

EXPORT CONTROLLED INFORMATION - Subject to restrictions on cover page. 



HLPA-1377MA003-11-06 Export Controlled Information DRD 1377MA-003 
Heavy Lift and Propulsion Technology BAA Final Report 

10. Launch hardware DDT&E and Production Costs derived using (as applicable): 

• LM historical cost analysis data base 

• NASA Air Force Cost Model (NAFCOM) 

• SDL V industry team study (2005) 

• Element contractor supplied Data - i.e., boosters, liquid rocket engines 

• Publically available industry data 

• Engineering estimates 

11. Site Activation Costs (NRE) Based on Lockheed Martin Experience on Atlas / Titan 
Programs. 

12. Operations Costs (REC) Based on SDLV Study and LM Atlas/Titan Experience 

13. NASA new start inflation indices used for all program phases - i.e., DDT &E, Production 
and Operations 

14. Life Cycle Cost risk range provided. 

15. DDT&E Cost Includes: 

• Design and Development activities for the Launch Vehicle segment. 

• Ground and Infrastructure I Operations capability development activities. 

• Operations facilities and activation related to launch vehicle processing and checkout. 

• New or modified facilities required to produce and process HLLV system elements. 

• Checkout of the ground processing and flight operations systems. 

• Integration activities associated with test hardware & test flights. 

• Software development and verification. 

• Flight test cost including flight test article (1) and associated test operations. 

• Non-recurring production facilities, tooling and process development. 

16. Recurring annual Operations Cost includes:Launch (ground) processing and operations 

• Flight and Crew operations 

• Replenishment spares 

• Facilities refurbishment and maintenance 

• Logistics 

• Depot maintenance 

• Sustaining engineering 

17. Cost of unreliability (i.e., mission loss, failure investigation, stand down time, etc.) is 
excluded. 
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6.2.1.2 Discussion 

As shown in Figure 6-5 below, the nominal life cycle cost estimate (LCCE) for the reference 
architecture is $12.9 billion (B) in constant fiscal year 2011$'s (FYI 1 $'s). Design, 
Development, Test & Evaluation (DDT&E) - ($8.3B, 2011$'s) and Production/ Operations -
($4.6B, 2011$'s) constitute approximately 65% and 35%, respectively, of the total LCCE. 

A cost risk range is also provided, based on the relative risk associated with each phase: 1) -5% 
to+ 15%, or $7.9B to $9.5B (2011 $'s) for the DDT&E phase and 2) -10% to+ 10%, or $4.2B 
to $5.0B (2011 $'s) for the Production/Operations phase. This equates to an overall LCCE range 
of-7%to +13%, or $12.lBto $14.5B (2011 $'s) 

Each phase has been further broken down by segment for each program phase and for the total 
LCCE. As indicated the Launch Vehicle segment constitutes the largest portion of the cost, 
making up 54%, 80% and 64% of DDT&E, Production/Operations and Total LCC, respectively. 
This segment includes all DDT &E and Production activities associated with the Launch Vehicle 
hardware elements - i.e., boosters, RS-25 engines, core vehicle, 2nd stage, avionics and shroud. 
The magnitude of the Launch Vehicle segment within the Production/Operations phase is driven 
by the operational mission quantity of 6 flights. Note that the launch vehicle hardware 
associated specifically with the Test Flight in 2016 is excluded from the Launch Vehicle segment 
- i.e., it is included under Test Flight. 

Launch Site/Launch Operations makes up 19%, 11 % and 16% of DDT&E, 
Production/Operations and Total LCC, respectively. It includes: 1) launch site infrastructure and 
site activation during the DDT &E phase and 2) the ongoing launch processing, operations, and 
maintenance associated with the 6 operational missions from 2017 through 2022. 

The Test Flight (Launch Vehicle Hardware+ Launch Operations) cost is $0.6B (2011 $'s), or 
approximately 7% of DDT &E. This segment includes both the launch vehicle hardware and 
launch operations required for the test flight in 2016. 

System Engineering and Integration I Program Management (SE&I/PM) is approximately 27% 
of the base cost (i.e., Launch Vehicle+ Launch Site+ Test Flight) for DDT&E and 10% of the 
base cost (i.e., Launch Vehicle + Launch Operations) for Production/ Operations. 
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I Reference Vehicle (130T) 

2 5-Seg SC PBAN SRBs 

27.6'0 Core, 4 SSMEs @ 113% 

2nd Stage, 1 SSME 

2016- 1 Uncrewed Test Flight 

2017- 2022 

3 Operational Crewed Flights 

3 Ope rational Uncrewed Flights 

------------------
5 LS DDT&E (NRE) - $B's 

Descri tion 

launch Vehicle DDT&E (NRE} 
launch Vehicle 

Test Flight - LV Hardware 

SE&I/PM 

Launch Vehicle DDT&E (NRE} 
Launch Vehi cle DDT&E Ran e -5% to +15% 

launch Site/ Test Flight Ops DDT&E (NRE) 
launch Site 

Test Flight - launch Ops 

SE&I PM 

Launch Site DDT&E (NRE) 

Launch Site DDT&E Range (-5% to +15%) 

Total DDT&E (NRE) 
DDT&ERange (-5%to+15%) 

2011$B's 

$1.5 

$0.1 
$0.4 

$2.01 
$1.9to$2.3 

$8.3 
$7.9to$9.5 

Launch Vehicle DDT&E Funding 
~ $6.0B to $7.2B Total (2011- 2017) 
~ $0.9B to $1.0B per Year (2011 $'s) 

---------------

5 LS Production I Operations (REC) - $B's 

Description 

Production/ Operations (REC} 

launch Vehicle 

launch Operations 

SE&I/PM 

Total Production/ Operations (REC) 
Prod / Ops Range (-10% to + 10%} 

2011$B's 

$3.7 

$0.5 
$0.4 
$4.6 

$4.2to$5.0 

------------------

S LS Ufe Cycle Cost - $B's 

Test Flight - LV Hardware+ launch Ops 

Launch Site/ launch Operations 

SE&I PM 
Total Life Cycle Cost 

LCC Range (-7% to + 13%) 

2011$B's 

$8.2 
$0.6 
$2.0 

1 
$12.9 

$12.1to$:IA.5 

Figure 6-5: SLS Life Cycle Cost by Program Phase and Eleme11t 

As shown above in Figme 6-5, the Launch Vehicle po1tion of the DDT&E cost estimate is 
$6.3B, bounded by a range of $6.0B to $7.2B, which equates to approximately $0.9B to $1.0B 
per year. 

As indicated in Figure 6-6, the Launch Vehicle DDT &E cost of $6.3B includes only the Launch 
Vehicle development, Test Flight hardware and associated SE&I/PM and excludes Launch Site 
NRE, Test Flight Launch Ops and NASA Oversight. The annual funding estimate range of 
$0.9B to $1.0B, then, falls below the notional allllual SLS affordability target of $1.0B. 
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Reference Launch DDT &E Cost Range 
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Figure 6-6: Refere11ce Lau11ch Vel,;cle Cost is WUl,;11 Notional A1111ual Funding Limits 

Figure 6-7 provides a summary of the SLS average unit cost for a hlllllan-rated and nonhlllllan
rated mission. A human-rated mission excludes the shroud and augments the basic launch 
vehicle avionics suite with additional launch vehicle health management (L VHM) avionics. 
Likewise, the nonhuman-rated mission includes the shroud but excludes the L VHM avionics. As 
indicated, given the addition and deletion of hardware for the 2 respective missions, the recurring 
unit cost for each mission type approximately converges on the same value. The recurring unit 
cost estimate for the launch vehicle hardware is $0.61B and $0.60B for a human-rated and 
nonhlllllan-rated mission, respectively. There is no measurable difference in the recmTing 
Launch Operations ($0.09B) or SE&I/PM ($0.07B) for either type of mission. Thus, the total 
recmTing unit cost for a human-rated mission is $0.77B (2011$ ' s). The total recmTing unit cost 
for a nonhlllllan-rated mission is $0.76B (2011$ 's). The extended Production/Operations cost, 
then, is $4.6B. 
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Figure 6-7: SLS Recw-ring Unit Cost ($B's) LCC Summary 

6.2.1.3 Life Cycle Cost Summary 

In conclusion, the LCC data provided in this report demonstrates that the reference 130 mT 
Shuttle-Derived configuration for HLLV can be achieved within NASA budget guidelines - i.e., 
$1B per year. It should be noted that the values presented here represent a historically-based 
approach with respect to govemment acquisition and NASA insighVoversight. Lockheed Martin 
believes that a "minimal oversight'' approach would yield at least 10% to 15% reduction in the 
overall LCC. 

The LCCE values are based on leveraging much of the proven Shuttle design and infrastructure -
e.g., SSME, SRB, ET. Use of this type of configuration reduces DDT&E costs thru leveraging 
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Shuttle design and a resulting reduction in certification testing. For example, utilizing an ET 
heritage structural design for the core stage would result in a reduced (i.e., low cost) approach to 
structural testing. A "lean" certification program for the main propulsion system (MPS) avoids 
the cost of a dedicated main propulsion test article (MPTA). Likewise, utilizing existing SRB 
and SSME designs will reduce overall DDT&E costs - i.e., vs. development of new liquid 
engines and/or liquid boosters. 

6.2.2 Operability 

As part of this BAA final report, two aspects of Operability are discussed these approaches to 
Operability would have an impact on affordability. 

6.2.2.1 KSC Operations 

6.2.2.1.1 Introduction 

Lockheed Martin (LM) Kennedy Space Center (KSC) Operations personnel are supporting the 
NASA HLLV Analysis and Trade Study being performed under a BAA at Marshall Space Flight 
Center (MSFC). 

The LM HLPT Study BAA focuses on HLLV configurations that meet NASA's FOMs, GR&A, 
Goals and Design Reference Mission (DRM) Models. The KSC Ops' focus has been on 
prospective launch site configurations, architectures and concept of operations (CONOPS) to 
support the HLLV. 

Some background and history of this assessment is based on the KSC Ops personnel extensive 
experience in launch site requirements definition, design, development, construction, activation, 
testing, maintenance and operation, dating from the advent of the Space Shuttle Program through 
the current program-of-record. Some examples of the programs are listed below: 

• LC-39 pads A & Band MLPs-1, 2 & 3 at KSC 

• X-33 Single-Stage-To-Orbit Launch Site at Edwards Air Force Base (EAFB), CA 

• Atlas V Evolved Expendable Launch Vehicle (EEL V) Launch Site at Launch Complex 
41 (LC-41), Cape Canaveral Air Force Station (CCAFS), FL 

• West Coast Atlas V Evolved Expendable Launch Vehicle (EEL V) Launch Site at Space 
Launch 

• Complex 3 East (SLC-3E), Vandenberg Air Force Base (V AFB), CA 

• MPCV Manufacturing Facility - Operations & Checkout (O&C) Building, KSC, FL 

• Numerous others 

The KSC Ops' intent is to demonstrate that it is both economically feasible and technically 
possible to build a HLL V launch site within the time and cost constraints identified by the NASA 
customer. 
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A key assumption of this assessment is for a first launch as early as 2013. The intent is to utilize 
launch site architectures, features & vehicle processing techniques from the above listed 
programs that are most applicable to HLLV. 

6.2.2.1.2 Scope 

The proposed Launch Site ConOps describes how LC-39A could be modified to efficiently and 
affordably process and launch the HLL V. Launch site modifications would support the potential 
early test flights ( 4 each) using baseline HLL V configuration, See Figure 5-1. The follow-on 
flights using larger 2-stage, Block 1 "evolved" HLLV. 

6.2.2.1.3 Approach 

The KSC Ops recommended HLL V launch site Con Ops plan details are described below. 

The GR&A used for this assessment are based on the HLL V configuration of Shuttle-derived 
components, including an ET-based Core Stage with an aft engine section (SSMEs or RS-68s). 
Vehicle Core will be processed horizontally at an existing KSC facility, probably the Vehicle 
Assembly Building (V AB) or Orbiter Processing Facility (OPF). 

The HLLV also utilizes STS Solid Rocket Boosters (SRBs) consisting of 4 each Solid Rocket 
Motor (SRM) segments. The SRM segments will be processed in same manner and using the 
same facilities -- notably the Rotating Processing & Surge Facility (RPSF) -- as STS. 

The SRM segments and Vehicle Core will be transported individually to LC-39A and assembled 
at the launch site, using Stack-On-Pad methodology. The "payload" components (MPCV/Orbital 
Test Flight-I (OFT-1) assembly) will be assembled off-site, transported to LC-39A and 
integrated with the HLLV at the launch site. 

The main emphasis of this assessment is the re-use of existing KSC facilities, including the Fixed 
Service Structure (FSS), launch platform support pedestals, LC-39A propellant, commodity & 
vehicle servicing systems and SRB processing facilities. Note: SRB recovery and re-use is 
assumed to not be baselined for the HLLV program for this assessment. This concept is readily 
adaptable to additional launch configurations (launch platform can be removed to allow access 
by other launch vehicles). It provides complete weather protection up to day of launch. There is 
an added benefit of rapid launch anomaly turnaround ( complete vehicle access available at 
launch site; no rollback required to fix problems) 

Depicted in Figure 6-8 and 6-9 is a Block diagram and time-line of a functional flow showing 
how the major elements of the HLLV (SRMs, Vehicle Core, interstage adaptor, OFT-1 
assembly) are integrated at the launch site, over a thirty three day period culminating in HLLV 
launch on the last day. 
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F;gure 6-8: Block D;agram Functional Flow of Proposed Test Vehicle Integration 
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6.2.2.1.4 Discussion 

6.2.2.1.4.1 Reconfigurable (or replaceable) Launch Platform (RLP) 

This Platform will span the existing flame trench and be mounted on the 4 southernmost shuttle 
Mobile Launch Platform (MLP) support pedestals. The proposed RLP will be approximately 2/3 
the length of the Shuttle MLP and will therefore not require the use of the northernmost support 
pedestals. The RLP will incorporate most of the functionality of the Shuttle MLP, including 
connection points for propellants, power, communication, HV AC, etc., as well as T-0 umbilicals 
for the HLLV MPS. The RLP is not intended to be a mobile launch platform, but will be 
removable to accommodate other launch vehicles & systems (RLP design will not preclude 
installation of other launcher configurations) 

6.2.2.1.4.2 Mobile Integration Tower (MIT) 

The tower in its extended position will also span the flame trench and cover the RLP and HLLV. 
The MIT will include a 200-ton bridge crane and cantilevered porch on the east side of the 
structure that will support stacking and assembly of the HLLV elements, including SRM 
segments, Core Stage, payload ( and fairing if needed) and a 2nd Stage. The SRM segments are 
transported to LC-39A on existing transporters. The Vehicle Stage will be transported on new 
transporter, based on the current ET transporter, that is designed to allow Vehicle Core lift / 
break over using a single crane (similar to Atlas V). Elements will be lifted from the east side of 
the pad surface (adjacent to the flame trench) and stacked on the RLP. 
In the extended position, the MIT will also provide weather protection for the HLL V. 
Retractable doors will be provided on both the east and west sides of the MIT to facilitate 
extension and retraction of the tower. Access to critical sections of the vehicle will be provided 
by moveable platforms within the MIT. In its retracted position the MIT will be parked behind 
the FSS. The MIT doors will be designed so that the tower can be retracted without disturbing 
umbilical connections between the FSS and HLLV. The MIT will move on trucks & rails 
(similar to the existing RSS). New bridge rails will need to be constructed to allow the MIT to 
span the flame trench. 

6.2.2.1.4.3 Fixed Service Structure (FSS) Modifications 

The FSS will need to be "stretched" to accommodate the additional height required for future 
HLLV Block 1 configurations. The existing umbilical arms (ET/IT & GO2 Vent) will be re
utilized to the maximum extent possible. 

6.2.2.1.4.4 Additional Modifications to LC-39A 

The RSS and associated equipment ( e.g., flame trench bridge rail) will need to be demolished. 
The North bridge and associated propellant piping will also need to be demolished. The new 
LO2 and LH2 propellant fill and vent lines will be installed and routed to the RLP connection 
points via new piping trenches on the pad surface. The propellant line RLP connection interfaces 
will be fully blast-protected by structural enclosures. Existing SRB / SSME flame deflectors may 
need to be relocated modified or replaced (depending on vehicle orientation on launch platform). 
Structural reinforcement on east pad surface will need to be added to accommodate SRM 
segments prior to stacking. Acoustic Suppression Water System (ASWS) modifications will be 
required. 
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The following figures illustrate of some of the features of the proposed Launch facility. 

Figure 6-10 is an illustration of the launch site layout, showing the RLP installed on 4 of the 
existing STS launch platfo1m support pedestals. In addition, the MIT is shown in the "Park" 
position (behind the existing FSS). Some dimensional data is also provided. 
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Figure 6-10: MIT Retracted over FSS with RLP 011 Pedestal 

Figure 6-11 depicts the launch site showing the MIT translated to the "Stack" position, covering 
the RLP. It also shows the offload position on the east apron of the pad surface where the 
elements of the HLL V (SRM segments, Vehicle Core and OFT-1) will be removed from their 
transporters, lifted into the MIT and stacked on the RLP. 
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Figure 6-12 is an elevation view of the launch site looking east-to-west (into the MIT). 
Elevation dimensions of the MIT and a new 60' FSS extension are shown. Both the baseline and 
Block 1 HLL V configurations are depicted, which demonstrates that this launch site 
configuration is reusable over the entire life of the HLL V Program. Note: for pwposes of 
clarity, the HLLV stages are shown 90 degrees out-of-plane from their likely orientation 
(east/west) on the RLP. 
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Figure 6-13 is an elevation view of the launch site looking n01th-to-south at the MIT with the 
tower in the Stack position. An SRM segment is shown on the pad east apron to depict a 
nominal offload position. Note: the RLP is shown for reference, but it would be obscured by the 
north wall of the MIT in this position. 
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Figure 6-13: North View of Lmmch Pad, MIT Extended 
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Figure 6-14 depicts an elevation view of the launch site looking n01th-to-south at the MIT with 
the tower in the Park position behind the FSS. This view shows a required 75' extension of the 
west pad apron. 

Mobile 
Integration 

Tower {MIT} 

Increase West. Pad Surface by 75 feet 

45 ft l evel I 

195' 

J.i===--~30'~->1<, ,...20""· __ 13_3_' -~~~-~--¾'~~ 
Figure 6-14: North View ofLmmch Pad, MIT Retracted 
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Figure 6-17 is an aerial view of LC-39, for reference. Note: LC-39B (prior to FSS/RSS 
demolition) is shown, as similar views of LC-39A are not readily available. 

Figure 6-17: Launch Complex 39Aerial View 
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6.2.2.1.4.5 Cost and Schedule 

Lockheed Maiiin has led several similar launch facility projects, Figure 6-18, that involved 
revising, or building new facilities. 

• MPCV Crew Exploration Vehicle Manufacturing Facility - Operations & Checkout 
(O&C) Building, KSC, FL 

• West Coast Atlas V Evolved Expendable Launch Vehicle (EELV) Launch Site at Space 
Launch Complex 3 East (SLC-3E), Vandenberg Air Force Base (V AFB), CA 

• Atlas V EELV Launch Site at Launch Complex 41 (LC-41), Cape Canaveral Air Force 
Station (CCAFS), FL 

• X-33 Single-Stage-To-Orbit Launch Site at Haystack Butte, Edwards Air Force Base 
(EAFB), CA 

Construction Timelint: 23 months ROM Cost: $48M (2007 dollars) 

Figure 6-18: Examples of Recent Launch or Space Vel,;cles Processing Facilities 

Compared to the listed projects, the proposed HLL V launch site modification technical 
complexity scope is midway between LC-41 & SLC-3E. The proposed HLLV launch site 
modification is comparable to the LC-41 and SLC-3E builds. Based on experience Lockheed 
Maiiin's assessment is that the proposed LC-39A build is economically and technically feasible. 

Actual construction timelines and costs ai·e shown for several recent launch site constmction / 
modification projects led by Lockheed Ma1iin, including SLC-3E, LC-41, the MPCV 
manufacturing facility (O&C building) and the X33 launch site. A graphic depiction of those 
costs & timelines is shown in Figure 6-19. 
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Figure 6-19: Cost and Schedule for Several Lockheed Martin Launch Facilities Projects 

6.2.2.1.5 Operability Summary 

The Proposed CON OPS re-utilizes many of the existing STS processing and launch facilities and 
leverage vehicle processing and launch techniques that have been proven at other similar 
facilities in the recent past. The proposed CONOPS is economically feasible and technically 
possible within the time and cost constraints identified by the NASA customer for the HLLV 
Program. 

In addition, the proposed LC-39A / HLLV ConOps provides the NASA customer with the best 
opportunity of achieving its goals of an functional and affordable HLL V launch capability as 
early as 2013. 

6.2.2.2 Systems Engineering 

Systems Engineering is defined as the collective set of methods, procedures, scientific and 
engineering skills applied to large and complex system development to achieve efficient and 
accurate translation of fundamental mission objectives into a system that best meets the 
objectives at minimum cost within the required schedule and at a minimum risk. Systems 
Engineering processes and tools, when properly implemented, can help meet affordability goals 
by providing a clear technical direction for a HLL V program. 

The following key objectives of Systems Engineering that, if followed, can aid in meeting 
planned affordability goals. 

• Assure that the definition of the system or component, to satisfy an established customer 
need, is conducted on a total system basis, reflecting hardware, facilities, personnel data, 
computer programs, and support requirements to achieve required effectiveness at 
minimum life cycle cost within the required schedule and at minimum risk. 

• Provide a structured framework, with beginning-to-end traceability, of clear and concise 
system requirements under strict configuration management to serve as a basis for 
development plans, contract work statements, specifications, test plans, design drawings 
and other engineering documentation. 

• Provide clear and concise requirements for making major technical decisions that 
optimize the total system to best meet the mission objectives. 

• Integrate the design requirements and related efforts of reliability, maintainability, 
integrated logistics support, human factors engineering, safety, and other engineering 
specialties with respect to each other as well as into the mainstream of the engineering 
effort. 
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• Assure that the engineering effort is fully integrated, so that it reflects adequate and 
timely consideration of design, test and demonstration, production, operation, and support 
of the system/equipment. 

• Assure compatibility of all interfaces within the system, including necessary supporting 
equipment and facilities; and to assure the compatibility and proper interface of the 
system with other systems and equipment that will be present in the operational 
environment. 

• Provide means to establish and control the Work Breakdown Structure throughout the life 
ofthe system/project. 

• Provide means for evaluation of changes that will reflect consideration of the effect of the 
change on overall system performance and effectiveness, schedule, and cost as well as 
assure that all affected activities participate in the evaluation of changes. 

• Provide visibility to measure and judge technical performance status for timely 
identification of problems. 

The most common pitfall that programs run into is insufficient requirement definition in the 
initial development phase which can force design engineers to design a system based on their 
assumptions and not a clear requirement. Once requirements are defined and the assumptions are 
found to be in conflict with the newly defined requirements the design must be reworked. This 
rework can lead to cost overruns and schedule slips. It is imperative that discipline in 
requirement baseline definition and requirement change management is exercised in all phases of 
a program to help ensure the planned affordability goals are met. 

In addition, Victory Solutions, Inc., a small business located in Huntsville, AL, has authored a 
discussion that offers some practical and implementable suggestions and explores affordable 
SE&I approaches that can be put into practice. This discussion can be found in Appendix A of 
this report. 

6.2.3 Extensibility 

Extensibility has been a major theme throughout this BAA assessment. Utilizing existing assets, 
such as hardware, databases, tooling and production processes, will result in the savings of 
significant funds. We used this criteria in assessing the "Building Block" approach and the 
extensive leverage of the Shuttle ET assets from design through production. 

6.2.4 Commonality 

Maximizing commonality can have a significant impact on Affordability. Commonality can be 
applied within the design of a new vehicle, across previous and existing space programs, and 
across agencies (NASA, DoD, or Commercial Space interests). New vehicle designs (a similar 
forward dome design, for LO2 and LH2 tanks, is an example). The use of existing components, 
systems, processes, tooling, and facilities that were developed on other programs (Shuttle, 
MPCV, Ares, Atlas, Delta, or Falcon 9) can reduce the time and money spent generating new 
specifications and procuring new parts. This could also increase affordability by leveraging 
existing supply chains and resources. Commonality across agencies would increase reliability by 
allowing similar programs to share resources. For example, a cryogenic seal purchased to a 
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common specification for DoD could be used on a NASA program in the event of a shortage or a 
supplier issue. 

For the HLLV program, an effort should be made to review components, systems, processes, 
tooling, and facilities and to document areas where commonality makes sense. The effort could 
be lead by the NASA HLLV program and implemented through the vehicle integration prime 
contractor. The contract for each element would need to be structured to facilitate the use of 
common parts, specifications, tooling, and processes between sub-contractors. If the HLL V is 
Shuttle based, there is a large amount of components, processes, tooling, and facilities that are 
already available. For example, standard parts that are available are fasteners, seals, sensors, and 
connectors. Shuttle processes currently used for cleaning, coatings, TPS application, adhesive 
bonding, leak testing, NDE inspection, etc. could also be used on the new HLL V. 

To share a specification, each element contractor could review the specification and identify 
what needed to be included. The responsible contractor could then revise the specification so it 
would be common across the elements. 

This example of commonality would yield many benefits, such as, one supplier and the ability to 
share common hardware at the production facility or the launch site during processing or 
rework/mods. One common supplier could reduce the associated supplier documentation 
required to produce the seals. One supplier reduces the resources required for supplier 
surveillance. Impacts due to changes to the specification can be reduced by having one common 
specification and supplier. 

Multiple specifications from similar parts or new specification for parts that may be used from 
previous programs drive cost. Every specification requires a process of selecting a supplier. The 
supplier generates internal documentation to meet and verify the specification. This 
documentation will then be required by the prime for approval and change management. 
Multiple suppliers of critical parts require surveillance of processes which requires additional 
resources and drive costs. Multiple specifications also affect logistics during production and at 
launch site. A common specification for a seal may allow sharing of identical size seals between 
Core Stage and 2nd Stage, thereby, reducing the amount of effort certifying that the parts are the 
same and the approval required to implement this part sharing. 

For instance, ifthere is a 6 inch Liquid Oxygen Naflex seal used in both the MPS for the Core 
Stage and the 2nd Stage, commonality may have an impact if there is rework required at the 
launch site and the Core Stage does not have the part in-stock at the launch site and the 2nd Stage 
contractor does have this part. If a common specification for both program is used than the part 
can be transferred from one program to the other with little review since there are purchased to 
the same specification. If each contractor has a unique specification for the same size seal then a 
review is required to verification that the requirements and certification for the similar parts are 
acceptable before it can be used between programs. Common specification standard parts can 
also reduce logistics at the launch site by allowing common stores. If both vehicles are 
manufactured at the same facility, the facility management contractor can store the parts in a 
common area. 
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This approach, if use widely, could reduce cost and provide efficiency. This will take 
coordination and a change in business practices to setup up processes to allow this commonality. 
This approach could be extended to other NASA, DoD and Commercial program, where the use 
of these common items is applicable. 

An approach for commonality may consist of the following: 

1. Review the requirements for each component, standard parts, processes, tooling, 
facilities, (hereinafter referred to as common item) of the HLL V, i.e. Core Stage, 2nd 

Stage, boosters and liquid engines. 

2. Identify area of commonality. 

3. Identify owner of common item(s) requirements specification 

4. Review, resolve and implement unique requirements of each HLLV element, i.e. size, 
inspection criteria, material, etc. 

5. Provide contract direction to allow usage by multiple HLLV elements 

Note: Items 4 and 5 could be accomplished thru a HLLV change management board 
early in the DDT & E phase of the program. 

6.2.5 Reusability 

Reusability of the Solid Rocket Boosters should be re-assessed. Several existing studies from the 
Shuttle Program may offer insight into the aspects of reusability of the SRBs. While total re-use 
may not be considered due to logistics and rework/refurbishment, it may be cost effective to 
reuse some avionics components. This would have to be traded against the cost associated with 
recovery parachutes and retrieval versus purchasing new avionics. 

6.3 Affordability Summary 

Many factors can affect affordability. The discussion for this report focuses on only a few topics. 
It is felt that leveraging existing designs, tooling, facilities, reductions in test programs and 
commonality will have a great impact. A very strong approach to requirements development and 
implementation will have many benefits to the new programs, applying lessons learned from 
MPCV and other Constellation and Shuttle programs will provide benefits. A strong contributor 
that should be considered is a different approach to launch operations at KSC and some 
recommendations are provided in this section. 
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7.0 CAPABILITY GAPS 
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8.0 INNOVATIONS 
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8.2.3 Carbon Foam Heat Shield Material 
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9.0 INCREMENTAL TESTING & IN-SPACE DEMONSTRATION 
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10.0 CERTIFICATION 
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11.0 FINAL REPORT SUMMARY 

The Lockheed Martin FOMs, GR&A, Goals and DRMs assessment performed as part of this 
BAA effort did not find any additional requirements. This assessment concluded that 
Affordability, Safety & Reliability and Schedule are the main FOMs. 

NASA provided DRMs and LMSSC DRMs are similar and achievable with the LM assessed 
HLLV configurations. 

The "Building Block" configuration approach is an Affordable way to meet NASA FOMs, 
GR&A, Goals, and DRMs. These configurations Shuttle-derived Element designs which further 
enhance affordability and reduce program risk. 

Although further study is required, elimination of the Thrust Vector Control system on the SRBs 
for these configurations appears to be feasible and could enhance Affordability, reduce Program 
Risk and operational complexity. 

The vehicle PRA numbers for the proposed vehicle configurations are driven by the Engineer 
PRA number and can be improved with assessment of Loss of Crew numbers and a more 
detailed FMEA study for these configurations. These PRA numbers are based on demonstrated 
probabilities on similar flight hardware on Shuttle and are not reliant on new or untested designs. 
These PRA numbers are in-line with current Shuttle goals. 

The design of these configurations is well understood and will leverage Shuttle heritage, design, 
processes and certifications. 

The manufacture of the Core Stage will benefit from being performed at MAF. This will reduce 
Program Risk and provide affordability by using well understood and existing facilities, tooling 
and infrastructure. Extensive knowledge of current ET production and "Lessons Learned" allows 
for streamline of the process, reducing workstations and building use at MAF which will benefit 
affordability and reduce overhead at MAF. 

LCC cost analysis shows the HLLV program is achievable with existing NASA budget and 
schedule milestones. This LCC analysis is based on experience on existing systems, (Shuttle ET, 
Atlas V) LCC data. 

The LCC data provided, related to affordability, in this report demonstrates that the Shuttle
derived configuration for HLLV can be achieved within NASA budget guidelines. Additional 
savings could be realized using program management techniques that are approved and in-place 
on the MPCV Program. These LCC figures are based on leveraging many of the Shuttle designs, 
i.e. SSME, SRB, similar Tank structure. Use of this type of configuration reduces DDT &E costs 
thru leveraging Shuttle design and a resulting reduction in Certification testing. Some examples 
would be reduced amount of structural testing on the Core Stage thru use of similar designs for 
the structure. A leaner certification program, is recommended, for the Main Propulsion System 
avoiding the cost of a full up dedicated Main propulsion Test Article. Leveraging SRB and 
SMME designs in this configuration will reduce overall program DDT &E costs over new liquid 
engine and/or liquid booster development. 
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No current technology gaps exist in the near term for LEO objectives, longer term DRMs will 
benefit from In-Space cryo-propellant management development. 

Non-technical gaps do exist in delays in schedule and non-level funding to sustain the program 
and in the areas of resources, facilities and suppliers. The longer the program slips beyond end of 
Shuttle the more these resource gaps will become an issue. 

Several innovations on Avionics, TVC, and potential heat shield materials require more 
investigation and can add to affordability of the HLL V program, thru "commonality" (Avionics 
and TVC), less complex systems (TVC) and potential cost and processing saving realized thru 
the development of the potential heat shield material. The extensive background of "Lessons 
Learned" from Shuttle program can be applied (potential innovations list in Section 8.2.6) to the 
HLL V to enhance affordability and reduce program risk. 

A lower cost Main Propulsion Systems testing approach is achievable to reduce the requirement 
for a full up Main propulsion Test Article approach that was used on the Shuttle program. This is 
possible thru similarity of many components and systems in the MPS, delta component testing, 
sub-scale testing and limited full scale testing leveraging on test, analysis and operations data 
from similar shuttle systems. Similarity of the Core Stage to the Shuttle ET will reduce the 
requirement for structural and dynamics testing by leveraging Shuttle testing and analysis 
c ertifi cations. 
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APPENDIX A: System Requirements 
from an Affordability Perspective 

Victory Solutions, Inc. 
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APPENDIX B: Recommendations & 
Forward Work 
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APPENDIX C: Compliance Matrix 
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Scope 

This appendix contains the compliance matrix which provides traceability from the SOW to the applicable sections of this report. 

HLPT SATS Solicitation Technical Objectives Contract SOW Task Desc1·iption I Final Report 
Paragraph Task # Section 

Provide a recommended list of key decision 
attributes and rationale associated with each 

1 

1.1 

1.1.1 

1.1 

1.3 

1.4 

1.5 

2 

2.1 

2.1.1 

Define Heavy Lift Launch System Mission Models & 
Requirements 

Review Mission \Operational Requirements 

Document Stakeholder Needs, expectations, constraints, system 
boundaries, interfaces and intended uses 

Analyze and define rationale for stakeholder needs. 
expectations, constraints, system boundaries, interfaces and 
intended uses 

Prioritize stakeholder needs, expectations, constraints, system 
boundaries, interfaces, and intended uses 

Document mission models that meet stakeholder needs, 
expectations, constraints, system boundaries, interfaces, and 
intended uses 

Define Mission Requirements, with rationale, based on 
prioritized stakeholder needs 

Define Figures of Merit (inc. Key Decision Attributes) 

Define relevant Figures of Merit. that reflect stakeholder needs, 
operational capabilities, and mission requirements 

Define Key Decision Attributes 
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HLPT SATS Solicitation Technical Objectives Contract SOW Task Description I Final Report 
Paragraph Task # Section 

Provide a recommended list of key decision 
attributes and rationale associated with each 

Identify how changes to the weighting of key 
decision attributes affect the architectures 

Identify how alternative ground rules and 
asswnptions (Reference NASA HLL V Study) 
impact the identified alternative system solutions. 
For example, due to time and resource constraints, 
the NASA HLLV study could not address system 
alternatives associated with the number of 
launches, alternative LOi/RP-1 1st stage main 
engine characteristics, evolutionary vehicle 
development the use of propellant transfer or 
depot, the incorporation of international partner 
participation, the use of multiple crew spacecraft 
options, and the effect of technology development 

2.1.2 

2.2 

2.4 

3 

3.1 

3.1.1 

3.1.2 

3.1.3 

Define Figure of Merit Objective Values & Min/Max Threshold 
Values 

Perform pair-wise comparison of Figures of Me1it and 
incorporate previously defined stakeholder needs prioritization 
to detennine weighting. 

Create bins and populate metrics, within RACE tool, based on 
the previously defined Figures ofMe1it 

Define Current and Alternative Heavy Lift System 
Architectures 

Define current/target operational environment and existing 
operational/system capabilities 

Perform POST simulation of POD Heavy Lift architecture per 
the previously defined mission models and requirements 

Perform CAIV analysis of Heavy Lift Architecture 

Perform manufacturability assessment of Heavy Lift 
Architecture 
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HLPT SATS Solicitation Technical Objectives Contract SOW Task Description I Final Report 
Paragraph Task # Section 

3.1.3 Perform operability assessment of Heavy Lift Architecture Section 6.2.1 

3.1.5 Perform reliability\safety assessment of Heavy Lift Architecture Section 5.2.9 

3.1.6 Enter parameter values calculated in each analysis, for the Section 5.2.7 
current state, into the RACE tool 

3.2 Define alternative Heavy Lift architectures that meet the Section 5.2.7 
previously defined Mission Requirements 
and mission models 

3.2.1 Perform POST simulation of Heavy Lift architecture per the Section 5.2.7 
previously defined mission models and 
requirements 

3.2.2 Perform CAIV analysis of Heavy Lift Architecture Section 6.0 

3.2.3 Perform manufacturability assessment of Heavy Lift Section 5.2 .14 
Architecture 

3.2.3 Perform operability assessment of Heavy Lift Architecture Section 6.2.1 

3.2.5 Perform reliability\safety assessment of Heavy Lift Architecture Section 5.2.9 

3.2.6 Enter parameter values calculated in each analysis, for the Section 5.2.7 
current state, into the RACE tool & score\rank Heavy Lift 
Alternative Architectures 

3.3 Detemiine how changes to the weighting of key decision Section 3.4. 4.4 
attributes affect the architecture rankings by perfomiing 
sensitivity analysis of Figure of Merit weighting 

3.3 Assess impact of alternative ground rules and assumptions on Section 4.4 
identified alternative heavy lift architectures' Figure of Merit 
objective and threshold values 
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HLPT SATS Solicitation Technical Objectives Contract SOW Task Description I Final Report 
Paragraph Task # Section 

Identify capability gaps associated with the Heavy 
Lift System, and for each capability gap identify 
specific areas where technology development may 
be needed. Items identified as requiring 
technology development shall be quantitatively 
evaluated using established metrics, e.g. NASA 
Technology Readiness Level (TRL), Capability 
Readiness Level (CRL), Manufacturing Readiness 
Level (MRL), Process Readiness Level (PRL). 

Identify capability gaps associated with the first
stage main engine functional perfonnance and 
programmatic characteristics required to support 
each Heavy Lift System studied. The minimum 
set of functional perfonnance characteristics 
identified shall include engine thrust, specific 
impulse (Isp ), mixture ratio, mass, throttle range, 
and physical envelope. This assessment shall 
include. but is not limited to, LOX/RP-I main 
engine systems. The minimum set of 
programmatic characteristics identified shall 
include an estimated overall lifecycle cost (i.e. , 
DDT &E, production and operations (fixed and 
variable) per engine cost), development schedule, 
and production rate. Identify any impacts to 
overall life cycle costs of the Heavy Lift System 
based on the engine studied. 

4 

4.1 

4.2 

4.2.1 

4.2.2 

Perform Heavy Lift Technology Capability Gap Analysis 

Identify capability gaps in the POD and altemative architectures 
by assessing the results generated by the RACE tool 

Using the LM Risk Management Process. detennine first stage 
main engine capability gaps and develop a mitigation plan for 
the gaps to meet the Mission Requirements 

Identify potentia l capability gaps and enter into the Active Risk 
Manager (ARM) tool as an opportunity 

Detennine the probability of occurrence, based on the current 
environment & state of the art, of capability gaps 
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HLPT SATS Solicitation Technical Objectives Contract SOW Task Description I Final Report 
Paragraph Task # Section 

Identify capability gaps associated with the upper
stage main engine functional perfonnance and 
programmatic characteristics required to support 
each heavy lift system studied. The minimum set 
of functional perfonnance characteristics 
identified shall include engine propellants, thmst, 
specific impulse. (Isp ), mixture ratio, mass, throttle 
range, and physical envelope. The minimum set 
of programmatic characteristics identified shall 
include an estimated overall lifecycle cost (i.e., 
DDT&E, production and operations (fixed and 
variable) per engine cost), development schedule, 
and production rate. Identify any impacts to 
overall life cycle costs of the Heavy Lift System 
based on the engine studied 

4 .2.3 

4 .2.4 

4.2.4 

4.3 

4.3.l 

4.3.2 

4.3.3 

4.3.4 

Detennine a priority for high probability capability gaps based 
on the TRL, LCC, Manufacturability & Operability analysis and 
probability 

Detemiine actions required to mitigate capability gaps 

Create a Risk and Opportunity Assessment Report for identified 
capability gaps 

For upper stage main engine capability gaps, develop 
justification for change or improvement of existing capabilities 
to meet the Mission Requirements 

Identify potential capability gaps and enter into the Active Risk 
Manager (ARM) tool as an opportunity 

Detemiine the probability of occurrence, based on the current 
envirolllllent & state of the art, of capability gaps 

Detennine a priority for high probability capability gaps based 
on the TRL, LCC, Manufacturability & Operability analysis and 
probability 

Detemiine actions required to mitigate capability gaps 
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HLPT SATS Solicitation Technical Objectives Contract SOW Task Description I Final Report 
Paragraph Task # Section 

Identify capability gaps associated with the In
Space space propulsion elements functional 
perfomiance and programmatic characteristics 
required to support each Heavy Lift System 
studied. This assessment shall include, but is not 
limited to, LOi/LH2 and LOi/Cl4 propulsion 
systems. The minimum set of functional 
perfomiance characteristics identified shall include 
propellant definition, thrust, specific impulse (Isp), 
mixture ratio, mass, throttle range (if any), and 
physical envelope. The minimum set of 
programmatic characteristics identified shall 
include an estimated overall lifecycle cost (i.e., 
DDT &E, production and operations (fixed and 
variable) per engine cost), development schedule, 
and production rate. Identify any impacts to 
overall life cycle costs of the Heavy Lift System 
based on the engines studied 

4.3.4 

4.4 

4.4.l 

4.4.2 

4.4.3 

4.4.4 

4.4.4 

Create a Risk and Opportunity Assessment Report for identified 
capability gaps 

For In-Space propulsion capability gaps, develop justification 
for change or improvement of existing capabilities to meet the 
Mission Requirements 

Identify potential capability gaps and enter into the Active Risk 
Manager (ARM) tool as an opportunity 

Determine the probability of occurrence, based on the current 
environment & state of the art, of capability gaps 

Determine a priority for high probability capability gaps based 
on the TRL, LCC, Manufacturability & Operability analysis and 
probability 

Determine actions required to mitigate capability gaps 

Create a Risk and Opportunity Assessment Report for identified 
capability gaps 

Page C-7 
EXPORT CONTROLLED INFORMATION - Subject to restrictions on cover page. 

Section 7.4 

Section 7.4 

Section 7.4 

Section 7.4 

Section 7.4 

Section 7.3 

Section 7.3 



HLP A-13 77MA003-l l -06 Export Controlled Info1mation DRD 1377MA-003 
Heavy Lift and Propulsion Technology BAA Final Report 

HLPT SATS Solicitation Technical Objectives Contract SOW Task Description I Final Report 
Paragraph Task # Section 

Identify capability gaps associated with all other 
technical aspects of heavy lift system, e.g. tanks, 
propellant and pressurization systems, integrated 
system health management, auxiliary propulsion 
systems, avionics and control systems, structures. 
Identify test and integrated demonstrations to 
mitigate risk associated with the gaps. 

Identify capability gaps associated with all other 
technical elements of the In-Space space 
propulsion element, e.g. tanks, propellant and 
pressurization systems, cryogenic fluid 
management, integrated system health 
management, auxiliary propulsion systems, 
avionic$ and control systems, structures, 
autonomous rendezvous and docking. Identify test 
and integrated demonstrations to 1nitigate risk 
associated with the gaps. 

4.4 

4.4.l 

4.4.2 

4.4.3 

4.4.4 

4.4.4 

For other HLS technology capability gaps, develop justification 
for change or improvement of existing capabilities to meet the 
Mission Requirements 

Identify potential capability gaps and enter into the Active Risk 
Manager (ARM) tool as an opportunity 

Determme the probability of occurrence, based on the current 
enviroil.111ent & state of the art, of capability gaps 

Determine a priority for high probability capability gaps based 
on the TRL, LCC, Mfg. & Operability analysis and probability 

Detemiine actions required to mitigate capability gaps 

Create a Risk and Opportlu1ity Assessment Report for identified 
capability gaps 
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HLPT SATS Solicitation Technical Objectives Contract SOW Task Description I Final Report 
Paragraph Task # Section 

Identify how innovative or non-traditional 
processes or technologies can be applied to the 
Heavy Lift Systems to dramatically improve its 
affordability and sustainability. 

5 

5.1 

5.1.1 

5.1.2 

5.1.3 

5.1.4 

5.1.5 

5.1.5 

Perform Heavy Lift Innovative\Non-Traditional Technology 
Assessment 

Using the LM Opportunity Management Process. detennine 
how innovative or non-traditional processes or technologies can 
be applied to the Heavy Lift Systems to dramatically improve 
the affordability & sustainability 

Identify potential innovative\non-traditional processes and\or 
technologies and enter into the Active Risk Manager (ARM) 
tool as an opportunity 

Detennine the Technology Readiness Level (TRL) of 
innovative\non-traditional process and\or technology 

For innovative\non-traditional process and\or technology 
identified, perform LCC, manufacturability & operability 
analysis to determine potential cost & schedule savings 

Detennine the probability. based on the current environment & 
state of the art, of innovative\nontraditional process or 
technology being ready for implementation in a Heavy Lift 
System 

Detennine a priority for identified innovative\non-traditional 
process and\or technology based on the TRL, LCC, 
Manufacturability & Operability analysis and probability 

Detennine actions required to make innovative\non-traditional 
process or technology ready for implementation in a Heavy Lift 
System 
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HLPT SATS Solicitation Technical Objectives Contract SOW Task Description I Final Report 
Paragraph Task # Section 

Identify how aspects of a Heavy Lift System 
(including stages, subsystems, and major 
components) could have commonality with other 
user applications, including NASA, DoD, 
collllllercia1, and intemational partners. 

Identify how incremental development testing, 
including ground and flight testing, of Heavy Lift 
System elements can enhance the heavy lift system 
development. 

,._ 

5.1.7 

5.1.8 

6 

6.1 

7 

7.1 

7.1.l 

7.1.2 

Determine any risks that may be introduced by each Section 8.2 - 8.3.5 
innovative\non-traditional process and\or technology and 
perform an assessment of impact and probability 

Create a Risk and Opportunity Assessment Report for identified Section 8.2 - 8.3.5 
innovative\non-traditional process and\or technology 

Perform Heavy Lift Technology Commonality Assessment 

Perform assessment to detennine how elements of a Heavy Lift 
Launch System could have commonality with other user 
applications, including NASA, DoD, commercial and 
intemational partners 

Perform Heavy Lift System Incremental & Demonstration 
Testing Assessment 

Using the LM Opportunity Management Process, detennine 
how incremental development testing, including ground and 
flight testing, of Heavy Lift System elements can enhance the 
heavy lift system development 

Identify potential Incremental Development Tests and enter into 
the Active Risk Manager (ARM) tool as an opportunity 

Detennine the Technology Readiness Level (TRL) of any 
supporting technologies that may be needed to perform 
Incremental Development Test 
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HLPT SATS Solicitation Technical Objectives Contract SOW Task Description I Final Report 
Paragraph Task # Section 

Identify what In-Space space propulsion elements, 
if any, which should be demonstrated via space 
flight experiments. 

7.1.3 

7.1.4 

7.1.5 

7.1.6 

7.1.7 

7.1.7 

7.2 

7.2.1 

7.2.2 

7.2.3 

For Incremental Development Tests identified perform analysis 
to determine potential cost & schedule impacts 

Determine the probability, based on the current environment & 
state of the art. of success for Incremental Development Test 

Determine a priority for identified Incremental Development 
Tests based on the LCC, Manufacturability & Operability 
analysis and probability of success 

Determine actions required to make Incremental Development 
Tests ready for implementation in a Heavy Lift System 

Determine any risks that may be introduced by Incremental 
Development Tests and perfom1 an assessment of impact and 
probability for each one 

Create a Risk and Opportunity Assessment Report for identified 
Incremental Development Tests 

Using the LM Opportunity Management Process, determine 
what In-Space propulsion elements, if any, should be 
demonstrated via space flight expe1iments 

Identify potential In-Space Propulsion Space Flight 
Demonstration Experiments and enter into the Active Risk 
Manager (ARM) tool as an opportunity 

Detennine the Technology Readiness Level (TRL) of any 
supporting technologies that may be needed to pe1fom1 In
Space Propulsion Space Flight Demonstration Experiments 

For In-Space Propulsion Space Flight Demonstration 
Experiments identified, perform LCC, Manufacturability & 
Operability analysis to determine potential cost & schedule 
savings 
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Paragraph Task # Section 

7.2.4 Determine the probability, based on the cwrent environment & Section 9.2 
state of the rut, of success for In-Space Propulsion Space Flight 
Demonstration Experiments 

7.2.5 Detennine a priority for identified In-Space Propulsion Space Section 9.2 
Flight Demonstration Experiments based on the LCC, 
Manufacturability & Operability ru1alysis and probability of 
success 

7.2.6 Detennine a priority for identified In-Space Propulsion Space Section 9.2 
Flight Demonstration Experiments based on the LCC, 
Manufacturability & Operability analysis and probability of 
success 

7.2.7 Detennine any risks that may be introduced by In-Space Section 9.2 
Propulsion Space Flight Demonstration Experiments and 
perform ru1 assessment of impact and probability for each one 

7.2.7 Create a Risk and Opportunity Assessment Report for identified Section 9.2 
In-Space Propulsion Space Flight Demonstration Experiments 
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2GRLV 
ACB 
ALETP 
ALS 
ALTA 
AOA 
APU 
AR&D 
ARC 
ARM 
ASTM 
ASWS 
ATK 
ATP 
BAA 
BAC 
BATC 
BEO 
BLEO 
BSTRA 
C&DM 
CAD 
CAIT 
CAIV 
CCAFS 
CDR 
CER 
CFD 
CFM 
CG 
CHIL 
CIL 
CM 
CO2 
COBE 
CONOPS 
COQ 
COTS 
CPST 
CRES 
CRL 
CRYOTE 
CSCA 
CTE 
CY 
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ACRONYM LIST 
2nd Generation Return to Launch Vehicle 
Advanced Composite Boosters 
Advanced Liquid Engine Test Program 
Advance Launch System 
Aluminum-Lithium Test Article 
Angle of Attack 
Auxiliary Power Unit 
Automated Rendezvous and Docking 
Ames Research Center 
Active Risk Manager 
American Standards for Testing and Materials 
Acoustic Suppression Water System 
Alliant Techsystems Inc. 
Authority To Proceed 
Broad Agency Announcement 
Broad Area Cooling 
Ball Aerospace and Technologies Corporation 
Beyond Earth Orbit 
Beyond Low Earth Orbit 

Ball Strut Attachment 
Configuration and Data Management 
Computer Aided Design 
Constellation Analysis Integration Tool 
Cost As An Independent Variable 
Cape Canaveral Air Force Station 
Critical Design Review 
Cost Estimating Relationship 
Computational Fluid Dynamics 
Cryogenic Fluid Management 
Center of Gravity 
Collaborative Human Immersive Laboratory 
Critical Items List 
Configuration Management 
Carbon Dioxide 
Cosmic Background Explorer 
Concept of Operations 
Certificate Of Qualification 
Commercial Off The Shelf 
Cryogenic Propellant Storage and Transfer 
Corrosion-Resistant Steel 
Capability Readiness Level 
Cryogenic Orbital Test 
Core Stage Intertank Carrier Plate Assembly 
Critical Technology Element 
Calendar Year 
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DAC 
DAGGR 
DAISI 
DCS 
DCSS 
DDMS 
DDT&E 
DFI 
DFMA 
DOD 
DPD 
DPM 
DRD 
DRM 
EAFB 
EBOM 
ECO 
EELV 
EIS 
EMRL 
EPDM 
ERP 
ET 
ETO 
EVM 
FASTPASS 

FCV 
FEM 
FFBD 
FMEA 
FOD 
FOM(s) 
FRF 
FRR 
FSD 
FSS 
FSW 
FTBS 
FTB6 
FY 
GEO 
GFE 
GH2 
GHSV 
G02 
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Design Analysis Cycles 
Data Aggregator 
Data Analysis Integration and Systems Implementation 
Design Certification Sheet 
Delta Cryogenic Second Stage 
Design Data Management System 
Design Development Test and Evaluation 
Development Flight Instrumentation 
Design for Manufacture and Assembly 
Department of Defense 
Data Procurement Document 
Data Parts Management 
Data Requirement Document 
Design Reference Mission 
Edwards Air Force Base 
Engineering Bill of Material 
Engine Cut-Off 
Evolved Expendable Launch Vehicle 
End Item Specification 
Engineering and Manufacturing Readiness Level 
Enterprise Product Data Management 
Engineering Release for Procurement and Production 
External Tank 
Earth-to-Orbit 
Earned Value Management 
Flexible Analysis for Synthesis, Trajectory and Performance for Advanced Space 
Systems 
Flow Control Valve 
Finite Element Method 
Functional Flow Block Diagram 
Failure Mode and Effects Analysis 
Foreign Object Debris 
Figure(s) of Merit 
Flight Readiness Firing 
Flight Readiness Review 
Full Scale Development 
Fixed Service Structure 
Friction Stir Weld 
SRB Interface Load Indicator 
SRB Interface Load Indicator 
Fiscal Year 
Geostationary Orbit 
Government Furnished Equipment 
Gaseous Hydrogen 
Gas Hourly Space Velocity 
Gaseous Oxygen 
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GR&A 
GRC 
GSE 
GSFC 
GUCA 
GUI 
GVTA 
HALE 
HCS 
HEFT 
HIL 
HLLV 
HLPT 
HLS 
HTPB 
HTTA 
HVAC 
IES 
IHF 
IMLI 
IMS 
IOC 
IPT 
IRAD 
IRAS 
IRMA 
ISCPD 
ISO 
ISS 
JPL 
JSC 
JSF 
KSC 
LaRC 
LC 
LCC 
LCCE 
LCROSS 
LEO 
LH2 
LLC 
LM 
LMC 
LMSSC 
LN 
L02 
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Ground Rules and Assumptions 
Glenn Research Center 
Ground Support Equipment 
Goddard Space Flight Center 
Ground Umbilical Carrier Assembly 
Graphical User Interface 
Ground Vibration Test Article 
High Altitude Long Endurance 
Hardware Certification Sheet 
Human Exploration Framework Team 
Human Immersive Laboratory 
Heavy Lift Launch Vehicle 
Heavy Lift and Propulsion Technology 
Heavy Lift System 
Hydroxyl-Terminated Polybutadiene 
Hydrogen Thermal Test Article 
Heating, Ventilation, and Air Conditioning 
Innovative Engineering Solutions 
Initial Human Flight 
Integrated Multi-Layer Insulation 
Information Management System 
Initial Operational Capability 
Integrated Product Team 
Independent Research and Development 
Infrared Astronomical Satellite 
Integrated Risk Management Application 
In-Space Cryogenic Propellant Depot 
International Organization for Standardization 
International Space Station 
Jet Propulsion Laboratory 
Johnson Space Center 
Joint Strike Fighter 
Kennedy Space Center 
Langley Research Center 
Launch Complex 
Launch Commit Criteria 
Life Cycle Cost Estimate 
Lunar Crater Observation and Sensing Satellite 
Low Earth Orbit 
Liquid Hydrogen 
Long Life Cooler 
Lockheed Martin 
Lockheed Martin Corporation 
Lockheed Martin Space Systems Company 
Liquid Nitrogen 
Liquid Oxygen 
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LOC Loss of Crew 
LOM Loss of Mission 
LOX Liquid Oxygen 
LSP Launch Services Program 
L VHN Launch Vehicle Health Management 
LWT Light Weight Tank 
MAF Michoud Assembly Facility 
MA VERIC Marshall Aerospace Vehicle Representation in C 
MBD Model Based Design 
MBE Model Based Enterprise 
MECO Main Engine Cut-Off 
MEI Main Engine Ignition 
MEKM Marshall Engineering Knowledge Management 
MIT Mobile Integration Tower 
MLI Multi-Layer Insulation 
MLP Mobile Launch Platform 
MMOD Micro-Meteoroid and Orbital Debris 
MPCV Multi-Purpose Crew Vehicle 
MPS Main Propulsion System 
MPTA Main Propulsion Test Article 
MRB Material Review Board 
MRL Manufacturing Readiness Level 
MSFC Marshall Space Flight Center 
MVP Master Verification Plan 
NASTRAN NASA Structural Analysis 
NASA National Aeronautics and Space Administration 
NCAM National Center for Advanced manufacturing 
NDE Non-Destructive Examination 
NEO Near Earth Object 
NGLT Next Generation Launch Technology 
NLS National Launch System 
NPSP Net Positive Suction Pressure 
NRE Non-Recurring Expenditures 
OFI Operational Flight Instrumentation 
OFT Orbital Flight Test 
OJT On the Job Training 
OML Outer Mold Line 
OPF Orbiter Processing Facility 
OSP Orbital Space Plane 
OTT A Oxygen Thermal Test Article 
OTV Orbital Transfer Vehicle 
P AUT Phased Array Ultrasonic Testing 
PBAN Polybutadiene Acrylonitrile 
PDK Product Development Kaizens 
PDR Preliminary Design Review 
PLF 
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PLM 
PM 
PMS 
POD 
POST 
PRA 
PRL 
PRSA 
PTSD 
PU 
PWR 
RAC 
RACE 
REC 
RFI 
RFID 
RFQ 
RLP 
RP 
RS 
RTF 
SATS 
SB 
SDB 
SDLV 
SDR 
SEA 
SFHe 
SHE 
SIA 
SIL 
S-IVB 
SLC 
SLS 
SLWT 
SMD 
SME 
SOFI 
sow 
SPIRIT 
SRB 
SRM 
SSME 
SSP 
STA 
STS 
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Product Lifecycle Management 
Program Manager 
Production Master Schedule 
Point of Departure 
Program to Optimize Simulated Trajectories 
Probabilistic Risk Analysis 
Process Readiness Level 
Power Reactance Storage Assembly 
Propellant Transfer and Storage Demonstration 
Propellant Utilization 
Pratt & Whitney Rocketdyne 
Requirement Analysis Cycle 
Rapid Affordability and CAIV Exploration 
Recurring 
Request for Information 
Radio Frequency Identification 
Request for Quote 
Reconfigurable Launch Platform 
Rocket Propellant 
Rocket System 
Return To Flight 
Systems Analysis and Trade Study 
Small Business 
Small Disadvantaged Businesses 
Shuttle Derived Launch Vehicle 
System Design Review 
Statistical Energy Methods 
Super Fluid Helium 
Safety Health and Environmental 
Structured Improvement Activities 
System Integration Lab 
Saturn V Rocket Third Stage 
Space Launch Complex 
Space Launch Systems 
Super Light Weight Tank 
Science Mission Dewar 
Subject matter Expert 
Spray On Foam Insulation 
Statement of Work 
Spatial Infrared Imaging Telescope 
Solid Rocket Booster 
Solid Rocket Motor 
Space Shuttle Main Engine 
Space Shuttle Program 
Structural Test Article 
Space Transport System 
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SWT 
TC 
TCS 
TIM 
TPOC 
TPS 
TPS 
TREP 
TRL 
TVC 
TY$ 
ULA 
VAB 
VAC 
VAFB 
vcs 
VMEDP 
WIRE 
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Standard Weight Tank 
Titan/ Centaur 
Thermodynamic Cryogen Subcooler 
Technical Interchange Meeting 
Technical Point of Contact 
Task Description Sheet 
Thermal Protection System 
Technical Representative 
Technology Readiness Level 
Thrust Vector Control 
Then-Year Dollars 
United Launch Alliance 
Vertical Assembly Building 
Verification, Acceptance and Certification 
Van den berg Air Force Base 
Vapor Cooled Shields 
Virtual Manufacturing Engineering Development Platform 
Wide-field Infrared Explorer 
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1. INTRODUCTION 

1.1. Purpose 

Orbital Sciences Corporation 
Launch Systems Group 

TM-22899 

The purpose of this document is to describe the results from the NASA Heavy Lift and Propulsion 

Systems Analysis and Trade Study (HLS Study) conducted by the Orbital Sciences Corporation 

(Orbital). The principal objective of the study was to support NASA with their goal of defining a 

new launch vehicle and the propulsion technology that enables NASA to meet the Nation's 

Exploration goals and objectives over the next two to three decades. Orbital's approach for this 

study was to define a safe, affordable and realistic Heavy Lift System (HLS) architecture to support 

implementation of the Vision for Space Exploration. 

1.2. Task Description 

The HLS Study task description is provided through a Statement of Work (SOW) which describes 

Orbital's effort to define a technical and affordable solution for accomplishing the NASA Heavy 

Lift and Propulsion Systems Analysis and Trade Study as defined in the Broad Agency 

Announcement (BAA NNMlOZDA00lK). One primary goal of the study was to analyze multiple 

HLS architectures and make recommendations on how to develop a system capable of affordably 

conducting the NASA Design Reference Missions (DRMs) for low Earth orbit, lunar exploration, 

Near Earth Objects (NEOs), and Mars exploration. Starting with the President's Vision for Space 

Exploration and the Level 0 and Draft Level 1 requirements supplied by NASA, the study team 

utilized a system of systems approach to derive scientific, economic, and security goals and 

objectives for a HLS architecture that supports evolutionary human space exploration activities, 

with destinations including the Moon, Mars and its environs, near-earth asteroids, and Earth

Moon Lagrange points. 

Given Orbital's desire to focus on specific, near-term technology implementation, our study 

shows a clear connection between NASA's Exploration system requirements and optimal launch 

vehicle sizing and performance. This connection is particularly strong for the lift-off and injection 

portions of Heavy Lift missions. As recorded in this document, Orbital's study results emphasize 

the broader applications of the propulsion and heavy lift technology elements, and identifies the 

benefits of their incorporation into other U.S. launch systems and for launch applications by other 

potential government and commercial users. 

As discussed in this report, Orbital's study results support NASA in seeking an innovative 

evolutionary approach that enables human space exploration and the capability to extend human 

and robotic presence throughout the solar system. In this regard, Orbital examined the trade 

space of potential heavy lift launch and space transfer vehicle elements with a focus on 

affordability, operability, reliability, and commonality with multiple end users. A major thrust of 

our proposed approach is the identification and development of affordable space launch 
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propulsion technologies that will stimulate a more robust exploration program, while also 

supporting NASA, Department of Defense (DoD), commercial, science, and international partner 

ventures and related national security needs. 

Orbital's study addresses NASA's need for a viable Heavy Lift System (HLS) in a systematic but 

direct manner. The critical trade studies performed can directly lead to actionable plans with a 

clear path of execution for propulsion technology and HLS elements development within the 5 

year time frame dictated by Congress. The Orbital HLS study results also support the goal of 

maximizing the use of existing U.S. resources, technology, hardware, and launch vehicles. In 

support of this study, the collective and demonstrated expertise of Orbital's Advanced Programs 

Group (APG) and Launch Systems Group (LSG) were combined to converge on a recommended 

HLS Exploration architecture and to define an affordable and sustainable path to technology 

development, demonstration, and implementation. 

1.3. Scope 

This report documents the results from Orbital's HLS Study, as defined in the Statement of Work 

(SOW), attached as Appendix B. 

1.4. Summary of Accomplishments and Work to Date 

Included in this Final Report are the results of the activities performed during the course of the 

HLS study. A summary of the major areas of study emphasis are included below. 

HLS Architecture Development 

Section 3 of this report outlines the process Orbital implemented in the conduct of the 

study. The process is based on systems engineering best practices and includes 

emphasis on: 

1. Establishing the Key Decision Attributes 
2. Identifying alternative Ground Rules and Assumptions 
3. Developing Requirements 

4. Formulating candidate Heavy Lift Launch Vehicle architecture concepts 
5. Performing trade studies, technology assessments, reliability assessments, 

performance assessments, operational assessments, and cost assessments 

Technology Assessment 

Section 4 provides an assessment of key HLS technologies. The technologies assessed 

include: 

• Main engine technologies, propulsion systems, and associated propulsion system 

elements 

• Upper stage engine technologies, propulsion systems, and associated propulsion 
system elements 
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• Heavy lift launch system elements and hardware including tanks and structures, 

propellant and pressurization systems, auxiliary propulsion systems, avionics and 

control systems, and payload shrouds/fairings. 

• Ground and launch operations and infrastructure 

Orbital also assessed the Technology Development necessary to meet identified 

preferred HLS configuration and propulsion systems requirements, and quantitatively 

evaluated their technology status using established metrics. 

Performance Assessment 

Section 5 provides an assessment of required HLS performance. Each of the Heavy Lift 

Launch Vehicle (HLLV) concepts was assessed and traded to ensure that the final 

recommended HLLV concepts were capable of meeting the stated goals of 100 tons to 

LEO, evolvable to 130 mT. 

Reliability Assessment 

Section 6 provides an assessment of launch vehicle reliability. Each of the HLLV 

concepts was assessed to ensure that the final recommendation was capable of 

meeting the stated Loss of Crew goal of less than 1 in 700. 

In-Space Module Assessment 

Section 7 provides an assessment of the required In-Space elements. Each of the In

Space Module concepts was assessed to ensure that the final recommended concepts 

were capable of meeting the NASA Design Reference Missions for low Earth orbit, lunar 

exploration, Near Earth Objects (NEOs), and Mars. 

DRM Assessment 

Section 8 provides an assessment of the ability of the candidate HLLVs to meet the NASA 

Design Reference Missions (DRMs). Each of the HLLV concepts was assessed to ensure 

that the final recommended concepts were capable of efficiently performing the NASA 

DRMs for low Earth orbit missions (e.g.; ISS and LEO transfer), Lunar exploration, 

missions to Near Earth Objects (NEOs), and Mars exploration. 

Recommended HLS Architecture 

The final recommended Heavy Lift System Architecture is provided in Section 9 of this 

report. The Heavy Lift System Architecture recommended by Orbital is capable of 

meeting not only the NASA Design Reference Missions for low Earth orbit, Lunar 

exploration, Near Earth Objects (NEOs), and Mars explorations, but also meets the 

schedule and affordability goals established by NASA. 
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The Heavy Lift System Architecture cost and affordability assessment is provided in 

Section 10 of this report. The cost and affordability assessment provides background 

on the cost estimating approaches utilized by Orbital to predict the non-recurring and 

recurring costs for the candidate and recommended HLS architectures. 

1.5. Applicable Documents 

The following documents are applicable to the extent specified herein: 

• BROAD AGENCY ANNOUNCEMENT NNMlOZDA00lK Amendment 2, Heavy Lift & Propulsion 

Technology Systems Analysis and Trade Study, Release Date: June 29, 2010. 

• Orbital Sciences Corporation Response to BAA (proposal), July 29, 2010. 

• Attachment J-1 to Contract NNM11AA13C, Heavy Lift & Propulsion Technology (HLPT) 

Systems Analysis and Trade Study STATEMENT OF WORK (SOW) for Orbital Sciences 

Corporation, November 18, 2010. 

• Attachment J-2 to Contract NNM11AA13C, Heavy Lift & Propulsion Technology (HLPT) 

Systems Analysis and Trade Study Data Procurement Document (DPD) 1380 for Orbital 

Sciences Corporation, November 16, 2010. 

• Orbital's Briefing Package for the NASA Heavy Lift Study Technical Interchange Meeting 

(TIM) #1 (NASA HLS TIM l_ORBITAL TM22690_MASTER_FINAL.pptx), ORD Number: 
1380MA-002, Orbital Technical Memo (TM) 22690, posted to NASA PBMA SLS System 

Analysis and Trade Studies Contracts sharepoint February 22, 2010. 

• Orbital's Briefing Package for the NASA Heavy Lift Study Technical Interchange Meeting 
(TIM) #2 (NASA HLS TIM 2_ORBITAL TM22690_FINAL_Rl_Apr 26 2011.pptx), ORD Number: 
1380MA-002 - Revision 01, Orbital TM-22810, posted to NASA PBMA SLS System Analysis 

and Trade Studies Contracts sharepoint April 26, 2011. 
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2. OVERVIEW 

Orbital Overview 

• Leading Developer and Manufacturer of Small- and Medium-Class Space Systems 
- Three-Decade Record of Reliable, Rapid and Affordable Development and Production 

- Serving Customers in Commercial, National Security and Civil Government Markets 

• About 1,000 Satellites and Launch Vehicles Built or Under Contract for Customers 
- 198 Satellites and Space Systems 

- 165 Space and Strategic Launch Vehicles 

- 631 Target Vehicles and Sounding Rockets 

• 3,700 Employees and 1.7 Million Square Feet of State-of-the-Art Facilities 

• Over $5.6 Billion Total Contract Backlog With Premier Customers 

• Revenues of About $1.35 Billion Expected in 2011 

• Conservative Balance Sheet With Strong Liquidity 

5/11/2011 TM-22810 Revision 01 2 

The Orbital Sciences Corporation (Orbital) is a leading developer and manufacturer of small and 

medium class space systems. Orbital has three decades of demonstrated reliable, rapid and 

affordable development and production experience, serving customers in Commercial, National 

Security and Civil Government markets. Over the course of these three decades Orbital has 

approximately 1,000 satellites and launch vehicles either built or under contract for future 

delivery. Of those 1,000 systems, 198 are satellites and space systems, 165 space and strategic 

launch vehicles and 631 target vehicles and sounding rockets. Orbital employs a high-caliber 

engineering workforce with half of its 3700 person workforce made up of Engineers and Scientists 

and 1.7million square feet of state-of-the-art R&D and Production facilities located in Virginia, 

Arizona and Maryland. 
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2.2. The Heavy Lift Challenge and Solution 

The Challenge 

• The Nation Needs a New, Man Rated Heavy 
Lift System 

• Existing LVs not large enough to Meet ORM 
requirements with reasonable number of launches 

• Budget Pressures Dictate that the System Must 
be Affordable, Sustainable, & Realistic 

• NASA and the Nation are at a Major Crossroads 
in our History 

• Opportunity to Make a Transformative Change 

$ 

5117/2011 

in the Way NASA & Industry Cooperatively Develop, 
Acquire & Utilize Heavy Lift Launch 

Life-Cycle Cost 

$ 

1981-
2011 

? 
• 

TM-22899 

2016-
2030 

0 

Orbital supports NASA's intention of developing a new man-rated Heavy Lift Launch Vehicle 

(HLLV) and a Heavy Lift System (HLS) that satisfies a broad range of providers and users both 

inside and outside of NASA. Orbital also strongly concurs with NASA's desire to advance liquid 

chemical propulsion technologies to support a more affordable and robust U.S. space 

transportation industry. Orbital recognizes the budgetary pressures that dictate that the HLS be 

Affordable, Sustainable, and Realistic in the time frame dictated by Congress. Orbital believes 

that a transformative change to a more cooperative NASA and Industry paradigm is essential to 

affordably develop a heavy lift capabi lity necessary for extending the U.S. presence within the 

solar system, regaining the preeminence in space launch that our Nation once commanded. 
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• Flexible Heavy Lift Architecture Configuration 
- Intermediate performance to meet Lunar and most NEO requirements (consistent with 

Congressionally Mandated guidelines) 

• Affordably & rapidly developed 

• Lower performance configuration for MPCV and large ISS Cargo 

• Derivative Growth variants to better meet Mars Exploration DR Ms (~2025) 

- Right-sized, Affordable, Realistic configurations for specific missions 

• Capitalize and Leverage Industry-Wide Advances in Launch Vehicle Technology 
- Targeted Investment in specific areas to "close gaps" 

TM-22899 

• HLS Configurations that support an Affordable and Sustainable Life Cycle Approach 
- Constrain HLLV parameters to largely Utilize Existing Infrastructure 

- Leverage industry advances in Lower-Cost Technology 

- Commonality of components and elements to Leverage Economies of Scale 

- Applicability of elements to Other Vehicles in the U.S. Fleet 

• Innovative, Commercial Contracting and Program Management 

511112011 TM-22810 Revision 01 5 

After considerable analysis and study, Orbital believes that the best solution for the Heavy Lift 

System is to develop an architecture that can be affordably and rapidly developed with adequate 

performance to meet NASA's near term needs for LEO missions. Furthermore, this can be done 

with a design that is sufficiently flexible to meet the mid-term Lunar mission up-mass 

requirements, and eventually evolvable to meet the most demanding Near Earth Object and 

Mars exploration missions in the 2025 or later time frame. This approach provides a system that 

is right-sized, affordable and realistic for the current NASA budget, yet enables NASA to continue 

to develop the HLS capabilities and on-ramp new technologies in a sustainable manner. This 

approach also ensures that the HLS employs common technologies and elements that can be 

used by multiple launch vehicle providers, and Government entities, further reducing life-cycle 

costs. 
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3. HLS ARCHITECTURE DEVELOPMENT 

Orbital HLS Architecture Study: Process 

• Orbital follows a Top-down, Goal-driven 
Study Approach to Develop Optimal, 
Robust Heavy Lift System Architectures 

• Capture and synthesize requirements 

• Explore design space for architecture concepts 

• Perform assessments and sensitivities against 
weighted system attributes 

• Define candidate architecture concepts for 
refinement and gap assessment 

• Concept Evaluation Utilizes Orbital's 
Integrated Systems Analysis Processes 
and Leverages Government, Industry, and 
Proprietary Tools 
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Orbital implemented a goal-driven process to develop optimal, robust HLS architectures. A top

level roadmap of Orbital's approach to performing the HLS architecture study is provided in the 

figure above. This architecture development process has been successfully proven on previous 

NASA studies. Requirements ana lysis and functiona l decomposition initiated the process, in 

parallel with identifying options for each of the HLS elements. After the driving requirements 

were synthesized, various vehicle configurations, technologies, propellants, and components 

were assessed and assembled into candidate architectures. Each of these architectures was sized 

to meet the system requirements and then assessed against weighted system attributes to 

determine the most effective architectures. Gap assessments were performed to determine 

technologies that must be developed and to identify areas where significant cost reductions can 

be rea lized. While the gap assessments were being performed, the selected architectures were 

refined and further optimized. These two efforts converged at the second downselect where the 

best architectures were selected based on the eva luation of system attributes and an assessment 

of the technology and cost gaps. A final refinement of the best architectures was performed along 

with a fina l gap assessment. 
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1. Affordable: 
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- HLS DDT&E Costs - must be within the budget limits set by Congress (i.e. ; $11 .5B) 

2. Sustainable: 

- HLS Recurring Launch Costs - must be within the annual budget limits (i.e.; $1.8B) 

- HLS Life Cycle Costs must be Sustainable over the next 20 years 

3. Realistic: 

TM-22899 

- HLS designs, systems, subsystems, components, and operations must be realistically achievable in 
the time 2016 frame and not rely on budget increases, unplanned technology advances, or 
impractical programmatic shenanigans to succeed 

4. Performance: 

- HLS Initial MTO - Initial performance of Heavy Lift Launch Vehicle must support reasonable and 
actionable set of near-term (i.e. ; 2016-2020) DRMs (i.e. ; Crew to ISS, GTO missions, Heavy cargo to 
ISS and LEO, etc.) 

- HLS Evolved MTO - Evolved performance of Heavy Lift Launch Vehicle must support reasonable 
and actionable set of mid-term (i.e. ; 2021 -2029) DRMs (i.e. ; Lunar Flyby, Lunar Cargo, Lunar Crew 
Landing, NEO Low, etc.) 

- HLS Mature MTO - Mature performance of Heavy Lift Launch Vehicle must support reasonable and 
actionable set of long-term (i.e.; 2021 -2029) DRMs (i.e. ; NEO High, Mars Flyby, Mars Cargo, Mars 
Crew Landing, etc. ) 

6/3/2011 TM-22690 Rev(-) 

As defined in the SOW, Orbital developed a set of Recommended Key Decision Attributes (KDA) 

that was utilized to evaluate each of the candidate HLS architectures and Heavy Lift Launch 

Vehicle (HLLV) concepts. Affordability was identified as the primary KDAsince it is a both a driving 

requirement and a practical constraint due to the funding limits imposed by Congress. 

Affordability was followed closely by sustainability in terms of annual and life cycle costs, and 

ensuring that the HLS architecture was realistic in terms of its achievability w ithout additional 

infusions of funds or reliance on unrealistic expectations of future technical breakthroughs or 

program "sleight of hand." KDAs were also established to meet the performance goals of 100 

tons to LEO, evolvable to 130 mT. After affordability and performance, schedule is a key driving 

requirement and therefore any architecture that can meet the IOC of 2016 should score higher 

than those that do not. Another important KDA that was used to evaluate the various candidate 

HLS architectures was ensuring t hat t he resu lting system was safe and reliable. 
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Recommended Key Decision Attributes 
(cont.) -

4. IOC of 2016: 
- Heavy Lift Launch Vehicle must have a first launch capability of 2016 time frame 

5. Safety and Reliability 
- HLS must have a loss of crew reliability greater than 1 in 700 and be inherently safe 

6. Evolvable: 
- Design of the Heavy Lift System and HLS Elements must support future incorporation of emerging 

technologies and upgrades (e.g.; software, avionics, propulsion, etc. ) 

- HLS subsystems and elements must be adaptable to future un-planned missions 

7. Leverage Existing Assets: 
- HLS should - to the greatest extent possible - leverage past and recent infrastructure and 

technology investments (e.g. ; Michaud, LC-39, J-2X, etc.) 

- HLS should - to the greatest extent possible - leverage existing U.S. based technologies and 
hardware (e.g. ; AJ-26, Taurus II, A tlas V, etc.) 

8. Employ Current NASA Workforce: 
- HLS should - to the greatest extent possible - utilize most of the NASA workforce currently working 

on the Space Shuttle and Constellation programs 

9. Applicable to Multiple End-Users: 
- HLS technology should - to the greatest extent possible - be economically utilizable by and useful 

to multiple end-users, including NASA, USAF, and Commercial industry (e.g. ; common RP engine, 
common avionics, etc.) 

613/2011 TM-22690 Rev(-) 2 

Additional HLS KDAs identified by the Orbital study team included meeting the schedule for an 

initial launch within the 2016 time frame; ensuring that the system be inherently safe and 

reliable; and, making certain that the HLS was evolvable since any architecture must by definition 

provide NASA with the flexibility to accommodate a broad range of DRMs. This sixth KDA also 

encompassed the need for the HLS system to have the ability to adapt to future un-planned 

missions, unknown schedules, and funding profiles over the next 25 years or longer. Maximum 

leveraging of existing assets both owned by NASA (e.g.; Michoud, KSC, J-2x, Shuttle heritage 

infrastructures and hardware, etc.), and technology currently in use by U.S. government and 

commercial launch industry (e.g.; AJ-26 engines, existing launch vehicles and hardware, etc.), 

employment of the NASA workforce, and applicability of the HLS to multiple end users w ere also 

considered to be important KDAs. The last KDA is supportive of the first KDA (affordability) since 

commonality leads to lower overall life cycle costs as a result of economies of scale amortizing 

development and procurement costs among several end-users. 
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Alternative Ground Rules & Assumgtions ,. 

1. Affordability: 
- HLS DDT&E Costs must conform to NASA's proposed $1.88 annual funding profile 

from 2012-2016 

- A lternate funding scenarios can be considered to test sensitivity of funding on 
affordability and other KDAs (e.g.; performance, schedule, etc.) 

2. Design for Evolution: 
- The reasonable and actionable set of near-term (i.e.; 2016-2020) DRMs (i.e.; Crew to 

ISS, GTO missions, Heavy cargo to ISS and LEO, etc. ) require 50 tons to LEO or less 

- The reasonable and actionable set of mid-term (i.e.: 2021-2029) DRMs (i.e.; Lunar 
Flyby, Lunar Cargo, Lunar Crew Landing, NEO Low, etc.) require 100 - 120 tons to 
LEO or less 

- A reasonable and actionable set of long-term (i.e.; 2021-2029) DRMs (i.e.; NEO High, 
Mars Flyby, Mars Cargo, Mars Crew Landing, etc. ) needs to be developed that 
doesn't require a huge leap in performance from 120 mT to 160 mT and greater 

3. Reliability: 
- Single engine out capability is a viable method to achieve LOC goal for clustered 

engine configurations 

6/3/2011 TM-22690Rev(-) 3 

Similar to the KDAs, the HLS Alternative Ground Rules and Assumptions (GR&A) identified by the 

Orbital study team put Affordability at the top of the list, because all things being equal, 

establishing a ground rule that ensured the heavy lift launch system was affordable and could be 

procured within the available annual funding became the single greatest constraint to any 

architecture conceived. Although various funding scenarios were considered as an alternative 

ground rule, as the study progressed and the budgetary battles increased in Washington D.C. it 

became obvious that Congress would not likely approve any funding increases, and might even 

reduce funding (which actually happened before the study was complete). Although Design for 

Evolution has a companion KDA (evolvable), it really is an alternative ground rule since evolution 

was never specifically identified as a requirement by NASA. This last alternative ground rule also 

allowed Orbital to consider HLS approaches that might not initially meet the performance KDA. 

Adding engine out capability was alternative assumption that increased reliability of the multi

engine first stage concepts. Further, because no existing engine t echnology is capable of lifting 

the required mass, engine out became one way to ensure the loss of crew requirement could be 

met with the multi-engine concepts. 
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Alternative Ground Rules & Assumptions 
(Cont.) 

6. Domestic System 

TM-22899 

- The primary elements and components of the HLS must be domestically developed 
and produced 

7. Foreign Participation : 
- Foreign participation & "like-kind" exchanges are a viable method of achieving 

capabilities that are not critical path 

8. Commercial Contracting: 
- Commercial contracting approaches (e.g.; COTS like) are a viable method of 

procuring elements of the HLS 

9. Cost Estimating: 
- NAFCOM is not necessarily the best tool to perform cost estimates for a modern, 

commercially procured launch system 

- Alternate costing methods can be used that are based on known best commercial 
practices so long as they are correlated to an actual L V development and production 

• • 
(b) (4) 

6/3/2011 TM-22690 Rev (-) 

Additional HLS alternative Ground Ru les and Assumptions (GR&A) identified by the Orbita l study 

team included Domestic production of critical systems and components, as well as the ability to 

utilize foreign partnerships for hardware and capabilities not on the HLS critica l path. 

Commercial Contracting and procurement approaches and alternate Cost Estimating approaches 

and tools were also identified by the Orbital team. 
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3.2. Requirements Development Using MBSE 
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Integrated De1ion .l.natysls 

Link 8elwoo1 MBSE lllld lntegrnted Analysis Pto\lldcs Tracoability Sack to NASA :;oolt Ounng Trade Studies 

e,.,112011 • 

Requirements and objectives provided from NASA served as the basisforthe development of the 

driving requirements and preliminary functional decomposition to each of the HL.S elements. 

Functional/design assumptions serving as inputs into the integrated design analysis were iterated 

up on during the architecture dev elo pm ent to refine the requirements and pro duce design 

solutions that satisfied the NASA HLS Goals. Model-Based Systems Engineering (MBSE), the 

formalized application of m odelingto support system requirements, design, analysis, verification 

and validation activities, [ 1] was used at the b egi nn in gin the conceptual phase of the Heavy Lift 

study. The motivation for using an MBSE approach was to avoid the typical document-centric 

systems engineering approach and employ one th at was mo re model-centric, more usefu I, and 

more efficient. Requirements were entered directly into the modeling tool and functional flow 

block diagram models were generated in the too I and I inked to the requirements. Fin al I y 

representative architecture di a grams and system models were developed and also Ii nk ed back 

to the functional blocks which autom ati cal I y I inked the associated architecture el em ent s to the 

appropriate requirem ent(s), thereby integrating the requirements with the end-to-end system 
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design. Appendix F documents the results of using this methodology on the HLS study, identifies 

the pros and cons of employing MBSE vs. a more traditional systems engineering approach, and 

provides examples of the HLS system models developed in the tool. 

[ll INCOSE SE Vision, INCOSE-TP-2004-00402, Sep 07 
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3.3. HLS Architecture Development Approach 

HLS Integrated Systems Analysis Model 

• Orbital's Integrated Systems Analysis Model within Phoenix Integration ModelCenter 
Collaborative Design Environment 

TM-22899 

- Model provides data transfer between tools & system-level MOO, and enforces constraints 
• Preliminary Reliability and Cost Analyses Performed Outside Integrated Model 

- Refined cost and rel iability analyses included into integrated analysis during concept refinement 

5/12/201 1 7 

Following the requirements development, Orbital conducted a comprehensive architecture 

study that explored the entire Heavy Lift System trade space. The study relied primari ly on 

quantifiable results for decision making rather than qualitative judgments. In doing so, several 

top level objectives related to risk, reliability, affordabi lity, and performance were kept at the 

forefront during trade study execution. The system trade studies and ana lyses leveraged Orbital's 

Integrated Systems Analysis Process, which connects Orbital's existing suite of ana lysis tools 

inside an integrated design environment to apply multidisciplinary design optimization 

techniques necessary to fully explore the design space. Orbita l has extensive experience using 

these ana lysis tools on architecture study programs such as Space Transportation Architecture 

Studies (STAS), Space Launch Initiative (SLI), Orbital Space Plane (OSP), Concept Evaluation and 

Refinement (CE&R), Hybrid Launch Vehicle, and simi lar activities. Many of the government

developed tools (e.g., POST, NAFCOM) have a long and successfu l history and provide accurate 

results sufficient for rapid exploration of the design space. Where no government or commercial 

code exists, Orbita l has developed its own line of tools (e.g., Sizing, Mass Properties, and 

16 



Orbital Sciences Corporation 
Launch Systems Group 

TM-22899 

Reliability) that have been validated over years of successful use on other programs. To facilitate 

data transfer between tools, decrease iteration times, and provide system-level optimization 

functionality, Orbital integrated the individual analyses inside the Phoenix Integration 

Model Center® design environment. In addition to providing multidisciplinary design optimization 

capability, ModelCenter® enforces constraints on the candidate architectures and ensures the 

final candidates meet the criteria specified in the requirements. 
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Developed POD Core Concept to Determine Magnitude/Size of LV Design to Provide LEO Capability 
- Two-Stage LOX/RP launch vehide with larger fairing designated for Mars DRM (8.4-m diameter, 25-m cylindrical length) 

Optimized POD Core Vehicle Concept for Maximum LEO Payload with "Rubberized" Engines 
- Total thrust estirnate<l to satisfy T/W constraints based on L V gross liftoff and upper stack mass estimates 
- Added existing L V stages as Strap-On Boosters to improve LEO performance with minimum costs 

Developed LOX/LH2 Vehicle Concepts for Mass and Performance Comparison to POD-based LOX/RP 
Vehicles 

• Generated Preliminary Cost for POD Core and Upper Stage 

5/12/2011 

Pa~d Pfflormancefor 450 klbm Upper Stage (No Strap-On Boostitn) 

Payioad Performance for 5 Million lbm Core (No Strap-On Boostm) 
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LOX/RP Core+ LOX/RP S2 POD 

• Core GW: 5.009 klbm; S2 GW: 527 klbm 
• Core length: 173 ft 
• Core Diameter: 27.5 ft 
• Core f.-1.ES: Rubberized. 7656 kl>f 
• S2 MES: Rubberized, 531 klbf 
• Primary Structure: AJ-U 
• OOT&E : 1.85 (Normalized to NASA SLS) 
• TFU: 1.n {Normaiz.ed 10 NASA SLS) 

• LEO Paytoad: 67 mT 
• 2 x SRM {4-seg) LEO Paytoad: 83 mT 
• 4 x SRM {4-seg) LEO Payload: 120 mT 
• 3 xAttas V CCB LEO Payload: 70 mT 
• 3 x 1125 Jdbf R P Core LEO P3)40.ad: 97 mT 

LOX/LH2 Core+ LOX/LH2 S2 Concept 

• Core GW: 2. 114 klbm 
• Core Length: 191 fl 
• Core Diameter: 27.5 ft 
• Core MES: Rubberized. 3585 ktif 
• Core Primary Structure: Al4.i 
• S2 GW: 228 klbm 
• S2 MES: Rubberized, 180 kfbf 
• S2 Primary Structure: ~Li. Graplite--Ep 

• LEO Paybid: 79 mT 
• 2 x SRM (4-seg) LEO Payk,.ad: 93 mT 
• 3 x Dela IV CSC t EO Paybad: 111 mT 
• 3 x 1125 fdbf RP Core LEO Payload: 103 mT 

8 

At the start of the HLS study, a Point-of-Departure (POD) launch vehicle was developed to 

estimate the overall magnitude of size for a launch vehicle that provided an extremely large 

payload capability to LEO. The POD was a two-stage LOx/RP launch vehicle sized to maximize LEO 

payload capability without the use of strap-on boosters. Conceptua l " rubberized" engines were 

used w ith the POD as initial engine estimates based on the average thrust and specific impulse 

of similar LOx/RP engines. Total thrust of the POD was estimated to satisfy the thrust-to-weight 

ratio (T /W) constraint of 1.2 based on the launch stack gross mass at liftoff. Several trade studies 

were conducted for the POD vehicle to examine the sensitivity of the LEO payload performance 

with stage propellant mass fraction (PMF), stage propellant load, and stage gross mass. Results 

of the Stage 1 Core gross mass trade study indicate the maximum LEO performance peaks at a 

gross mass of approximately five million pounds-mass (lbm). Assuming a Stage 2 PMF of 0.85 and 

Stage 1 Core gross mass of five million lbm, the maximum LEO performance LEO performance 

peaks at a Stage 2 propellant load of approximately 175,000 lbm. Preliminary development 

(DDT&E) and first-unit production (TFU) costs were estimated for the POD launch vehicle. These 

costs were then normalized to the NASA SLS costs approximated from the NAFCOM based cost 
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model. A LOx/LH2-based launch vehicle was also developed for mass and performance 

comparison to the LOx/RP-based POD launch vehicles. 
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HLS Architecture Development & Assessment 
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Vario us vehicle co nfi gurati on s, techn ol ogie s, prop ell ants, and com pan ents were assessed and 

assembled into candidate architectures. Each of these architectures was sized tom eet the system 

requirements and then assessed against weighted system attributes to determine the mo st 

effective architectures. To ful I y exp I ore the design space, Orbital traded characteristics such as, 

but not limited to, the following: 

• 
• 
• 
• 

Liquid vs. So I id vs. No Strap-On Bo asters 
Number of Boo st Vehicle St ages 

Par al I el vs. Seri al Staging 
Reusability and Commonality 

• Domestic vs. Foreign Design Heritage 

Over 1,900 concepts were developed based on the available options within the trade space. 

Assessments based on risk, performance, reliability, and affordability (development cost, 

production cost) were con du ct ed to reduce the trade space tot he feasib I e concepts with regards 

to the defined requirements and study objectives. Ro bu st concepts were selected from the 

narrowed trade space for further refinement and gap assessment. 
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Cost Analysis Approach • • , • 

• Orbital's Cost Analysis based on 
Development and Production Costs 
for a Wide Range of Existing and To
be-Developed Elements 

• Two Key Aspects To Affordability 

- Affordability of developing the system 
now 

- Sustainability of the system 
throughout its lifecycle 

• Each Concept Under Consideration 
was Assessed with a Three-pronged 
Approach to Cost Estimation 

- Validation of historical cost data 

- Refinement of parametric cost tools 

- ROM estimates from technology 
vendors 

• Available Cost Data Provides Basis 
for Cost Comparison 

- Total Development Cost = DDT&E + 
TFU (Congressionally constrained) 

- Life Cycle Cost - seek to minimize 

5/12/2011 

... 
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• HLS Trade Concepts 

• NASASLS 

Development (DDT&E + TFU) Cost 

,,. - m.-•--¥=-: .. ·:.-.=:= ·--""'-• ·-°"'·-· ·--a..•--

Orbital's initia l cost analysis approach based on looking at concepts that developed a system 

within the cost constraints provided by the NASA funding avai lability, as well as minimizing 

lifecycle costs to ensure the long-term affordability of the system. Cost modeling is based on 

comparison to applicable historical systems, refinement of available and new cost modeling 

tools, and the incorporation of estimates from vendors. 
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Trade Space Reduced to 30+ Concepts ear. 
Based on Engineering Judgment and Stretched ET 

Qualitative Risk Assessment 518 S1'etd>edET 
602 Stretched ET 

Cl) 608 Stretched ET ... 
632 Stretched ET 

Eliminating : 0 
0 638 S1'etd>ed ET 

• EEL V-class cores stages as core options due N 752 Stretched ET 

to cost and performance J: 758 Stretched ET 

-I 842 Stretched ET 

• Un-stretched ET due to performance 848 S1'etd>ed ET 

>< 872 Stretched ET 

• Options without boosters due to the large 0 878 S1'etd>ed ET 

number of main engines required to achieve -I 32 Stretched ET 
38 Stretched ET 

sufficient T/W 122 S1'etd>ed ET 

• All but the lowest risk booster options 128 Stretched ET 
152 Stretd'led ET 
158 S1'etd>ed ET 

Higher Risk Option Added: ~ ear. ea,., &gne 

- RS-68 (w/ air-light capability) Upper Stage 530 Sb"e<chedET RD-180 

added to compare against J-2X 620 Sb"e<ched ET R0-180 
Cl) ... 650 Suetched ET R0-180 

Further trade space options under 
0 no Stre.tched ET RD-180 0 

consideration: 0. 860 Sb"e<ched ET R0-180 

- RS-25E w/ air-light capability 0:: 680 Suetched ET RD-180 

-AJ-26 & AJ-26X ~ 
50 Sb"e<ched ET RD-180 

140 Suetched ET RD-180 
- New 1 M lbf LOX/RP-1 Engine -I 

170 Sb"eld>edET RD-180 

- Core Stage Diameter 1490 Suetched ET RD-180 

- Upper Stage Diameter 1590 Suetched ET R0-180 

1610 Sb"e<ched ET RD-180 

5/17/2011 TM-22690 Rev (-) 
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RS-68 
RS-68 

Adas V CBC 

• 

• 

• 
Delta. IV CBC RS-68 

Atlas V CBC RS-68 

4S SRM AJ-26 

Delia rv cec AJ-26 

Atlas V CSC AJ-26 

43 

A preliminary assessment of a large design space was conducted. The configurations that were 

perceived as lowest risk were selected for further study. These systems are viewed as lower risk 

in this context because they make maximal use of existing structures and propu lsion system 

elements. A ll concepts that do not utilize boosters were eliminated due to the large number of 

main engines required for sufficient liftoff T/W. Other options that were eliminated from the 

design space include those uti lizing clusters of EELV cores on the core stages due to their relative 

cost , and the overall vehicle performance. The RS-68 w ith air-light capability was considered as 

an alternative to the J-2X for an upper stage engine. While this would have the advantage of 

engine commonality w ith the first stage for concepts utilizing that engine on the first stage, it has 

the disadvantage of additiona l development cost and risk, as well as an impact to upper stage 

perfo rmance due to the additional weight of that engine. 
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Risk Feasibi lity Assessment 
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Trtde Spao& Sorted by Risk 
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Based on the defined co nfi gu ration options, a ful I factorial matrix of design sol ut i ans was created. 

Each option in this matrix wast hen mapped through risk scores (high, medium, and low) for each 

element of the configuration (core engine, upper stage engine, booster, core structure). The risk 

scores of the entire trade space are shown. The lowest concepts in the trade space were then 

brought forward for further analysis and refinement. 
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• Feasibility Assessment Conducted for 30+ Low Risk Trade Concepts based on 
Performance, Development Cost, Life Cycle Cost, & Propulsion System Reliability 

--Feasibility Assessment 

Performance 

Development 
Cost 

Life Cycle Cost 

Reliability 

6/1/2011 

Payload Mass • Sized Core and Upper Stage based on payload mass, propulsion parameters, and thrust-to-
weight (T/W) 

- T/W at Liftoff: 1.2; T/W at Upper Stage Ignition: 0.8 
- Validated Number of Engines Required to Match Total Thrust at Liftoff Fits on Core 27 .5-ft 

Diameter 
• Performed POST 3DOF Trajectory Analysis to Estimate HLS Concept Payload Capability to LEO 

Orbit 
- LEO Orbit: 30 x 130 nmi@ 51.6°; OrM Insertion at 130 nmi 

• Iterated on Payload Mass Between Sizing and Trajectory Analysis to Obtain Converged HLS 
Solution 

DDT&E, TFU • Development Cost estimated for Trade Space Concepts using NAFCOM0B 
• DDT&E + TFU Costs based on subsystem weights, booster/engine actual costs, and 

programmatic wraps 
• Programmatic wraps assumptions: Fee = 12%; Program Support = 12%, Contingency = 30%; 

Vehicle Level Integration = 8% 

LCC, $/kg • Spreads development costs and manufacturing costs as appropriate 
• Includes facility modification costs 
• Includes fixed annual operations costs and variable (per flight) operations costs 

LOM, LOV, • Reliability Block Diagram (RBD) based analysis of propulsion system elements to estimate 
LOC propulsion system reliability 

• Examined sensitivity of single engine-out capability on propulsion system reliability 

TM-22690 Rev(·) 10 

After reducing the trade space to 30 architecture concepts based on the qualitative risk 

assessment, a feasibility assessment determined how each concept compared to the rest based 

on performance, development cost, life cycle cost, and propulsion system reliability. The results 

of the feasibility assessment also provided a basis for the relative comparison of the key decision 

attributes between the low risk concepts. 

24 



Orbital Sciences Corporation 
Launch Systems Group 

TM-22899 

HLS Concept Downselect Process: 
Preliminar~ TOPSIS Results 

• HLS concepts downselected based on technical, cost, and programmatic FOMs/attributes 
with weightings 

• Oownselect performed by ranking HLS concepts using Technique for Order Preference 
by Similarity to Ideal Solution (TOPSIS) 
- TOPSIS is Multi-Attribute Decision Making (MADM) technique that ranks concepts based on their distance 

to FOM-based ideal solution 

- Nonnalized FOM Values Generated By TOPSIS Provide Relative Comparison Of Each HLS Concept To 
The Positive/Negative Ideal Solution 

• Oownselect based on Technical and Cost FOMs since generated "Low Risk" Concepts 
most capable of meeting NASA programmatic/schedule constraints 

• Attribute weightings show sensitivity of concepts rankings under different scenarios 
(political, economic, technical) 

• Selected HLS robust concepts that remain top ranked regardless of weighting 
lOPSISfor NASA Current Funding Scenario 

o.oeo ,---~---~-~-----, 

Weighting Scenarios for NASA Funding 2012-2016 

: , .. : ,., 
Performance 20% 20% 20% 14% 

Reliability 25% 25% 25% 25% 

Development Cost 28% 32% 23% 23% 

Life Cycle Cost 27% 23% 32% 38% 

1 0.070 _________ ; _______ . : __ ,.. ____ 1---• -- : _______ _: _______ _ 

J :: __________ [ __________ j___ __ ~ -· tn. ~-, _[ __ .. ----
j 0.040 ----------i----------~---!------T--! -~----!-----------i----------
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0..01 0.02 0.03 0.04 o.os 0.06 

LEO Performance (Normalized) 
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The HLS concepts were assessed against sets of key decision attributes. For each set of weighted 

attributes, individual optimum HLS architecture concepts emerged and were selected for 

additional refinement . The concept downselect was performed by ranking the HLS concepts 

using the Technique for Order Preference by Similarity t o Ideal Solution (TOPSIS) method. TO PSIS 

is a Multi-Attribute Decision Making (MADM) technique that ranks concepts based on their 

distance to the attribute-based positive ideal solution. The closer the concept is to the positive 

ideal solution, the higher the ranking. TOPSIS was performed using all of the HLS low risk 

architecture concepts for each set of weighted attributes. Competing concepts were evaluated 

by ranking the key decision attributes with weighting factors to indicate the importance each 

attribute had on the overall system architecture. Alternative weighting scenarios were developed 

to examine the sensitivity of the architecture concepts to variations in the relative attribute 

importance based on NASA Funding. The weightings used for the architecture assessment were 

based on a survey of experts within Orbital in relevant technical, programmatic, and cost 

disciplines. The importance of reliability remained the same for each scenario in that, regard less 

of the funding scenario, the reliability required (Loss of Mission, Loss of Crew) was not 
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compromised. For the current and +10%/-5% funding scenarios, the obj ective was to maintain 

the necessary LEO performance (i.e. payload capability) with adjustments in funding. Funding 

was a primary concern in the scenario of funding -10%, and performance was slightly reduced to 

accommodate the increased focus on affordability. For the current and +10%/-5% funding 

scenarios, the combined percentage of the development and life cycle cost was 55% to show the 

importance of system costs. Current Funding development costs are slightly above life cycle cost. 

As funding was increased, the importance of development cost increased. As funding was 

reduced, the importance of life cycle cost to operate, produce, and maintain the system 

increased. For the current -10% scenario, the increased focus on affordabi lity increased the 

importance of life cycle costs (while sacrificing some of performance). Each qualitative NASA 

Funding weighting scenario tested the sensitivity of the architecture concepts to the variations 

in ranking. Evaluation of the architecture concepts with the different weightings scenarios 

resulted in alternate top-ranked candidate architectures as shown on the next page. 

HLS Concept Downselect Process: 
PreliminafY. TOP-SIS Res · 

• Top HLS LOX/RP And LOX/LH2 Core 
Concepts Remain Top Ranked 
Across Qualitative NASA Funding 
Weighting Scenarios 

--,1·•-~i••-·-· 
• Probabilistic Variation Of FOM 

Weightings In Work To Validate 
Qualitative Weighting Scenarios 

- Quantitative Approach Examines 
Sensitivity Of Attributes W eightings On 
Concept Rankings 

- Performed W ith Uniform Distributions 
Over Limited FOM Ranges 

2 

s 
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RS-68(x4) Cott 
J.2X(l<2)S2 

4 sea RSRM (x2) 

RD·180(x6}Cor• 
J•2X(x2)S2 

AUas V CCB {x2) 

RD-180(,c6}Coro 
J•2X(l<2)S2 

Delta IV CBC{x2) 

Rs-68(xS) Cott 
J•2X(x2)S2 

Delta IV C8C(x2) 

RS-68(x4) Cott 
J•2X("2) 52 

4 sea RSRM (x2) 

RD-180(x6}Coro 
J-2X(x2}S2 

Adas V CCB (x2) 

RD-18D(x6}Coro 
J-2X("2}52 

Delta IV CBC (x2} 

Rs-68(xS) Co<• 
l•2X(x2)S2 

Delta IV CBC (x2) 

RD-180Core 
RS.&52 

AdasVCCB(x2) 

Rs-68 (x4) Core RD-180('6} Cor• 
l•2X("2}52 l•2X(x2} 52 

4seaRSRM (x2) AUas V CCB (x2) 

RD•l80{x6} Coro Rs-68 (x4) Con! 
l -2X (x2}S2 J.2X("2)S2 

Atlas V CCB (x2) 4sogRSRM (x2) 

RD-180('6} Core Rs-68 ("4) Core 
l-2X("2}52 J.2X(x2) 52 

Delta IV CBC ("2} Atlas V CCB (x2) 

Rs-68 (xS) Core Rs-68 (XS) Con! 
l -2X(x2}52 l •2X("2}52 

Delta IV CBC (X2) O.lta IV CBC ("2) 

RD-lSOCore RD-180(,c6} Core 
Rs-6852 l •2X(x2} S2 

Atlas V CCB {x2) Oolta IV CBC (x2) 
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Several of the top-ranked LOx/RP and LOx/LH2 Core concepts remained top-ranked across the 

qualitative NASA Funding weighting scenarios: 

• The LOx/LH2 RS-68 based core+ four-segment RSRM ranked #1 for three of the four 

scenarios, and second in the -10% funding scenario. 

• The LOx/RP RD-180 based core+ RP LRBs ranked #2 for three of the four scenarios, and 

first in the -10% funding scenario. 

• The LOx/RP RD-180 based core+ LH2 LRBs ranked third for the current, +10%, and -5% 

funding scenarios. 

Orbital also used a quantitative approach to examine the sensitivity of the attribute weighting on 

the concept rankings. Attribute weightings were varied probabilistically via Monte Carlo 
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simulation to comprehensively explore the design space. The Monte Carlo ana lysis was 

performed with uniform distributions on the attribute weightings. Ranges of the attribute 

weightings were limited to explore more feasible weighting scenarios within the trade study 

design space. The LOx/LH2 RS-68 + four-segment RSRM ranked #1 for approximately 73% of the 

1,000 Monte Carlo runs. The LOx/RP RD-180 based core + RP LRBs ranked #1 for approximately 

9% and ranked #2 for approximately 74% of the 1,000 Monte Carlo runs. The LOx/LH2 RS-68 core 

+ RSRM concept and LOx/RP RD-180 core + RP LRB concept remained top ranked across both 

qualitative and quantitative attribute weighting assessments. The quantitative probabilistic 

variation of the attribute weightings va lidated the resu lts of the qualitative NASA Funding 

weighting scenarios approach. 

4. TECHNOLOGY ASSESSMENT 

5/11/2011 TM-22810 Revision01 

ar'tfl7a1 

Technology 
Assessment 

7 

Orbital performed a capability gap and readiness assessment for major HLS elements, and 

identified the functional performance characteristics required (i.e., thrust, lsp, mixture ratios, 

mass, throttle range, physical envelope, life-cycle costs, development schedules, and production 

rates) for: 
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• Main engine technologies, propulsion systems, and associated propulsion system 
elements 

• Upper stage engines technologies, propulsion systems, and associated propulsion system 
elements 

• In-space systems and elements including in-space engines, transfer stages, etc. 

• Heavy lift launch system elements and hardware including tanks and structures, 
propellant and pressurization systems, auxiliary propulsion systems, avionics and control 
systems, and payload shrouds/fairings. 

• Ground and launch operations and infrastructure 

Technology Assessment 

• Directly and Indirectly Surveyed Launch Vehicle Subsystem Vendors to Discover 
Innovative Technologies that are Applicable to HLS Concepts 

- Struggling but innovative U.S. industrial base has achieved many advances 

- Advances not necessarily reflected in cost models 

- Foreign industrial partners may also contribute through commercial partnerships or as mission participants 
(e.g.; for specific In-Space elements) 

• Objective is to Quantify the Impacts of the Innovative Technologies 

- Performance, Mass, Reliability, and/or Costs 

- Will apply directly to down-selected HLS concepts 

- Includes innovative ground operations approaches 

5/11/2011 TM-22810 Revision 01 8 

Orbital worked with vendors and conducted surveys to identify and determine both existing and 

emerging technologies that could have application to a Heavy Lift Launch System. Foreign 

participation was also considered for elements of the HLS that were not on the critical path. Each 

technology was evaluated for applicability to HLS in terms of form/fit/function, performance, 

reliability, mass, availability, sustainability, and costs. In addition to the hardware technologies 

considered, ground operations approaches were evaluated against the KDAs and GR&As. 
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HLLV Technology Assessment • • , • 

• Assessed Key Technologies with Four Readiness Levels producing Composite Score 
1) Technology Readiness Level 2) Cost Readiness Level 

3) Manufacturing Readiness Level 4) System Readiness Level 
Core Structures & Tankage Upper Stage Structures Fai ring/Shroud Diameter x Le ngth (m) 

1RL 8 1RL 8 1RL 9 

MRL 6 MRL 6 MRL 9 
Cylinders 6 

CRL 7 
Cylinders 6 

CRL 7 
5.4 X 25 8 

CRL 8 

SRL 3 SRL 3 SRL 8 

1RL 8 1RL 8 

M RL 6 
8.4m Domes 6 

CRL 7 

MRL 6 
8.4 m Domes 6 

CRL 7 

Fai ring/Shroud Diameter x Le ngth (m) 

1RL 3 

SRL 3 SRL 3 
8.4 X 25 

MRL 5 
4 

1RL 7 1RL 7 CRL 6 

MRL 6 
Tankage 5 

CRL 7 

MRL 6 
Tankage 5 

CRL ,. 7 

S RL 2 

SRL 3 SRL 3 

Core Propulsion Systems Upper Stage Propulsion Sy stems Large Scale S e paration S ystem s 

1RL 5 1RL 6 1RL 9 
RP MRL 3 
& 4 

RP MRL 3 
& 5 

M RL 9 
5.4 8 

LOX CRL 6 LOX CRL 6 CRL 9 

SRL 3 SRL 4 S RL 7 

Strap On Boosters Strap On Boosters Large Scale Separation Systems 

1RL 5 1RL 6 1RL 4 
RP MRL 3 
& 4 

LOX CRL 6 

5 Seg MRL 7 
HlPB 

SRM 
6 

CRL 6 

MRL 5 
8.4 4 

CRL 6 

SRL 3 SRL 6 S RL 2 

6/2/2011 TM-22690 Rev (1) 

Orbital also assessed the Technology Development necessary to meet identified preferred HLS 

configuration and propulsion systems requirements, and quantitatively evaluated their 

technology status using established metrics, specifically NASA Technology Readiness Level (TRL), 

Manufacturing Readiness Level (MRL), Cost Readiness Level (CRL), and System Readiness Level 

(SRL). Technology gaps were identified for core propulsion, strap on boosters, upper stage 

propulsion, fairing/shroud diameter, and large scale (i.e.; greater than 5.4 m diameter) 

separation systems. Although technologies were identified that could eventually meet the 

requirements of HLS, a gap existed that would need additional development in order to increase 

the technologies to acceptable readiness levels. 
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Once the necessary TRL, MRL, CRL, and SRL values were determined for each technology area, 

Orbital evaluated each technology to identify those with the highest readiness levels. This 

approach was implemented due to the driving KDAs of affordability and schedule because if a 

technology area had a low readiness level then cost and schedule would be driven potentially to 

the point where the HLS could not be affordably developed in a reasonable time frame. The 

chosen technologies for HLS are identified by the green boxes in the above chart, with yellow 

boxes identifying evolutionary technologies, and red indicating those technologies that could not 

meet one or more of the KDAs. 
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Core Structure/Tankage: 

• 5.4 m too small to 
accommodate Mars 
mission components 

• 7 m adequate but requires 
$$ mfg invest to convert 
existing 8.4 m mfg at 
Michoud 

• 8.4 m mfg capability in 
place (TRL/MRL = 8), 
most affordable 

• 10 m is highest risk and 
requires$$$ mfg 
investment, no clear need 
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Upper Stage Structure/Tankage: 

• 5.4 m too small to accommodate 
outyear mission components 

• 7 m adequate but requires $$ 
mfg invest to convert existing 8.4 
m mfg at Michaud 

• 8.4 m mfg capability in place 
(TRL/MRL = 8), most affordable, 

• 10 m is highest risk and requires 
$$$ mfg investment, no clear 
need 
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Large Scale Separation Systems: 

• 5.4 m lowest risk/cost, 
accommodates some early 
missions, too small for most 
evolved in-space elements 

• 7 m adequate but requires $$ 
mfg invest 

• 8.4 m mfg in place, most 
affordable, however low TRL= 4 
due to very large size will drive 
cost & schedule risk 

• 10 m highest risk and requires 
$$S mfg investment, no clear 
need 

3 

The chosen technologies for HLS structures and tankage are identified by the green boxes in the 

above chart, with yellow boxes identifying evolutionary technologies, and red indicating those 

technologies that could not meet the KDAs. As shown, the Core Structure and Tanks would be 

based on existing 8.4 m technologies formerly developed for and utilized on the Shuttle External 

Tank. Similarly, the HLS Upper Stage structures and tanks would also be based on 8.4 m 

technology. Materials were also considered, with 2219 Aluminum and 2195 Aluminum-Lithium 

technology being chosen . Although Al-Li technology is proven and well known it is also some 

20% more costly than 2219, so a cost-benefit trade might be in order to determine if the 10% 

performance increase is worth the additional material costs. State of the art for large scale 

separation systems are currently at 5.4 m. A technology development program would need to 

be implemented to evolve to the much larger {1.55x) 8.4 m separation systems required of the 

Mars exploration missions. 
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HLLV Technology Gap Assessment 
- P/L Accommodations 

Fairing Shroud: 

Initial 

5.4 m 

8.4m 

Evolved 

• 5.4 m lowest risk/cost, 
accommodates some early 
missions, too small for most 
evolved in-space elements 

• 7 m adequate but requires 
$$ mfg investment 

• 8.4 m mfg in place, most 
affordable, however low 
TRL = 4 due to very large 
size identified as 
Evolutionary technology 

• 10 m highest risk and 
requires $$$ mfg investment 

6/2/2011 

Initial 

5.4m 

8.4m 

Evolved 

Payload Attach Structure: 
• 5.4 m lowest risk/cost, 

accommodates some early 
missions, too small for most 
evolved in-space elements 

• 7 m too small for most evolved 
in-space elements and requires 
$$ mfg invest 

• 8.4 m mfg in place, however 
low TRL = 4 due to very large 
size, identified as Evolutionary 
technology 

• 1 O m highest risk and requires 
$$$ mfg invest 

TM-22899 

Initial 

5.4 m 

8.4 m 

Evolved 

Payload Separation Systems: 

• 5.4 m lowest risk/cost, 
accommodates some early 
missions, too small for most 
evolved in-space elements 

• 7 m adequate but requires $$ 
mfg invest 

• 8.4 m mfg in place, most 
affordable , however low 
TRL= 4 due to very large size , 
identified as Evolutionary 
technology 

• 10 m highest risk and requires 
$$$ mfg invest 

4 

The chosen technologies for HLS payload accommodations are identified by the green boxes in 

the above chart, with yellow boxes identifying evolutionary technologies, and red indicating 

those technologies that could not meet the KDAs. As shown, the state of the art for Payload 

Fairing/Shrouds is currently at 5.4 m. A technology development program would need to be 

implemented to evolve to the much larger (1.55x) 8.4 m Fairing/Shrouds required to 

accommodate the Mars exploration elements. Similarly, state-of-the-art for payload attach 

systems and large scale payload separation systems are currently at 5.4 m. A technology 

development program would need to be implemented to evolve to the much larger ( 1.55x) 8.4 

m payload attach and separation systems required of the Mars exploration missions. 
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The chosen propulsion technologies for the HLS Core Stage are identified by the green boxes in 

the above chart, with yellow boxes identifying evolutionary technologies, and red indicating 

those technologies that could not meet the KDAs. A Technology Gap was identified for a 

domestically produced Oxygen-Rich Staged Combustion (ORSC) LOx/RP engine with performance 

to sustain evolving HLS architecture. The assessment indicated that ORSC technology available 

in U.S. could be used to develop a domestic engine through AJ-26 production and up-rating. A 

technology development program would need to be implemented to evolve the engine to 1 Mlb 

class. The LOx/LH2, while high performing, fell out due to cost and complexity concerns that 

greatly exceeded the relatively low development and recurring costs and relative simplicity of 

the AJ-26E option. And although the RD-180 is a good candidate, these engines would need to 

be domestically produced to meet HLS quantity requirements, and it was not clear that domestic 

production of the Russian engine was a viable option in the time frame under consideration for 

HLS. 
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HLLV Technology Gap Assessment 
- Upper Stage ProRulsion 

RP/LOX 

J-2X 

LH2/LOX 

6/2/2011 

• AJ-100 is highest risk due to it's low TRL and is much 
lower performing than all but one other Upper Stage 
engine , RP is not best choice for upper stage 

• Merlin is lowest risk/cost , but is much lower 
performing than all but two other Upper Stage 
engines, RP is not best choice for Upper Stage 

• J-2X is engine of choice for NASA HLLV, logical /cost 
effective evolution for HLLV, highest in-space 
performance of all Upper Stage engines, significant 
investments by NASA via the Constellation program, 
already past PDR, efficiently meets needs of all end
users (NASA, USAF) 

• RS-25E is most expensive option and not the best 
choice for Upper Stage 

• RS-68E is 2nd expensive option and not the best 
choice for Upper Stage 

• MB-60 is has higher TRL than most other engines, 
however it is the lowest performing Upper Stage 
engine 

TM-22690 Rev (1) 

TM-22899 
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The chosen propulsion technologies for the HLS Upper Stage are identified by the green boxes in 

the above chart, with the red boxes indicating those technologies that could not meet the KDAs. 

The J-2X was determined to be the best engine for NASA HLS Upper Stage propulsion since it 

provides a logical /cost effective solution for HLLV, has the highest in-space performance of all 

Upper Stage engines considered, maximizes the significant investments and technical progress 

made by NASA via the Constellation program (past PDR), and can efficiently meet the needs of 

other end-users (NASA, USAF). 
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The chosen propulsion technology for the HLS Strap-On Boosters is identified by the green box in 

the above chart, with the red boxes indicating those technologies that fell short primarily due to 

high recurring costs. Orbital evaluated various options relative to supplemental propulsion for 

the Heavy Lift System and both solid and liquid strap on booster options were evaluated. While 

Solid boosters were evaluated as "stand alone" options, liquid booster propulsion was 

considered in the context of an integrated liquid booster solution which would be sized and 

optimized to the performance of the vehicle. Certain propulsion system options were eliminated 

due to lack of adequate performance in this application or lack of technical maturity. Viable 

propulsion solutions were then evaluated in the context of benefit, system complexity, and cost. 

The five segment solid boosters currently in development for NASA's Constellation program were 

studied extensively. While they provide an efficient supplemental propulsion solution, they were 

seen to be the most extensive of all possible options. Given investments already made in 

development, only the Alliant Segmented Motors were evaluated. Other options exist, 

specifically the Aerojet solid motor used on the Atlas V launch vehicle, but these are not sized 

effectively for a vehicle of the size required for HLS, and development costs for a suitable motor 
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were seen to be prohibitive. The Alliant Segmented motors recurring costs and sustaining costs 

associated with the segmented motor production, were assessed and found to be significantly 

higher than possible liquid strap-on booster options. 

Moreover, a sustaining 

manufacturing infrastructure would need to be funded that would support only production for 

the NASA heavy lift vehicle. At the low launch rates envisioned for HLS, the costs to sustain this 

infrastructure would seem prohibitive from a life cycle perspective. 

Although clearly modification would be required, liquid boosters tailored specifically to meet the 

requirements of the HLLV can be developed rapidly from existing liquid launch vehicles currently 

in production. Liquid propulsion solutions for these boosters were evaluated using the same 

aforementioned criteria. Lox/Hydrogen solutions were seen to be underperforming in this 

application. Of the LOx/ RP solutions evaluated, the AJ-26 derived solutions seem to be the most 

promising. Development and evolution of this engine system has been discussed elsewhere in 

this report. Using this engine system on the liquid boosters as well would further enhance the 

economic benefits resulting from production economies of scale. As a result, a liquid rocket 

booster based on the AJ-26E was determined to be the best option for NASA HLS booster 

propulsion since it provides a logical/cost effective solution in a reasonable time frame, that can 

also efficiently meet the needs of other end-users (NASA, USAF, and Commercial) thereby 

reducing life-cycle costs by amortizing the boosters over multiple programs and users. 
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, Technology Gap Assessment • • , • 

5/12/2011 

Fairing/Separation Systems - 8.4m dia. is 50% larger than current state-of-the-art, 
low TRL= 4 due to very large size , will drive cost & schedule risk 

Upper Stage Engines - the J-2X likely engine of choice for HLL V, logical /cost 
effective evolution for HLS, highest in-space performance of all Upper Stage 
engines, significant investments by NASA via the Constellation program, already past 
PDR, efficiently meets needs of all end-users (NASA, USAF) 

Core/Upper Stage Structures - Common structure/tankage manufacturing capability 
in place (TRUMRL = 8), 2219 most affordable w/least risk 

5 Segment SRBs - High performance. Significant investment via the Constellation 
program, high fixed sustaining/recurring costs, NASA HLS is only user 

Liquid RBs - More cost effective than SRBs. Launch Vehicle physics dictate Strap
On performance must be greater than Core propulsion system to provide significant 
supplemental performance, no current U.S. LV "Cores" are optimal, however either a 
4m or 5m Liquid Strap-On could be affordably developed using existing technology 

Booster Core Propulsion- Lox/ RP ORSC provides logical /cost effective evolution 
for HLS core and strap-on booster, common core/strap-on engine increases 
performance and reduces risk/costs, usable by multiple L Vs, efficiently meets needs 
of all end-users (NASA, USAF, Atlas, Taurus II), significant cost savings with common 
U.S. engine across multiple end-users and launch systems 

TM-22690 Rev(-) 18 

The above chart summarizes the primary conclusions derived from the technology assessment, 

and identifies areas where significant technology gaps exist. 

Specific gaps occur with 8.4 m diameter fairing/shroud structures and separation systems which 

wi ll require significant R&D and technology investment to attain . 

The other technology areas identified above are either near or at a level of readiness that can be 

directly applied to a Heavy Lift System. 
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4.1. Main Engine Technology Assessment 

Main Engine Technology Summary 

• No Currently Available Propulsion System is 
Ideal for HLS 
- Cost, Performance, and Availability "Challenged" 

• Near Term HLV Funding and Schedule 
Constrained 
- Insufficient to support "Start from Scratch" 

propulsion system development program with IOC of 
2016 

• Economies of Scale Can Positively Influence 
Recurring Costs 
- Use engines and propulsion systems with 

extensibility to other vehicles in the U.S. fleet 

• Existing Engines / Technologies Can be 
Leveraged 
- Existing engines can be Human Rated or Upgraded 

to meet HLS requirements 

5/11/2011 TM-22810 Revision 01 

NASA 
SLS 

Baseline 

LOX/H2 
w/ LRB 

LOX/RP 
w/ LRB 

TM-22899 

-+ 

9 

Orbital's review indicates that there is no currently avai lable main engine system technology that 

can ideally meet the cost and performance requirements for NASA's Heavy Lift Launch System. 

Certain propulsion systems are available internationally, but they face potentia l restrictions and 

wou ld not be available in quantities to sustain NASA's requirements. Insufficient time and 

funding are available to develop an ideal propulsion system from the ground up. To solve this 

problem, NASA should look to invest in systems that have broad extensibility to other systems 

and vehicles in the U.S. fleet as this can have a positive effect on the cost of these systems due 

to economies of sca le; the broader this applicability, the greater the potential cost advantages. 

Moreover, while no currently existing system meets all requirements, existing domestically 

available engine technology can be leveraged to incrementally develop larger, cost effective 

propulsion systems. 
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Core Engines Evaluated 

5c3no11 

SC-Reusable 
394 klbf 
455 sec 
6.990 lb 

168 X 9S in 
Human-Rated 

huttle Sur lus 14 

LOXJRP-1 

ORSC 
340 klbf 

331 sec 
3.104 lb 

·1sox 44 in 
Man Ratatie 

U.S. Concept/ 
Development 

LOXilHl 

H:man Rated 

RS-25E 

Russian Production 

LOXIRP-1 LOX,'LH2 
ORSC SC 
933kl Ill 143kltf 
311 sec 445sec 

11 ,675 lb :\.750 In 

167 X 117 in 126x 42in 

Man Ratable Not Human-Rated 

LE-7 / 7A 

LOXILH2 
LOXIRP-1 GG 

ORSC 304 klbf 

1.697 klbf 433 sec 
l38 sec 4,270 ID 

21 .500 lb 142X 85 In 

157 X 146 10 MotHum0.n-R<1.ted 

Man Ratao1e Vulcain 2 

RD-171M 

Engines derived from existing commercial 
production variants Can Meet Cost & 
Schedule targets 

(b) (4) 

10 

Currently avai lable and developing main engine systems were extensively studied for 

applicability to NASA's Heavy Lift System. As previously stated, it was found that no commercially 

ava ilable system meets all requirements. Two promising developing systems were identified 

however, the incremental development of which was deemed to not be cost proh ibitive. The RS-

68B, a human-rated variant of the RS-68 engine currently employed on the Delta IV launch 

system, affords the best solution for a Lox/Hydrogen core booster solution. 
(b) (4) 

(b) (4) 
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Domestic vs. Foreign Engine Gap 

• Oxygen-Rich Staged Combustion (ORSC) 

LOX/RP engines Offer Required High 
Performance in Reasonable Size 

• Downselected LOX/RP HLS Concepts Could 
Incorporate RD-180 or AJ-26X Engines to 

Achieve Necessary LEO Performance 

- RD-180 is Highest Performing ORSC 

engine currently in use by a U.S. 
company but only available to ULA/Atlas 

- However, Domestically Produced Engine 
will be Required to meet NASA & U.S. 
Government demands 

340 
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1960 t 970 2010 
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Modem Technology 
OX•RICh~CI 
Combuslicn Cycle 

• u.s. 
• R1.,ssl1. 
• CI-Jn1 

• Technology Gap: Domestically Produced ORSC LOX/RP Engine with Performance to Sustain 
Evolving HLS Architecture 

- Domestic LOX/RP engine supports HLS core and Liquid Rocket Booster (LRB) 

- Multip le Government and Commercial users (NASA, USAF, Atlas V, Taurus II) 

• Solution: Use ORSC Technology Available in U.S. to Develop Domestic Engine 

- Two possible paths - Domestic RD-180 co-production or AJ-26 production and up-rating 

AJ-26 Up-Rating Path Clearly Defined to Orbital 

5111/2011 TM-22810 Revision01 11 

After surveying the U.S. launch vehicle fleet and avai lable and potential engine solutions, Orbita l 

believes that LOx/RP main engine systems afford the most cost effective solution to meet NASA's 

heavy lift launch vehicle requirements. As stated, some further development of these systems 

will be required to meet all requirements. If investment is to be made, it should be made in the 

highest performing LOx/RP technology - ORSC. As shown in the graph above, Oxygen-Rich 

Staged Combustion engines have significant performance advantages versus more simplified Gas 

Generator cycle engines. While a LOx/RP ORSC engine which meets all of NASA's requirements is 

not currently avai lable in the US, the technology is. This technology can be leveraged to develop 

a domestically produced high performing LOx/RP engine that meets NASA's requirements in a 

cost effective manner. 
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High Performing LOX/ RP Engine 

• New ORSC LOX/RP 
Engine Could be 
Developed using 
Existing Engines as 
Test-beds 

• Could Facilitate Rapid 
Development of U.S. 
ORSC LOX/RP 
Technology 

• Would have Broad 
Application to U.S. 
Launch Vehicle Fleet 

5111/2011 

AJ-26 

RD-180 

Optional, Subsequent 
Higher thrust Engine 

development 
TM-22810 Revision 01 

TM-22899 

Taurus II 

• 

HLLV 
Other 

12 

The path to develop a domestically produced, high performing LOx/ RP Oxygen Rich Stage 

Combustion (ORSC) engine is relatively straightforward. The basic technology behind LOx/RP 

ORSC engines is fairly well understood, however such engines have never been domestically 

produced. Further testing and characterization of the complexities associated with high pressure 

oxygen rich staged combustion is requ ired. Two sources of this technology are available and in 

use in the US today - the Aerojet AJ-26 engine and the RD-180 engine. Using either of these 

engines, the testing and modeling required to fully characterize the combustion cycles of these 

engines can be conducted. This testing can be expeditiously performed in a cost effective 

manner. Insights gained for testing and ana lysis can be rapidly incorporated into a domestically 

produced LOx/RP ORSC engine. Once such an engine is avai lable in the US, this engine would 

have broad applicability to multiple vehicles in the US fleet, including NASA's Heavy Lift Launch 

Vehicle, current commercial launch vehicles, and possibly even advanced reusable vehicles 

currently being proposed by the USAF and others. Lastly, once such an engine is in production in 

the US, higher performance variants can be developed and produced to further enhance the 

performance of NASA's HLLV. 
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Orbital has worked in conjunction with Aerojet and NASA Marshall Space Flight Center 

representatives to outline a systematic approach to testing, modeling and ana lysis which would 

translate directly to upgrades and domestic production of the This low-risk, 

phased approached is outlined above and cou ld be executed inside of four years which would 

support HLLV ILC in the 2016 timeframe. Specific details of the AJ-26 enhancement program have 

been discussed with NASA are being coordinated with MSFC representatives. 
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Orbital performed an initial assessment of performance associated with various possible HLLV 

configurations incorporating the upgraded AJ-26 engine. These initial assessments indicated that 

such an engine could work well, in a clustered configuration for the main engine system and/ or 

in tandem for use on a liquid strap-on booster, for vehicles in this performance class. 
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4.2. Upper Stage Engine Technology Assessment 

Upper Stage Engines Evaluat ed 

U.S. Production U.S. Concept/ 
Development 

Russian Production Other Foreign 

LOX/LH2 

Expander 
14.6 klbf 

36.5 sec 
316 lb 

68 X 39 in 

LOX/LH2 
GG 

294 klbf 
448 sec 
5,450 lb 

LOX/RP-1 Production 
ORSC 

66 
359 

1.190 
62 X 94.5 

LOX/LH2 

GG 
14.1 Klbf 

444 sec 

364 lb ._ ____ RL10A 185x 120 in 
Human. Rated RD-0124 79 X 39 in 

6/3/2011 

J-2X 
LOX/LH2 

GG 
663 klbf 
365 sec LOX/LH2 

14.560 lb Expander 
250x 96 in 60 klbf 

Human Ratable 470 sec 

RS-68 B 1,100 lb 

130x65in 

LOXIRP-1 
RL-60/MB-XX 

GG 
125 klbf 
275 sec 
1,200 lb 

100x 49 in 

LOX/LH2 
Exoander 
24.75 klbf 

Hu.man Ratable 464 sec 

Merlin 1C 
6101b 

163x 87 in 

RL10B 

LOX/RP-1 
ORSC 

18.7 klbf 
349 sec 
6601b 

157x 46 in 
Human-Rated (?) 

11D-58M 

HM7B 

LOX/LH2 

H2 Expander 

27 klbf 

452 sec 
547 lb 

106 X 35 in 

LE-5A / 58 

LOX/LH2 
Exoander 

40.5 

465 
1 212 

165 X 87 

Vinci 
(Development} 

While Commonality between Core and Upper Stage could also help Upper Stage 
Propulsion Costs, Optimized Upper Stage Requirements are Best Met w ith J-2X 

TM-22810 Revision 01 
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)> 
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Orbital performed a similar assessment of currently available and developing upper stage engine 

systems for applicability to NASA's Heavy Lift System. As with the main engine systems, it was 

found that no commercially available system meets all requirements. Promising developing 

systems were identified however, the incremental development of which was deemed to not be 

cost prohibitive. The J-2X, a new human-rated LOx/Hydrogen engine, affords the best solution 

for a LOx/Hydrogen upper stage solution. While the concept of commonality and broad 

applicability of engine systems could also extend to the upper stage, it was concluded that 

optimized upper stage requirements as dictated by NASA as well as by Orbital's preferred Heavy 

Lift Launch Vehicle configurations, could best be met with the J-2X engine. 
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4.3. Propulsion Technology Summary 

Propulsion Summary Recommendations 

5/11/2011 

Upper Stage Engines 
Two J2-X Engines 

J-2X is Engine of Choice for HLL V 
Logical / Cost Effective Evolution of HLS 

Highest performance of all Upper Stage Engines 
Significant investments by NASA via Constellation program 

Already Past PDR 
Efficiently Meets Needs of All End-Users (NASA, USAF) 

Boosters 
Two LOX/RP Liquid Boosters 

LOX/RP Liquid Boosters are More Cost Effective than SRBs. 
No Existing U.S. LV "Cores" are Optimal, 
4m Liquid Strap-On could be Affordably 

Derived from Existing Taurus II 
Liquid Strap-On could be Affordably Procured Commercially 

Main Engines 
Four Human Rated RS-68B for LOX/H2 

Nine Uprated AJ-26X for LOX/RP x 9 

TM-22810 Revision01 

TM-22899 
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Orbital's extensive survey of engine systems in support of an optimal, affordable, reliable Heavy 

Lift Launch Vehicle resulted in the following conclusions: 

• Main Engine Systems: 
o Four Human Rated RS-68 Engines for a Lox/Hydrogen Vehicle 
o Nine Uprated AJ-26X Engines for a LOx/RP based vehicle 

• Boosters: 

o Two LOx/RP Liquid Boosters incorporating two AJ-26X engines 

• Upper Stage: 
o Two J2-X Upper Stage Engines 

4.4. Other Technologies Assessed 
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Technologies 

Assessed 
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•ew• 
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In addition to the detai led propulsion technology assessment, Orbital also assessed the readiness 

of other technologies necessary to meet identified preferred HLS configuration and 

requirements, and quantitatively evaluated their technology status using established metrics. 
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Booster Core and LRB Sizing and Manufacturing 

• Structural, Performance and Manufacturing Efficiencies Dictate Large, 

Single Core Configuration for HLLV 

• U.S. has Two Large Scale Booster Manufacturing/Integration Facilities 

- ULA Decatur: Sized for Sm (& 4M) diameter structures 

- Michaud Assembly Facility (MAF): Sized for 8.4m and larger structures 

Both have excess capacity 

- Both have made investments in tooling and welding equipment 

• However, MAF has a Low Cost Center Commercial Option and also has 
Capabi lity to Manufacture 4 m to 8.4 m diameter Structures 

• While the 2195 Technology Gap is largely closed, an Affordability and 
Availability Gap Still Exists that Favors 2219 to Reduce Costs - However: 

- LOX/RP Booster Tankage (Concept 2A) is only ~157 ft long (including the 
upper stage), which is approximately the same size as the Shuttle ET 
(~154 ft long), so availability of 2195 should not be an issue 

- Although using 2219 would save ~20% material costs on core 
structures/tankage, this is only a Minor Savings (~$40M NRe and $1SM 
Recurring for entire HLV), and there would be a performance penalty 

5/11/2011 

CONCLUSIONS 
Large 8.4M Diameter HLLV Core and 4-SM Diameter LRB Cores will be Most Cost Effectively 

Manufactured and Integrated at MAF Using a Commercial Procurement Approach 

TM-22810 Rev1sion01 17 

Orbital believes that structural, performance and manufacturing efficiencies dictate that a large, 

single core HLLV vehicle configuration is optimal. Given that existing infrastructure, advanced 

manufacturing equipment, and tooling that was developed for the shuttle external tank program 

is ava ilable, sized to 8.4M (27.6' ) d iameter, this can be cost effectively uti lized to develop and 

manufacture the large structural components of t he HLLV. While two large-scale manufacturing 

faci lities of th is nature exist in the U.S. - ULA's Decatur factory and NASA's Marshall Michoud 

Assembly Facility (MAF), the MAF is more optimal for HLLV manufacture. Tool ing and advanced 

friction stir welding equipment is in place at MAF to manufacture both large core and liquid strap

on booster structures. Manufacturing t hese pressurized structures from 2195 Aluminum Lithium 

wou ld add cost, but it is believed that the mass efficiency gained justifies the added costs. 

Moreover, tankage for Orbital's LOx/RP configuration is only slightly larger than that for the 

Shuttle External Tank, mitigating concerns regard ing material ava ilabil ity. 
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At the request of NASA, Orbital verified that the MAF manufacturing costs as quoted by Vivace 

and incorporated into our study are correct and reflective of the anticipated costs of using the 

Michaud Manufacturing Facility (MAF). Orbital conferred with representatives of Vivace and 

MAF who confirmed that the fixed costs of operating the facility are built into the rates 

incorporated into the manufacturing quotes that were generated. These rates are what Orbital 

(or any other commercial contractor) would pay for the facility and are based on how much space 

would be occupied, what services would be used, etc. Those assumptions were built into the 

pricing that was part of the study. 

Like any other occupancy arrangement, the commercial contractor would pay only a portion of 

facility costs that is in relation to how much of the building's footprint they would be using. There 

is a complexity with MAF in that there are different prices for different types of areas, but that's 

taken into account as well. Orbital would employ further strategies to reduce costs by wisely 

using the resources - for example spending as little time in the VAB (some of the most expensive 

space there) as possible during proof tests and application of insulation, and then moving back 

into the "low" bay portion of the facility for most manufacturing. 

As far as work force availability, Orbital has been assured that many of the technicians are still 

available and, while the fortunate ones have moved on to other employment, most would be 

anxious to return to work on such an ambitious program. 

Detailed costs will be specifically provided in a supplementary proprietary package that will be 

submitted separately from this report. 
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Examples of Technology Development 

5/11/2011 
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Weld Trim Tool 

8" Bellows 
Assembly 

22' Dia Toroidal RP Tank 
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~~ 
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LOX Tank with 

Retention Screen 
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Assembly of 22' Dia 
Composite/Metallic 

Launch Vehicle Segment 

Analysis of Toroidal 
Tank "Tunnel" 

80 

Large, commercial structures have been successfully fabricated at the MAF. In attrition, 

manufacturing of other critical structures and components has been demonstrated, including 

large composite structures, tanks of complex shapes, and internal anti-vortex baffle systems. 
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Orbital engaged engineering partners to develop detailed stage structures designs sufficient to 

provide high-fidelity manufacturing cost estimates. CAD models of both pressurized and 

unpressurized structures were developed and optimized for both Lox/Hydrogen and LOx/RP 

configurations. This provided detailed information on overall tankage volume, length and mass 

facilitating detailed cost estimated. Stage structural designs were further optimized to evaluate 

common bulkhead configurations. Even though they are more complex, these structures yield 

significant length and mass reductions. 

Orbital further engaged large structures manufacturer Spincraft to provide cost estimates for 

large, spun-formed domes. Spincraft currently provides these structures to multiple launch 

vehicles, both domestically and internationally. 
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Optimized structural elements and stages of the proposed HLLV were assessed in detail. 

Structures were sized based upon the propellant loading requirements dictated by the vehicle 

performance calculations. These structures we analyzed by our contributing partner Vivace, who 

made manufacturing assessments using the structural element sizes dictated. As indicated, they 

assessed both separate and common bulkhead tankage configurations and provided detailed 

cost quotes for all configurations. Shown here are the optimized, common bulkhead 

configurations. While higher cost, the mass and overall vehicle height savings realized warrant 

the additional development costs. 

Orbital and our partners also evaluated several tank and structural configurations for the HLLV 

core, upper stage, and liquid rocket boosters. Two fuel systems were also considered (LOx/RP-1 

and LOx/LH2) as well as 2 Stage 1 configurations, and 4 Stage 2 configurations. 

For the final recommended LOx/RP systems, another option was added to show the benefits of 

a common bulkhead design approach (shown above). This is a low risk approach for LOx/RP cores 

and can save significant manufacturing time and money, while simultaneously improving 

performance and mass fractions of the HLLV and LRBs. It's a common misconception that 
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separate tanks carry lower risk with the complexity of Centaur tanks being cited, but for LOx/RP 

a double (vacuum jacketed) bulkhead is not required between the propellants since foam 

insulation can be submerged in the RP (this has been done and qualified for single use so far). 

Common Assumptions used for Tank and Structures: 

• All tanks and other structures manufactured at the MAF utilizing their current commercial 

rate structure 

• MAF has capacity and unique capabilities that will significantly reduce cost and risk 

• All welds use Friction Stir Welding (FSW) technology 

o Michaud is only place where this technology is in regular, large scale use and not just 

in development mode 

• Tank estimates include ROM for internal equipment (slosh baffles, anti-vortex, etc.) 

• Tank estimates include manufacture, proof, clean, installation of internal components, and 

application of external insulation 

• Thrust structure estimate includes fabrication of components and subassembly of the 

thrust structure 

• Interstage/aft skirt/unpressurized structures estimated based on a typical 

skin/stringer/frame semi-monocoque aluminum construction 

• All tank domes were assumed to be 0.707 domes except when noted as spherical 

• Integration of tanks, unpressurized structure, and thrust structure included separately 

(including other elements as defined with the estimate) 

• All tanks are constructed from 2195 

MAJOR COST DRIVERS TO TANKS and STRUCTURES: 

Of the factors driving the costs of the tanks and structures for a Heavy Lift Launch Vehicle, the 

following were found to be the most significant: 

• Stage 1 

o Large diameter drives multi-piece domes meaning more welds and inspections 

o Thrust structure is very complex with 9 engines (has significant impact on following 

integration costs as well) 

• Stage 2 

o Vacuum jacketed double common bulkhead to adequately insulate LH2 and LOx 

o Integral thrust cone and aft LOx bulkhead, including thermal design of the thrust structure 

(however, this Centaur-like configuration would make the most sense from a 

performance standpoint because it would be lighter than other options) 

o Large diameter drives multi-piece domes 

o Large amount of insulation per tank surface area 

• TII Core Booster 

o Redesign of structure to accommodate use as a strap on booster 

o New unpressurized structure, including forward aerodynamic fairing 
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In addition to the tank and structural manufacturing, Orbital engaged engineering partners to 

develop high-fidelity cost estimates for integrating the HLLV core and upper stage, and the LRBs 

at Michaud, and ship the fully tested and integrated assemblies to KSC for final stacking prior to 

roll-out to the pad. The following assumptions were used to develop the integration approach 

and cost estimates: 

• Final Assembly and Integration estimates based on a similar program being conducted at 

the Michaud Assembly Facility 

• In addition to the elements estimated on the preceding charts, stage feed systems, 

engines, avionics, pressurization, and transport elements (small fluid lines and wiring) are 

integrated into the stages 

• Stage level testing is included, but any testing of individual elements is not (tank testing 

already included in separate tank estimates) 

• Assembly of unpressurized structure (interstages, intertanks, etc.) are included in 

integration 

o These structures are usually not assembled until final vehicle assembly to ensure proper 

aligiment and fit to tankage 

• Commercial practices, private company, common facility 
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Payload Fairing Evolution 

Titan IV lsogrid PLF 
16.6' (SM) dia x 86' long 

Tri-sector 
Thrusting Separation Joint 

(Boeing) 

Atlas V Composite PLF 
17.7' (5.4M) dia x 87' long 

Bi-sector 
Thrusting Separation Joint 

(RUAG Space) 

5/1112011 

' 
2020-2030 

27.6' (8.4 m) dia 
x 86' (26.2 m) long 

Tri-sector 
Thrusting 
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Joint 
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(Joint NASA/ ESA 

Development?) 

ORM In-Space Element Sizing Needs to be 
Assessed Relative to Maximum Volume Required 

Appears that Larger Elements are Not Required 
2016 -2020 until 2020 or Beyond 
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Orbital also worked to assess technology required to produce very large diameter payload 

fairings. Current technology available domestically and internationally is limited to 5.4m in 

diameter. Producing payload fairings of significantly larger diameters, specifically on the order 

of 8.4M, is significantly more complex than their simple structures might indicate. Fairing 

structural loads and separation dynamics would dictate that an 8.4M fairing development 

program wou ld require substantial significant investment. In assessing the DRMs in the near 

term years, Orbital could not identify specific payloads that would require an 8.4M diameter. 

Further, in assessing out-year DRMs, specifically Mars DRMs that would require assembly of large 

structures, and for which such a large payload fairing would be optimal, Orbita l believes that 

these might be better optimized and reduced to be compatible with fairing volumes of more 

readily achievable size. For this reason, Orbita l advocates the use of commercially avai lable 

payload fairings of 17.7' in diameter and up to 87' in length in the near term to meet the ILC 

objective of 2016. Presuming available funding, a larger scale fairing development program could 

be executed to bring this capability on line in the 2020 time frame. Moreover, it is possible that 

such a development program could be a cooperative effort with assistance in design, 

manufacturing and cost from foreign organizations such as ESA. 

56 



Orbital Sciences Corporation 
Launch Systems Group 

Avionics & Software 
• Extend the Constellation and Taurus II Supply Chains 

to Include Avionics for HLS Core and LRB 

- Over 80% of Constellation avionics component designs 
have applicability to HLS 

- Almost 100% of Taurus II core avionics component designs 
have applicability to a Liquid Rocket Booster (LRB) 

Leverage Existing Constellation and Taurus II Avionics 

Infrastructure 

Constellation SDF/Sll/SITF laboratory infrastructure and on
going BOU integration effort in SITF for HLS 

- Taurus II Avionics for LRBs 

Capitalize on Constellation and Taurus II Flight 

Software Development 

- Constellation flight software requirements specifications at 
PDR maturity 

- Taurus II flight software will be flight p roven for at least 5 
years and 8 launches by 2016 

• Extend and Leverage Constellation and Taurus II EGSE 

- Constellation EGSE can incorporate HLS Core Stage 
functionality 

- Existing and proven Taurus II EGSE and GSE for LRB 

• Adapt Taurus II Architecture to Provide Human-Rated 

Avionics and Software Solution for HLS LRBs 

Taurus II Avionics Cylinder 

~~·.· 
~~- ~-··- ~Br.ml . 

CONSTELLATION 

2nd Gen Orbital 

TAURUS II 

Extending and Leveraging the Constellation and Taurus II Avionics & Software presents a 
Technically Sound, Affordable solution for HLS and Supports Early Launch Capability 

TM-22899 
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Orbital conducted an avionics technology assessment and concluded that the most logical 

approach would be to leverage existing avionics development performed for the Ares I and Von 

the Constellation program. Since the LRB is based on a modified Taurus II launch vehicle, virtually 

all of the avionics and much of the control software could be adapted from existing designs or 

used in its current form. 

Similarly, Electrica l Ground Support Equipment (EGSE) developed for the Constellation and 

Taurus II programs could be adapted for use on the HLS program. 

This approach will provide an affordable solution for the HLS program that conforms to NASA's 

preferred initial launch capabi lity of 2016. 
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Other Vehicle Subsystems 

• Majority of HLS Required Sub-systems are Commercially Available 
with Technology at a High Technology Readiness Level 

• Use HLS Sub-Systems Common with Other LVs in the U.S. Fleet 
(To the Maximum Extent Possible) 

- Valves 

- TVC Actuators 

- Controllers 

- Sensors 

- Separation Systems 

- Thermal Protection 

- Ground Support Sub-systems 

• Fueling Systems 

• Hydraulic System s 

• LV Transportation 

• GSE 

Uniqueness Drives Costs 
Commonality and Re-Use Leads to Economies of Scale 
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In assessing the other subsystems required to support the Heavy Lift Launch Vehicle, Orbital has 

largely found that such subsystems are either readi ly available, or could be readily produced by 

suppliers who are currently manufacturing similar systems with high reliability for other vehicles 

in the U.S. fleet and internationally_ This includes such subsystems as va lves, TVC actuators, 

controllers, sensors, separation systems and thermal protection. In addition, requisite elements 

of the ground support system infrastructure could also be readily sourced from available 

(primarily domestic) suppliers. 

Orbital strongly advocates sourcing such components from existing suppliers manufacturing 

similar, if not identica l, components for other launch vehicles to realize economies of scale and 

minimize both development and recurring costs_ 

58 



Orbital Sciences Corporation 
Launch Systems Group 

TM-22899 

4.5. Ground Operations and Infrastructure Assessment 

Ground Operations and Infrastructure 

• Analyzed Ground Operations Required for HLS: 

5/11/2011 

Documented Baseline approach based on typical NASA launch operations 
and facilities (e.g.; Saturn, Shuttle, Constellation) 

Use of existing NASA KSC facilities and GSE maximized to extent that it 
makes sense, is affordable, and sustainable: 

• Baseline approach has Highest recurring and fixed costs of all approaches 
considered 

• Requires maximum number of KSC personnel ("standing army") that is 
significantly underutilized for launch rate of ~2 HLLVs per year 

• Requires maintaining facilities and infrastructure (e.g.; VAB, SSPF, O&C, SLC-39A, 
etc.) that are only used intermittently 

Examined alternative methods to achieve integration, processing, roll-out to 
pad, and launch ops 

Evaluated existing facilities and infrastructure, and developed cost estimates 
for required improvements to accommodate each of the down selected 
Heavy Lift architecture concepts 

TM-22810 Revi~on 01 
21 

The ground Concept of Operations (CONOPS) for the Heavy Lift System was examined in some 

detail by the Orbital team. The assumption was that existing facilities, infrastructure, and Ground 

Support Equipment (GSE) at KSC and Stennis be utilized on the HLS program to the greatest 

extent - with the overriding ground rules of affordability and sustainability. 

Three approaches were assessed: 

• Baseline: this approach essentially followed the Constellation ground CONOPS of 

performing all integration, checkout, and launch operations at KSC using existing facilities. 

• Commercialized: this approach followed most of the Constellation ground CONOPS, but 

considered commercial facilities -such as Astrotech -to perform some of the integration. 

• Commercial: this approach created a ground CONOPS based on commercial best 

practices and campaign mode launch operations. 

59 



Orbital Sciences Corporation 
Launch Systems Group 

KSC Baseline Ground Operations Approach 

with Core •iilili 
5/11/2011 
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The Baseline ground CONOPS is based on the Constellation Approach: 

• PROS: 

• Least aggressive of the approaches considered 

• Well known/understood processes, faci lities, etc. 

• Employs maximum number of KSC personnel 

• CONS: 

• LV Allgnmont ID Launch Pad 

• AutDn-.ted 1/ertflcallon of 
ConnoctlonolD LV 

• LVfu.Uftl 

• Pr .. launch Ops 
SllartOurolia, 

-Olis 

INM,iiM 
I Other I 

• Likely the highest recurring Life Cycle Costs of all approaches considered 

TM-22899 
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• Employs maximum number of KSC personnel ("standing army") that is not needed for 

N2 launches/year 

• SLS Program must shoulder costs for utilizing/maintaining facilities (e.g.; VAB, SSPF, 

O&C, SLC-39A, etc.) that are used intermittently 
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This CONOPS was designed to "Commercialize" Constellation Approach: 

• PROS: 

- Moderate approach 

TM-22899 

- Utilizes commercial facilities where it makes sense (e.g.; Astrotech for Stage 2 processing 

and ARF for commercial LRB processing) 

- Utilizes KSC processes, facilities, etc. in a "campaign style" launch approach 

- Employs "clean pad" approach to reduce recurring launch ops costs (reduces overall Life 

Cycle Costs) 

- Reduces number of KSC personnel 

• CONS: 
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4.6. Technology Summary 

Recommended HLLV - RP Core/RP LRB 

5/11/2011 

/ 

Fairing/Separation Systems - 27ft (8.4m) dia. is 50% larger than current state
of-the-art, low TRL= 4 due to very large size, will drive cost & schedule risk 
emphasizing need for additional investments to increase TRL and ensure 
availabil ity in 2016. 

Upper Stage Engines - J-2X is engine of choice for HLLV, logical /cost effective 
evolution for HLS, highest in-space performance of all Upper Stage engines, 
significant investments by NASA via the Constellation program, already past 
PDR, efficiently meets needs of all end-users (NASA, USAF) 

Core/Upper Stage Structures - Common 27 ft (8.4m) structure/tankage 
manufacturing capability in place (TRU MRL = 8), common bulkhead design 
reduces mass and cost. is most affordable w/least risk, and provides additional 
performance 

----::::;,,- Liquid RBs - More cost effective than SRBs. No existing U.S. LV "Cores" are 
optimal, however a 4m Liquid Strap-On could be affordably derived from existing 
Taurus II, and could be procured commercially 

Booster & Core Propulsion- LOX/ RP ORSC provides logical /cost effective 
evolution for HLS core and strap-on booster, common core/strap-on engine 
increases performance and reduces risk/costs, usable by multiple LVs, efficiently 
meets needs of all end-users (NASA, USAF, Atlas, Taurus II), significant cost 
savings with common U.S. engine across multiple end-users and launch systems 

TM-22810 Revisaoo 01 
77 

Orbital's recommended Heavy Lift Launch Vehicle is based on an 8.4 m LOx/RP core stage and 

3.9 m LOx/RP strap on Liquid Rocket Boosters. Other technologies for the HLS that Orbital 

recommends include initially utilizing essentially off the shelf 5.4 m diameter fairings/shrouds 

and separation systems, and then establishing a technology development program that evolves 

the fairings/shrouds and separation systems to 8.4 m. Upper stage engines are based on the new 

J-2X currently under development by NASA, as d iscussed previously. 
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Alternate HLLV- LH2 Core/RP LRB 

5/17/2011 

Fairing/Separation Systems - 27ft (8.4m) dia. is 50% larger than current state
of-the-art, low TRL= 4 due to very large size, will drive cost & schedule risk 
emphasizing need for additional investments to increase TRL and ensure 
availability in 2016. 

Upper Stage Engines - J-2X is engine of choice for HLLV, logical /cost 
effective evolution for HLS, highest in-space performance of all Upper Stage 
engines, significant investments by NASA via the Constellation program, 
already past PDR, efficiently meets needs of all end-users (NASA, USAF) 

/ 

Core/Upper Stage Structures - Common 27 ft (8.4m) structure/tankage 
manufacturing capability in place (TRUMRL = 8), 2219 most affordable w/least 
risk. 

Liquid RBs - More cost effective than SRBs. No existing U.S. LV "Cores" are 
optimal, however a 4m Liquid Strap-On could be affordably derived from existing 
Taurus II, and could be procured commercially 

Core Propulsion- LOX/ LH2 has highest performance for HLS core, however 
this drives development and Life Cycle costs and cannot be developed/procured 
commercially, engines not usable by multiple LVs so does not meet needs of 
anyone but NASA 

TM-22810 Revision 01 

Although industry experts interviewed by the study team indicated that there is considerable 

additional complexity and cost associated with liquid hydrogen systems, Orbital suggested an 

alternate recommended Heavy Lift Launch Vehicle based on an 8.4 m LOx/LH2 core stage. The 

other major elements and systems of this alternate HLS concept are identical to the primary 

recommended system, including a 3.9 m LOx/RP strap on Liquid Rocket Boosters, initially utilizing 

essentially off the shelf 5.4 m diameter fairings/shrouds and separation systems and evolving to 

8.4 m fairings/shrouds and separation systems, and using upper stage engines based on the J-2X. 
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Other Technology Insertion 

5/11/2011 

Fairing/Separation Systems 
Suggest family of fairings to meet specific ORM requirements, 

with sizes from 5M (existing)to 27ft (8.4m) dia. 

Core/Upper Stage Structures 
Common 27 ft (8.4m) structure/tankage manufacturing 
capability in place (TRL/MRL = 8), common bulkhead 

design using 2219 reduces mass and is most affordable 
w/least risk, additional mass reduction & performance 

increase possible with upgrade to Alli (2195) but at higher cost 

Avionics 
Complex core vehicle requires advanced avionics. Utilize 
Ares avionics for core with Orbital T-11 derived for LRBs 

Advanced Thermal Insulation 

Streamlined Operations 
Commercially derived vehicle elements lend themselves to 

streamlined processing and co-sharing of resources. 
Ageing infrastructure elements afford opportunity to 
invest in modern systems to take full advantage of 

clean pad approach 

TM-22810 Rev1sion01 
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Additional technologies recommended by Orbital include fairing and separation systems tailored 

to specific DRMs, common structures and tankage, uti lizing largely existing avionics from the 

Constellation and Taurus II programs, employing advanced thermal insulation, and embracing 

streamlined commercially derived integration and launch operations. 

5. PERFORMANCE ASSESSMENT 
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Performance 

Assessment 

25 

Each of the Heavy Lift Launch Vehicle (HLLV) concepts were assessed and traded to ensure that 

the fina l recommended HLLV concepts were capable of meeting the stated goals of 100 tons to 

LEO with the ability to evolve to 130 mT. This section details the results of the performance 

assessment. 
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HLS Refined Concepts Evaluat ed 
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At the completion of the trade study downselection process, five Heavy Lift Launch Vehicle 

concepts were identified that met all of the KDAs. The NASA SLS is included as a baseline concept, 

and was by approximated Orbital using the same ana lysis tools and methods used for the other 

concepts in the trade study. 

• Concept #1 has a LOx/LH2 based core stage with SRM boosters. During the refinement, 

the four-segment RSRMs on Concept #1 were replaced with five-segment RSRMs for 

additiona l performance capabil ity. 

• Concepts #2 and #2A have LOx/RP based core stages with LOx/RP LRBs. 

• Concepts #3 and #3A have LOx/LH2 based core stages with LOx/RP LRBs. 

• The LOx/ RP LRBs for Concepts 2, 2A, 3, and 3A are based on the propellant capacity and 

structural mass of the Atlas V Common Booster Core (CBC). 

• Stage 2 for all of the refined downselected concepts is a LOx/LH2 based upper stage 

powered by a J-2X propulsion system. 

These five concepts and the SLS baseline were then subjected to the final sizing & performance, 

assessment. 
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HLLV Sizing & Performance Assessment 

• Integrated Systems Analysis Model Developed within ModelCenter to 
Manage Data Transfer between Tools and Iteration Between Sizing and 
Performance 

- Vehicle Sizing: Orbital developed spreadsheets based on Heritage subsystem sizing 

- Trajectory/Performance: POST 3-DOF 

• Vehicle Sizing and Performance Refinements 

5/11/2011 

- Aerodynamics updated for Launch Vehicle+ Strap-On Booster Configuration 

- Atmospheric Models updated for KSC (GRAM99) 

- Strap-On Boosters based on Existing Elements 
• SRB-based Concepts utilize 5-Segment Shuttle RSRM 

• RP/LOX Liquid Rocket Boosters based on Atlas V Core with Foreign (RD-180) and Domestic (AJ-
26X) Propulsion Systems 

TM-22810 Revision 01 
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ModelCenter was used to perform the final sizing and performance requirements, and detailed 

trades were conducted to determine the final concepts to be costed. 
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All of the HLS Downselected Concepts comply with the KSC VAB and Crawler constraints defined 

by the NASA Kennedy Space Center Key Driving Constraints document (KSC_KDC_vl_O.pdf) 
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Reliability 

Assessment 
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An assessment of launch vehicle rel iability was performed for each of the Heavy Lift Launch 

Vehicle (HLLV) concepts to ensure that the final recommended HLLV concepts were capable of 

meeting the stated Loss of Crew goal of less than 1 in 700. 
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HLLV Reliability Assessment 

• System Reliability Assessment was Conducted 
in Order to Compare Impacts of Propulsion 
System Trades on the Overall System 
Reliability 

• In General Larger Engine Clusters Reduce 
System Reliability 
- Engine-out capability helps to Mitigate 

Risk of LOM event 
- Even with Engine Out, TVC can be a 

significant driver of Overall Reliability in 
concepts that use large engine clusters 

• Engine Reliabilities Reflect Vendor Predicted 
Goals 

5/11/2011 
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(b) (4) 

30 

A complete system reliability assessment was conducted for each vehicle in the trade space, both 

with and without the capability for engine out on the first stage. With engine out enabled, 

however, there is a drop in payload performance to orbit. This is noted in the table and plot in 

the upper right of the above figure. For many concepts, it is possible to achieve the loss of crew 

target of 1 in 700 for the ascent portion (launch vehicle on ly). The sensitivity of this parameter 

to abort system reliability is shown in the lower left, indicating that a modest improvement in 

abort system reliability can make up the difference between a concept with engine out capabi lity 

and one without. This potentially eliminates the need for reduced payload performance 

associated with engine out. 
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7. IN-SPACE MODULE ASSESSMENT 
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5/17/2011 
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In-Space Propulsion 
Module Assessment 

2 

An assessment of the required In-Space elements was performed to ensure that the final 

recommended concepts were capable of meeting the NASA Design Reference Missions for low 

Earth orbit, lunar exploration, Near Earth Objects (NEOs), and Mars. 
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H LS In-Space Propulsion Module (ISPM) ar'l,J!.i!J...,,.,,-°"-
• HLS In-Space Propulsion Module ( ISPM) Developed to Transport Lunar Crew and Cargo 

from LEO to LLO 

- ISPM Provlde,:J Ascent/EOI and In-Space (TLI, LOI) Propulsion Capability 
- Propulsion Provided by either J· 2X or RL-10s 

• hamined Three Approaches Using the ISPM During the ORM Assessment 

- ISPM Upper/In-Space Stage+ ORM Payload 
• Utilile ISPM as Ascent and In-Space Stage 
• Payload + ISPM on Same LV 

- Upper Stage+ ISPM + ORM Payload 
ISPM Sized for ORM Capability Only 

• Propul;ion Provided by Multiple RL-10 Engines 
• Payload + ISPM on Same LV 

- Upper Stage+ ISPM (No Payload) 
ISPM Sized for Maximum DRM Payload capability Without exceeding LV Capability 

• Propulsion Provided by Multiple RL·10 Engines 

• ISPM and DRM Pavload Launched Separately 
• Assessed ISPM DRM Performance Capability and Development Cost for the HLS 

Downselected Architectures 

Upper Stage + ISPM (No Payload) Approach: 
Utilizes Upper Stage Developed for HLS Concepts and Maxlml,es DRM PaylJad CapabllllV 

The HLS In-Space Propulsion Module (ISPM) was initially developed to transport lunar crew and 

cargo from Low-Earth Orbit (LEO) to Low-Lunar Orbit (LLO). During the assessment of the HLS 

Design Reference Missions (ORM), three ISPM variants were examined to determine which of the 

three would maximize performance while minimizing development cost: ISPM Upper/In-Space 

Stage with ORM Payload, Upper Stage+ ISPM + ORM Payload, and Upper Stage+ ISPM (without 

ORM Pay I oad): 

• ISPM Upper/In-Space Stage with ORM Payload: This approach utilizes the ISPM as both the 

ascent upper stage and the in-space st age to perform the ORM. I SPM prop ul si on is provided 

by a single J-2X engine since a high thrust is necessary for the ascent trajectory. Both the 

pay Io ad and IS PM are I au nched on the same I aunch vehicle. 

• Upper Stage+ ISPM + ORM Payload: The remainder of the ascent trajectory after Stage 1 

separation is provided by the upper stage, and the in-space operations for the ORM are 

provided by the ISPM. The ISPM is sized to provide the necessary OV capability for the ORM. 

Propulsion for the ISPM is provided by multiple RL-10 engines that maintain am inimum T /W 
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of 0.25 at ISPM ignition. Both the DRM payload and ISPM are launched on the same launch 

vehicle. 

• Upper Stage + ISPM (without ORM Payload): The upper stage provides the remaining 

propulsive capability required for the ascent trajectory. The ISPM is sized to maximize DRM 

payload capability without exceeding the launch vehicle capability. Propulsion for the ISPM 

is provided by multiple RL-10 engines that maintain a minimum T/W of 0.25 at ISPM ignition. 

Since the ISPM gross mass is equivalent to the launch vehicle capability, the DRM has to be 

launched separately. 

The ISPM performance capability and development cost was assessed for HLS downselected 

architecture concepts 1, 2A, and 3A. The Upper Stage + ISPM (without DRM Payload) approach 

was selected as the baseline for the downselected concepts because it utilizes the upper stage 

developed for the HLS concepts and maximizes the DRM payload capability. 
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The ISPM Upper/In-Space Stage approach sized the ISPM to provide the propulsive capability 

necessary to perform the post-Stage 1 separation portion of the ascent trajectory and the in

space DRM. The !::N for the upper stage portion of the trajectory was provided from POST 3-DOF 

trajectory simulations. Delta-V values for each DRM were based on the associated DRM 

references. The ISPM for this approach was limited to a gross mass of approximately 340,000 lbm 

based on the results of propulsion module optimizing exercises conducted under previous Orbital 

architecture studies. 

The upper stage and ISPM have the same on-orbit functionality such as on-orbit maneuvering, 

orbital maintenance, proximity operations, and deorbit/disposal. The upper stage provides 

propulsive capability for the ascent trajectory. DDT&E cost and first unit production (TFU) cost 

are normalized with respect to the development and first unit production cost of the Concept 2A 

upper stage. The ISPM development cost is approximately 58% of the Concept 2A upper stage 

development cost because of the increases in vehicle structure, propellant tankage, and non

engine main propulsion elements for the larger size upper stage. Avionics, electrical power & 

distribution, and RCS subsystems were the same between the ISPM and upper stage. 
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The Upper Stage + ISPM + ORM Payload approach sized the ISPM to provide the propulsive 

capability to perform the ORM. Delta-V values for each ORM were provided from the associated 

ORM references. Sizing of the ISPM for this approach was limited by the payload capability of the 

two-stage launch vehicle. The combined mass of the ISPM and the ORM payload was equivalent 

to the launch vehicle payload capability. 

The upper stage and ISPM have the same on-orbit functionality such as on-orbit maneuvering, 

orbital maintenance, proximity operations, and deorbit/disposal. The upper stage provides 

propulsive capability for the ascent trajectory. Development cost and first unit production cost 

are normalized with respect to the development and first unit production cost of the Concept 2A 

upper stage. Development costs for the ISPM concepts are approximately 52-53% of the Concept 

2A upper stage development cost because of the increases in vehicle structure, propellant 

tankage, and non-engine main propulsion elements for the larger size upper stage. Avionics, 

electrical power & distribution, and RCS subsystems were the same between the ISPM and upper 

stage. 
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The Upper Stage + /SPM (without ORM Payload) approach sized the ISPM to provide the 

propulsive capability to perform the DRM. Delta-V values for each DRM were provided from the 

associated DRM references. The ISPM is sized to maximize DRM payload capability without 

exceeding the launch vehicle capability. Since the ISPM gross mass is equivalent to the launch 

vehicle capability, the DRM has to be launched separately. The upper stage and ISPM have the 

same on-orbit functionality such as on-orbit maneuvering, orbital maintenance, proximity 

operations, and deorbit/disposal. The upper stage provides propulsive capability for the ascent 

trajectory. Development cost and first unit production cost are normalized with respect to the 

development and first unit production cost of the Concept 2A upper stage. 

Avionics, electrical power & distribution, and 

RCS subsystems were the same between the ISPM and upper stage. 
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ISPM DRM Assessment Observations 

• Performance Observat ions 
- US+ ISPM (No P/L} Approach Provides the Most ORM Payload Capability, But Requires Separate Launch for ORM 

Payload 
- ISPM US/1 -SS Approach Provides the Least ORM Payload Capability, But Eliminates the Need for Dedicated Upper 

Stage and Carries t he ORM Payload on the Same LV 

• Development Cost Observations 
- Both US and ISPM Equipped t o Provide On-Orbit Functionality (Orbit Maneuvering, Orbital Maintenance, 

Proximity Operations, and Deorbit/Disposal) 
- ISPM Development Cost Is Approximately 52-60% of t he US Development Cost due to Increases in Vehicle 

Structure, Propellant Tankage, and Non-Engine Main Propu lsion Elements for the l arger Size Upper Stage 
• Av ionics, Electrical Powe, & Distribution, and RCS Subsystems the Same Between the ISPM and US 

- ISPM US/1-SS Approach Provides Least Development Cost Since US Development is Not Required 
- US+ ISPM (No P/ L} Approach Has Highest Development Cost 

• Total Development Cost Includes Development of us and ISPM 

- Development Cost Does Not Include Additional Launch for ORM Payload 

• Mission/Launch Related Cost Not Included in Cost Assessment 

TM-22899 

The Upper Stage+ /SPM {without ORM Payload) approach provides the most payload capability 

among the three ISPM approaches because it is sized to maximize the ORM payload capability 

based on the launch veh icle payload capabil ity. Since the ISPM gross mass is equivalent to the 

launch veh icle capability, the ORM has to be launched separately. 

The ISPM Upper/In-Space Stage approach provides the least payload capability among the three 

approaches. Though this approach provides the least payload performance, it eliminates the 

need for a dedicated upper stage since the ISPM provides ascent capability and the ORM payload 

is carried on the same launch vehicle. The size of the ISPM for the ISPM Upper/In-Space Stage 

approach was limited based on sizing from previous Orbital architecture studies. Increasing the 

size of the ISPM could resu lt in additiona l payload capabil ity for this approach. 

The upper stage and ISPM have the same on-orbit functional ity such as on-orbit maneuvering, 

orbita l maintenance, proximity operations, and deorbit/disposal. The upper stage provides 

propulsive capability for the ascent trajectory. Development cost and first unit production cost 

are normalized with respect to the development and first unit production cost of the Concept 2A 
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upper stage. Development costs for the ISPM concepts are approximately 52-60% of the Concept 

2A upper stage development cost because of the increases in vehicle structure, propellant 

tankage, and non-engine main propulsion elements for the larger size upper stage. Avionics, 

electrical power & distribution, and RCS subsystems were the same between the ISPM and upper 

stage. 

The /SPM Upper/In-Space Stage approach provides the least development cost among the three 

approaches because the development of a separate upper stage is not required. The Upper Stage 

+ ISPM (without DRM Payload) approach has the highest development cost. Total development 

cost for this approach includes the development of the upper stage and the ISPM. The 

development cost for this approach is slightly higher than the Upper Stage+ ISPM + DRM Payload 

approach because the ISPM is larger in order to maximize the payload capability. 

Development cost for the ISPM configurations does not include cost associated with the 

additional launch for the DRM payload. Mission and launch related cost were not included in the 

ISPM cost assessment. 
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Assessment of NASA's HLS 

Design Reference Missions 

TM-22810 Revision 01 
3 

An assessment of the ability of the candidate Heavy Lift Launch Vehicles to meet the NASA Design 

Reference M issions (DR Ms) was performed to ensure that the final recommended concepts were 

capable of efficiently performing the NASA DRMs for low Earth orbit missions (e.g.; ISS and LEO 

transfer), Lunar exploration, missions to Near Earth Objects (NEOs), and Mars exploration. 
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HLS Design Reference Missions 
-ILS Ezseli 1s D~Ms Suppo1t an ::volJ!ionarv GrJ>'lth Peth 
- I 1me1rand Mar.ii IJHM,s auum~ C:nnr.eptJA I lesvv I ift leunch Vehir.le 

TM-22899 

Incremental Pertormance Increases ot Pa','load Capabllhy 15 J\chrevable, J\flordable, !. Susllllna ble 

The ORM architecture recommended by Orbital supports an evolutionary growth path for the 

HLS. The first series of missions, b egi nn i ng in 2016 are assumed to support I SS cargo and crew 

transportation needs. As the payload capability of the HLS concept 2A grows with the 

dev elo pm ent of new en gin es, a series of I un ar and Mars mission architectures is shown in the 

2020 and 2030 decades respectively. 
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Lunar DRM Manifest 

Lunar ORM Manifest 
16 ~-----------------
15 +------------
14 r-;::::===::::;-------
13 
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q; 7 +-------
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Conceptl Concept 2a Concept 3a Delta IV Heavy Concept 2a 
107 ml 94 ml 75 ml 26 ml Heavy• 

131ml 

•concept 2a Heavy Includes 2 Additional LRBs (4 Total) 
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• Assessment of Representative 
Lunar DRM Launch and 
Payload Manifest 
- LEO Insertion at 241 km Circular 

- Ref: Orion and LaRC 
Architecture Studies Lunar 
Missions 

• Assumes Payload Launched 
Separately from Orbital ISPM 

• Current EELV Heavy 
(represented by Delta IV Heavy) 
requires 2-3 Times as many 
Launches as Orbital HLS 
Concepts to Complete Lunar 
DRMs 

35 

A sample lunar mission manifest shows a comparison between the number of launches required 

by the Orbital downselected concepts and a current evolved expendable launch vehicle 

(represented by the Delta IV Heavy). The mission architecture assumes that the payload is 

launched separately from the Orbital ISPM. The payload and the ISPM rendezvous in LEO before 

continuing on to the lunar destination. Given the assumed payload capabi lities shown, the 

Orbital concept 2A heavy cou ld reduce the number of launches required to carry crew and cargo 

to the Moon for an extended mission by a factor of three. 
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Mars DRM Manifest 
Mars ORM Payload Manifest 
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• Assessment of Representative Mars 
ORM Launch and Payload Manifest 
- LEO Insertion at 407 km Circular 

- Ref: NASA-SP-2009-566 "Human 
Exploration of Mars Design 
Reference Architecture 5.0" July 
2009 

• Assumes Payload Launched 
Separately from Orbital ISPM 

• Current EELV Heavy (represented 
by Delta IV Heavy) Insufficient to 
meet Payload Requirements of 
Mars Mission Architecture 

• Concept 2A Heavy Results in > 80% 
Fewer Launches required for Mars 
Mission Architecture vs. Delta IV-H 

101 36 

A sample Mars mission manifest shows a comparison between the number of launches required 

by the Orbital downselected concepts and a current evolved expendable launch veh icle 

(represented by the Delta IV Heavy). The mission arch itecture assumes that the payload is 

launched separately from the Orbital ISPM. The payload and the ISPM rendezvous in LEO before 

continuing on to the Mars destination. The top graph is an exploded view to provide more details 

on the non-lSPM payloads from the bottom graph. Given the assumed payload capabilities 

shown, the Orbital concept 2A heavy cou ld reduce the number of launches required to carry crew 

and cargo to Mars for an extended mission by greater than 80%. 

86 



Orbital Sciences Corporation 
Launch Systems Group 

TM-22899 

9. RECOMMENDED HLS ARCHITECTURE 

5/1112011 
TM-22810 Revisioo 01 

or1#7a1 

Recommended 
HLS Architecture 

37 

The Heavy Lift System Architecture recommended by Orbital was thoroughly assessed to ensure 

that it is capable of meeting not on ly the NASA Design Reference Missions for low Earth orbit, 

Lunar exploration, Near Earth Objects (NEOs), and Mars explorations, but also meets the 

schedule and affordability goals estab lished by NASA. 
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Recommended HLLV Architectures 

300 

• v..., • .._ __ .._ 

. LH2 
• RP 

- NASASLS -

NASA SLS (Apprx) 

0 

SRB Based LRB Based 

u 

2AC•I 3 3Al•J 

6xR0.180 9•AJ•26X 4•Rs-68 

2•J•2X 2•J•2X 2XJ•2X 2Xl•2X 

concept# 

co,el~ 

St>c•2 
Booster(ea) 

Sx RS-25£ 

2xJ.2X 

s segSRB 

120mT 

4X RS-Ell 

2xJ.2X 

SsegSRB 

107mT 

1 Mlbf LRB{lx RD-180) 1 Mlbf LR8{2 xAJ-26X) l Mlbf Ul8(1X R0•180) 1 Mlbf UIB(2 •AJ•26X) 

Performancel11Cl1 
HolN: 

104mT 96ml1•1 69mT _ _ _ 7SmT 

(1) Total Mass {mT) inserted into 30 x 130 mi orbit at 295• n:linationwitl insertion at 130 nmi and fairing jettisoned during Stage 2 bum. 
(2) F.-ing C)4mical ~ope lenglh aod OM. ciarneter are 25 m and 8.4 m, respediwly. 

(3) Stage 1 Core dameter is 8.• m. 

(4) Altematiw coooepl'S that replaced RD-18> engines with number of~ AJ·26X engines f\at P"™de comparatte IObl thrust. 
(5) Ccwnmercialwrsion ci Concept 2A includes dJal-b..Ahead tankage to red.Ice struclllral mass and inctNSe pe,rfonnance. 
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Of the many concepts considered by Orbital during the course of the HLS study, two were 

determined to best meet the Key Decision Attributes established by NASA and the study team: 

• Concept 2A 
o Based on an 8.4 m LOx/RP core stage and 4 m LOx/RP strap on Liquid Rocket 

Boosters 

o All stages (core, upper, and boosters) uti lize common bu lkhead tankage 
configurations to increase performance and reduce mass. 

• Concept 3A 
o Based on an 8.4 m LOx/ LH2 core stage and 4 m LOx/RP strap on Liquid Rocket 

Boosters 
o Only the boosters utilize common bulkhead tankage configurations to increase 

performance and reduce mass in this alternative option (it is possible to develop 
common bulkhead core, but that configuration was not eva luated by Orbital due to 
its relative complexity) . 
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Recommended HLS Architectures 

• PREFERRED: Concept 2A with Commercial Approach (COTS Program Model): 

- RP/LOX Core with RP Liquid Strap-On Boosters 

- Lower DDT&E, Facility, and Operations Costs 

-Average Recurring LCC of the approaches considered 

- Utilizes Commercial Facilities where it makes sense (e.g. ; Astrotech for Stage 2 
processing and ARF for commercial LRB processing) 

- Utilizes KSC Processes, Facilities, etc. in a "Campaign Style" launch approach 

- Employs "Clean Pad" approach to Reduce Recurring Launch Ops Costs (reduces 
overall Life Cycle Costs) 

• ALTERNATE: Concept 3A: 

- LH2/LOX Core with RP Liquid Strap-On Boosters 

- Higher DDT&E, Facility, and Operations Costs due to LH2 Core Complexity 

-Average Recurring LCC of the approaches considered 

- Utilizes Commercial Facilities where it makes sense (e.g. ; Astrotech for Stage 2 
processing and ARF for commercial LRB processing) 

- Utilizes KSC Processes, Facilities, etc. in a "Campaign Style" launch approach 

- Employs "clean pad" approach to Reduce Recurring Launch Ops costs (reduces 
overall Life Cycle Costs) 

5/11/2011 
TM-22810 Revision 01 
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As discussed in the previous page, Orbital chose a primary and an alternate configuration for t he 

recommended HLS architectures, which are detailed in this chart. 
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5/11/2011 TM-22810 Revision 01 

Cost and 
Affordability 
Assessment 

41 

The Heavy Lift System Architecture cost and affordability assessment provides background on 

the cost estimating approaches utilized by Orbital to predict the non-recurring and recurring 

costs for the candidate and recommended HLS architectures. 

10.1. NAFCOM vs. Orbital Custom Costing Approach 
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10.2. Cost Refinement 
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Vehicle Cost Estimate Refinement 

NAFCOM 

• Assumed Government 
Development Paradigm 

• Depending on 
Assumptions, an 
Appropriate Modeling 
Tool for SLS 
Configuration with 
Traditional Development 

• Overall, Systems 
Integration and GSE 
Costs Very High 
Compared with Orbital 
Experience 

Custom Cost 
Modeling Tool 

• More Applicable Cost Analogies 
used for Key Cost Drivers such 
as Systems Integration Costs 

Commercial 
Development 

Modeling 

• Commercial Launch 
Vehicle Development 
Approach based on 
Taurus II Data 

• Incorporated Data on 
Cost-Effectiveness of 
LOX/RP Propellant 
Solution 

TM-22899 

• Heavy Lift Costing Fidelity 
Increased as Quotes 
Received from Vendors 

Commercial Development Approach is the Key t o HLS Affordability 

5111/2011 TM-22810 Revision 01 42 
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10.3. Facility Modifications and Operations Costs 

Facility ROM Cost Assessment 

• Analyzed Ground Facilities and Infrastructure to Identify Required 
Improvements to Accommodate each of the Heavy Lift Architecture 
Concepts: 

Stennis: Engine testing infrastructure (e.g.; new/upgraded test stands) 

KSC Facilities: VAB, LCC, OPF, PHSF, O&C, SSPF, RPSF 

KSC Infrastructure: fueling systems, fuel tanks, Launch Pad 39A/39B, 
Mobile Transporter, Mobile Launch Platform 

• Assumes that Existing KSC Facilities and Infrastructure can be Modified 

5/11/2011 

and Upgraded 
Stennis costs assume full up integrated engine tests (i.e.; costs driven by 
number of engines - no effort to determine costs for additional complexity 
of LH2 engines) 

Shuttle derived concepts assume that existing infrastructure (e.g.; VAB, 
Crawler, pad fueling systems and tanks, etc.) can be used with moderate 
modifications/upgrades 

Assumes that some new infrastructure must be developed (e.g.; new MLP, 
New Crawlers, new tanks, and new fueling systems for RP, etc.) 

These ROM cost estimates are parametric, and actual bottoms up cost 
estimates need to be worked in much more detail with NASA KSC 

TM-22810 Revision 01 
68 

Orbital analyzed ground facilities and infrastructures at Stennis (for engine and stage testing) and 

Kennedy Space Center (launch operations) to identify the required improvements to 

accommodate a heavy lift launch vehicle. Parametric methods were utilized to develop these 

cost estimates. 
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Cost Breakdown By System 

Vehicle Structures and 
Mechanisms 

Tank Structures and 
Mechanlsms 

Separation Structures and 
Mechanisms 

Main Propulsion System 
{less Engines) 

Thrust Vector Control 

Thermal Control 

Electrical Power and 
Distribution 

Range Safety 

Avionics 

Shroud 

Liquid Rocket Engine 

Systems Integration Costs 

Vehicle Integration 

Infrastructure and Facilities 

Wraps and Fees 
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CE Method 

Weight Based CER 
(Anchored to Vendor Quote) 

Weight Based CER 
{Anchored to Vendor Quote) 

Weight Based CER 

Weight Based CER 

Weight Based CER 

Weight Based CER 

Weight Based CER 

Weight Based CER 

Weight Based CER 

Weight Based CER 

TII Analogy{% HW Costs) 

%HWCosts 

Parametric Analysis 

%HWCosts 

The cost estimate for Concept 2A is a rollup of development and recur ring costs for the core 

stage, upper stage and boosters. The core and upper st age costs are broken down by subsystem. 

The subsyst ems included in the development and recurr ing costs for each subsystem are shown 

above. The boosters used a Taurus II analogy for subsystem costs. The cost est imation methods 

are a combination of weight-based cost est imating relationships, vendor quot es and parametric 

analysis based on exist ing hardware, infrastructure and facilit ies. The vehicle integration and 

program wraps and fees are a percentage of the hardware costs. 
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Other Affordability Ideas 

• Foreign participation: 
- Most missions BEO are excellent candidates for 

foreign participation & "like-kind" exchanges 

- E.g.; ESA/NASAjoint tech development of 8.4m PLF 
for HLLV and Ariane 6, Lunar and NEO landing 
hardware, precursor missions, habitats, rovers, 
science hardware, in-space refueling depots, etc. 

• Elements of U.S. Super Heavy Vehicle 
Would Afford Launch Opportunities for 
Other U.S. Government (e.g.; DoD) and 
International Partners 

5/11/2011 

MARS 
Explorer 

TM-22810 Revision 01 

Europa Orbiter 
NASA/ESA 

Astro-H 
NASA/JAXA 

TM-22899 

47 

As NASA looks to develop the heavy lift system, and examines the missions that such vehicles will 

serve, they could look to other countries and space organizations for collaborative and 

cooperative opportunities. Moreover, it is possible that the HLLV, or elements thereof, could be 

made available to other foreign space organizations to cooperatively launch their own space 

exploration elements in an effort to increase launch rates and offset program costs. 

10.6. Commercial Path to an Affordable Heavy Lift System 
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Commercial Path 
to Affordability 

TM-22810 Revision 01 
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Orbital proposes a Commercial procurement and contracting approach in order to meet the 

affordability and sustainability KDAs established by NASA, as discussed in this section. 
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Space Systems Development Paradigms 

.... 
"' 0 
0 

5/11/2011 

Years 

Historical Government Practices 
• Complex, Cutting Edge, Mulb-M1ssion Systems 
• Long Development Cyde 
• Numerous DecIS10n Gates 
• "Cost Ptus• Contracts 
• Requirements Changes 

Typical Commercial Practices 
• S11gle/Um1ted Mission Systems. Incremental Improvements 
• Short Development Cycle 
• Strong Customer-Supplier Teamwork 
• Finn Rxed-Ptice Contracts 
• Stable Reql!l"ements 

Time 
TM-22810 Revision 01 
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Decade(s) 

49 

In order to meet the ambitious schedule for development that Congress has dictated, and to 

minimize development costs, Orbital advocates that NASA look to adopt a commercia lized 

development and contracting approach. The varied branches of the U.S. Government, NASA 

included, have an impressive record of bringing large, ambitious, complex systems to fruition. 

These programs however have spanned long development cycles, further impacted by the 

hierarchy of decision making in this large organizations. Moreover, the cost-plus contracting 

methodology traditionally employed tends to lead to significant cost escalation as such programs 

mature, due in part to evolving requirements over this long development period. In contrast, 

typica l commercia l practices such as those employed by Orbital are characterized by an 

evolutionary, incremental development approach facilitating shorter development cycles. A 

strong customer focused teamwork approach on such programs helps stabilize requirements and 

enables low-risk firm fixed price contracting. While the magnitude of the HLS program dictates 

a NASA managed development, Orbita l strongly advocates that NASA adopt elements of a 

commercia l approach in this ambitious development program, and maintain them through the 

sustainment of launch services for the heavy lift vehicles. 
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Commercia l Approach to Affordable HLS 

Concept 2A with "Commercial" Approach 
• System or specific elements are contracted similar to COTS Program Model 

• Lowest DDT&E and LCC of all approaches evaluated 

5/11/2011 

- RP/LOX Core with RP Liquid Strap-On Boosters are 
developed and procured commercially 

- Maximum use of off-site, shared Commercial 
Facilities (e.g.; Jacobs engineering and ULA) and 
Commercial Contracting 
(e.g.; FFP for recurring cores and LRBs) 

- "Just-in-time" integration approach Minim izes 
Personnel, Processes, Facilities, etc. 

- Core and LRB processed and integrated offsite, 
with final integration at VAB (i.e.; true "Campaign 
Style" launch approach) 

- Employs "Clean Pad" approach to reduce recurring launch ops costs (minimal time on 
pad, reduces overall Life Cycle Costs) 

- No Standing Army (majority of integration / launch team travels with launch vehicle) 

- Spreads the work across Multiple States /maximizes congressional support 

TM-22810 Revision 01 
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Orbital m aintains that a development approach employing commercial aspects will enable NASA 

to successfully develop and operate a HLS system in the most efficient and cost effective manner. 

Orbital suggests that NASA adopt an approach simi lar to that currently being demonstrated in 

the NASA CRS program; a successful NASA/ Industry partnership. By setting only overarching 

requirements, and subcontracting elements of the vehicle directly to industry, low DDT&E and 

Life Cycle Costs (LCC) can be achieved. Other aspects of such a commercial approach include 

maximum use of shared facilities, "Just in Time" contracting and integration approaches, and a 

"clean pad" approach to vehicle launch processing. 
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Commercia lly Procured RP Core/RP LRB 

• Fairing- Use Commercially Avai lable 5.4m PLF initially, Evolve to Larger Fairings as Required 

TM-22899 

• Upper Stage - J-2X based Concept with 27 ft (8.4m) Structure / Tankage Manufactured on Current 
Shuttle ET line in Michaud 

• Common 27 ft (8.4m) Structure/Tankage 
- Commercially procured & manufactured on 

current Shuttle ET line in Michaud 

• Liquid RBs 
- 4m Liquid Rocket Booster (LRB) Strap-Ons 

affordably derived from existing Taurus II 

- Procured commercially 

• Booster & Core Propulsion 
- AJ-26X provides logical /cost effective 

evolution for HLS core and LRB strap-on 

- Common HLS core/LRB strap-on engine 
increases performance and reduces risk/costs 

- Usable by multiple LVs 

• Efficiently meets needs of all end-users (NASA, 
USAF, Atlas, Taurus II) 

• Significant cost savings with common U.S. engine 
across multiple end-users/launch systems 
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Integrating Orbital's suggested launch vehicle configuration with the technology development 

plan and commercial contracting approach suggested yields a fami ly of vehicle configurations to 

meet the full spectrum of NASA HLS requirements; all based upon a common LOx/RP fueled, AJ-

26X powered booster core. On the low end, a variant with just this core booster and the dual 

engine J-2X based upper stage with a nominal performance of - and an "enhanced 

reliability" or engine out performance o-would meet NASA Crew requirements. This same 

vehicle uti lizing a commercially avai lable 5.4M diameter payload fairing would meet large ISS 

cargo and lunar vehicle requirements. Adding a pair of L O2/RP liquid strap-ons, uti lizing two AJ-

26X engines each, increases the nominal performance tnJ@l9P Lastly, by adding an additional 

pair of liquid strap-ons, four tota l, the vehicle capabi lity is increased to over ff Employing 

this evolutionary performance approach enables this HLS system to meet all of NASA's primary 

DRMs. 
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0 Mars Transfer 

D. Mars Crew 

0 Mars Cargo 

II:! NEO High 

III NEO Low 

• Lunar Crew 

n Lunar Cargo 

0 ISS Cargo 

• ISS Crew 
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Further integrating Orbital's proposed HLS vehicle configurations into the NASA DRM manifest 

results in a road map for meeting NASA's Heavy Lift System requirements, as shown above. 

Starting with the AJ-26X engine development and an ATP in the early 2012 timeframe, the initial 

crewed vehicle configuration could be developed to meet the 2016 ILC deadline. The cargo 

variant could also be used in this same timeframe. A straightforward upgrade to add the liquid 

strap-on boosters could be executed rapidly to meet heavier lift requirements when required, in 

2023 or earlier. A larger payload fairing could also be developed in this timeframe. 

Two other elements were considered that could further influence and augment this plan. To 

increase overall vehicle reliability predictions and to augment performance, the higher thrust lM 

lbf variant of the AJ-26X engine could be developed. Cost savings depicted earlier possibly fund 
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this development. Incorporating higher thrust variants of these main engines would be relatively 

straightforward, and could also possible lead to still lower recurring and operating costs. Another 

element considered was the incorporation of liquid fly-back strap-on boosters. This technology, 

currently being studied aggressively by the USAF, could be adapted to the HLLV and might further 

reduce recurring costs. While the maturity of this technology was not considered sufficient to 

warrant direct incorporation into our selected vehicle configurations, it does show promise in 

reducing recurring costs, and variants of the fly-back or rocket-back boosters currently being 

considered incorporate the same AJ-26X engine advocated by Orbital in this study. 
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12. FINDINGS AND RECOMMENDATIONS 

Findings and Recommendations 

• Affordable HLS Vehicles can be Derived from Existing Technology with 
Targeted Investment in Selected Key Areas 

RP ORSC Engine Development and Production in U.S. (e.g.; AJ -26) 

- Liquid RP Strap-On Boosters derived directly from existing launch vehicle 
technology with limited investment utilizing COTS model (e.g.; Taurus II) 

• ORM Assessment Supports Evolutionary Vehicle Development 

- Intermediate Performance capability with a Flexible Configuration tailorable to 
Specific ORMS 

- HLLV evolves to meet ORM requirements When Needed 

• Candidate HLS Booster Configurations can be Either LOX/RP or LOX/H2 

- LOX/RP Solutions have Lower Life-Cycle Costs and Greater Applicability Across 
U.S. Vehicle Base and Multiple End-Users (i.e.; NASA, Air Force, Commercial) 

• Propulsion System Costs Dominate Recurring and Life-Cycle Costs 

- Payback for limited development is quickly realized 

5/11/2011 

Evolutionary Commercial Procurement Approach Provides an 
Affordable and Sustainable HLS program 

TM-22810 Revisaoo 01 
54 

Orbital's study conclusively shows that affordable HLS vehicles can be developed and derived 

from existing technology with target, limited investment in selected key technology areas. 

NASA's Design Reference Mission manifest supports an evolutionary vehicle development 

approach which fields a initia l launch vehicle capable of reliably meeting initial DRM 

requirements by the 2016 deadline, and evolves that basic vehicle in incremental steps to meet 

heavier lift requirements when needed. Orbital's study further concludes that whi le 

configurations to effectively meet NASA's requirements can incorporate either LOx\Hydrogen or 

LOx\RP engines, LOx\RP solutions will have lower life cycle costs and afford greater applicabi lity 

across the U.S. launch vehicle base faci litating further cost reductions due to economies of scale. 
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AFFORDABLE END-TO-END SPACE SYSTEMS 
There is a Better Way 
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The Orbital Sciences Corporation has an extensive history of providing reliable space systems 

solutions to both government and commercial customers. Our comprehensive product base 

spans all segments of the launch vehicle, satellite and space infrastructure industry. Orbita l 

stands ready to bring these resources and experience to bear, and to work with NASA to develop 

a reliable, sustainable, cost-effective heavy lift launch system to meet NASA and the Nation's 

ambitious space exploration goals. 
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Heavy Lift and Propulsion Technology Systems Analysis and Trade Study BAA Technical Objectives Compliance Matrix 
ORBITAL SOW PARAGRAPH Section Ill Technical Objective COMPLIANT? REFERENCE 

Heavy Lift System Identify how alternative heavy lift system solutions address key decision attributes/figures of merit/measures of 
Section 3.1, Pages 11-12, 

1.4.1 
Architecture Study effectiveness. 

y Section 3.3, Pages 16-28, 

1.4.2 
Architecture 

Development 

Identify and analyze multiple alternative architectures (expendable, reusable, or some combination) on which a 

Heavy Lift System addressi ngthe objectives can be based. 
y Section 3.3, Pages 16-28 

1.4.3 Architecture Assessment Provide a recommended list of key decision attributes and rationale associated with each. y Section 3.1, Pages 11-12 

1.4.3 Architecture Assessment Provide a recommendation for the weighting of the recommended key decision attributes. y Section 3.3, Pages 16-28, 

1.4.4 
Architecture Sensitivity 

Identify how changes to the weighting of key decision attributes affect the architectures. y Section 3.3, Pages 16-28 
Assessment 

1.4.4 
Architecture Sensitivity Identify how alternative ground rules and assumptions (Reference NASA HLLV Study) impact the identified y Section 3.1, Pages 13-14 

Assessment alternative system solutions. Section 3.3, Pages 16-28, 

1.4.4 
Architecture Sensitivity 

Identify how changes to the weighting of key decision attributes affect the architectures. y Section 3.3, Pages 16-28, 
Assessment 

1.4.5 
Capability Gap y Section 4., Pages 29-60 

Assessment Identify how innovative or non-traditional processes or technologies can be applied to the Heavy Lift Systems to Section 4.6, Pages 65-67 

Cost Reduction dramatically improve its affordability and sustainability. Section 10.0, Pages 93-106 
1.4.7 y 

Strategies Section 10.6, Pages 107-110 

Identify capability gaps associated with the first-stage main engine functional performance and programmatic 

1.4.5 
Capability Gap characteristics required to support each Heavy Lift System studied. The minimum set of functional performance y Section 4.1, Pages 40-46 
Assessment characteristics identified sh al Ii ncl ude engine thrust, specific impulse (lsp), mixture ratio, mass, throttle range, 

and physical envelope. 

Cost Reduction 
The minimum set of programmatic characteristics identified for the First Stage propulsion engine shall include an 

1.4.7 
Strategies 

estimated overall I ifecycle cost (i.e., DDT&E, production and operations (fixed and variable) per engine cost), y Section 10.0, Pages 93-105 

development schedule, and production rate. 

1.4.7 
Cost Reduction 

Strategies 

Identify any impacts to overall life cycle costs of the Heavy Lift System based on the First-Stage Main engine 

studied. 
y Section 10.0, Pages 93-105 

Identify capability gaps associated with the upper-stage main engine functional performance and programmatic 

1.4.5 
Capability Gap characteristics required to support each heavy lift system studied. The mini mum set of functional performance y Section 4.2, Pages 47 

Assessment characteristics identified shall include engine propellants, thrust, specific impulse (lsp), mixture ratio, mass, Section 9, Pages 89-92 

throttle range, and physical envelope. 

Cost Reduction 
The minimum set of programmatic characteristics identified for the Upper Stage propulsion engine shall include 

1.4.7 an estimated overall I ifecycle cost (i.e., DDT&E, production and operations (fixed and variable) per engine cost), y Section 10.0, Pages 93-105 
Strategies 

development schedule, and production rate. 

Cost Reduction Identify any impacts to overall life cycle costs of the Heavy Lift System based on the Upper-Stage Maine ngine 
1.4.7 

Strategies studied. 
y Section 10.0, Pages 93-105 
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Heavy Lift and Propulsion Technology Systems Analysis and Trade Study BAA Technical Objectives Compliance Matrix 
ORBITAL SOW PARAGRAPH Section Ill Technical Objective COMPLIANT? REFERENCE 

Capability Gap 
Identify capability gaps associated with al I other technical aspects of heavy lift system, e.g. tanks, propellant and 

Section 4.4, Pages 49-60 
1.4.5 pressurization systems, integrated system health management, auxiliary propulsion systems, avionics and control y 

Assessment Section 9, Pages 89-92 
systems, structures. Identify test and integrated demonstrations to mitigate risk associated with the gaps. 

Identify capability gaps associated with the in-space space propulsion elements functional performance and 

Capability Gap 
programmatic characteristics re qui red to support each Heavy Lift System studied. This assessment sh al I include, 

1.4.5 but is not limited to, LOX/H2 and LOX/CH4 propulsion systems. The minimum set of functional performance y Section 7.0, Pages 75-84 
Assessment 

characteristics identified shall include propellant definition, thrust, specific impulse (lsp), mixture ratio, mass, 

throttle range (if any), and physical envelope. 

Cost Reduction 
The minimum set of programmatic characteristics identified for the In-Space propulsion engine shall include an 

1.4.7 
Strategies 

estimated overall lifecycle cost (i.e., DDT&E, production and operations (fixed and variable) per engine cost), y Section 10.0, Pages 93-105 

development schedule, and production rate. 

Cost Reduction Identify any impacts to overall life cycle costs of the Heavy Lift System based on the In-Space propulsion engine Section 7.0, Pages 75-84 
1.4.7 y 

Strategies studied. Section 10.0, Pages 93-105 

Identify capability gaps associated with all other technical elements of the in-space space propulsion element, 

1.4.5 
Capability Gap e.g. tanks, prope II ant and pressurization systems, cryogenic flu id management, integrated system health y Section 4.4, Pages 49-60 

Assessment management, auxiliary propulsion systems, avionics and control systems, structures, autonomous rendezvous and Section 7.0, Pages 75-84 

docking. Identify test and integrated demonstrations to mitigate risk associated with the gaps. 

1.4.6 Test Planning Strategies 
Identify what in-space space propulsion elements, if any, which should be demonstrated via space flight 

? Section 7.0, Pages 75-84 
experiments. 

Identify capability gaps associated with the Heavy Lift System, and for each capability gap identify specific areas 

1.4.5 
Capability Gap where technology development may be needed. Items identified as requiring technology development sh al I be y Section 4., Pages 29-39 
Assessment quantitatively evaluated using established metrics, e.g. NASA Technology Readiness Level (TRL), Cost Readiness 

Level (CRL), Manufacturing Readiness Level (MRL), System Readiness Level (SRL). 

1.4.6 Test Planning Strategies 
Identify how incremental developmenttesti ng, including ground and flighttesti ng, of Heavy Lift System elements 

cane nhance the heavy lift system development. 
y Section 4.1, Pages 40-46 

1.4.6 Technology RoadMap 
Develop proposed technology development road maps inclusive of test strategies consistent with gap 

assessments to mitigate development risks. 
y Section 11.0, Pages 111-112 

1.4.7 
Commonality with Other Identify how aspects of a Heavy Lift System (including stages, subsystems, and major components) cou Id have y Section 4.6, Pages 65-67 

User Applications commonality with other user applications, including NASA, DoD, commercial, and international partners. Section 10.0, Pages 93-105 
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Heavy Lift & Propulsion Technology (HLPT) Systems Analysis and Trade Study 

Statement Of Work (SOW) Rev. A 

Revised 11 November 2010 

1. The Contractor Statement of Work (SOW) 

TM-22899 

The Orbital Sciences Corporation ["the contractor"] proposes the following SOW which is suitable 
for incorporation into a contract. Included in this proposed SOW is our approach to completing 
the contract deliverables, as stated in Section VIII, Paragraph 9.0 of the Heavy Lift and Propulsion 
Systems Analysis and Trade Study Broad Agency Announcement (BAA). 

1.1 Management 

The contractor shall manage, control, and approve all work performed to accomplish the 
requirements of the SOW. 

The contractor shall monitor, control, and report project budgets and schedules; define, monitor, 
and control the project contract. 

The contractor shall provide a single point of contractual authority, communications, and 
contractual definition for the project to National Aeronautics and Space Administration (NASA). 

The contractor shall manage, control, and approve all work performed by subcontractors of the 
program. 

The contractor shall evaluate and report potential risks to accomplishing project objectives to 
NASA as they are identified. 

1.2 Reviews 

The contractor shall support weekly Telecons with NASA to status progress on study, issues, and 
action items. 

The contractor shall conduct a one-day Technical Interchange Meeting #1 to status 
accomplishments, planned work, identifying issues and resolution plans, and reviewing action 
items at NASA. Track any action items to closure. 

The contractor shall conduct a one-day Technical Interchange Meeting #2 to status 
accomplishments, planned work, identifying issues and resolution plans, and reviewing action 
items at NASA. Track any action items to closure. 

1.3 Reporting 

The Contractor shall report and document this work and fulfill the requirements of associated Data 
Requirement Descriptions (DRD's) as outlined in Data Procurement Document (DPD) 1380 
(Attachment J- 2). The contractor shall determine the data restriction that applies to each data 
deliverable and mark or transmit the data restriction in accordance with section 2.3.3 of the Data 
Procurement Document. 

The contractor shall prepare and deliver a Technical Interchange Meeting #1 and #2 Briefing 
Packages that provide a status of accomplishments, planned work, identifying issues and resolution 
plans, and reviewing action items in accordance with DRD 1380MA-002. [Total of two (2) 
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The contractor shall prepare and deliver a Final Scientific and Technical Report that complies with 
the requirements of NFS 1852.235-73 and includes all of the research, assessments, trade study 
results, system architecture assessment, gap-analyses, vehicle sizing assessment, technology 
roadmap, and the draft of an executable engine test plan in accordance with DRD 1380MA-001. 
[Total of one (1) Final Report with supporting data] 

1.4 Systems Engineering 

The contractor shall provide a single point of decision authority and communication for Heavy 
Lift System (HLS) Program systems engineering. 

1.4.1 Heavy Lift System Architecture Study 

The contractor shall evaluate the overall systems architecture to meet NASA HLS m1ss1on 
objectives: 

• Starting from the President's Vision for Space Exploration, Level 0 requirements, and Draft 
Level 1 requirements supplied by NASA; the contractor shall derive scientific, economic, and 
security goals and objectives for a HLS architecture that supports evolutionary human space 
exploration activities, with destinations including the Moon, Mars and its environs, near-earth 
asteroids, and Lagrange points. 

• The contractor shall perform system-level trade studies in support of requirements 
development activities, determine trade study decision criteria, select preferred options, and 
record results. 

1.4.2 Architecture Development 

The contractor shall develop candidate architectures that satisfy the mission requirements and 
objectives. 

1.4.3 Architecture Assessment 

The contractor shall assess the overall systems architecture chosen to meet NASA HLS mission 
objectives. 

The contractor shall provide a recommended list of HLS key decision attributes and rationale 
associated with each. 

The contractor shall provide a recommendation for the weighting of the recommended HLS key 
decision attributes. 

1.4.4 Architecture Sensitivity Assessment 

The contractor shall identify how changes to the weighting of key decision attributes affect the 
HLS architectures. 

The contractor shall identify how alternative ground rules and assumptions impact the identified 
alternative HLS solutions. 

The contractor shall analyze any variations in weighting and evaluate their impact on the HLS 
architecture rating. 
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The contractor shall identify how innovative or non-traditional processes, tools, and technologies 
can be applied the HLS to improve affordability and sustainability. 

1.4.5 Capability Gap Assessment 

The contractor shall perform a capability gap assessment for major HLS elements, and identify the 
functional performance characteristics required (i.e., thrust, Isp, mixture ratios, mass, throttle 
range, physical envelope, life-cycle costs, development schedules, and production rates), 
including: 

• First and Second stage engines (specifically including liquid oxygen/kerosene (LOx/RP-1) 
first and second stage propulsion systems and associated propulsion system elements) 

• In-space systems and elements (e.g.; upper-stage engines, fuel depots, transfer stages, etc.) 

• Heavy lift launch system elements consistent with identified preferred configuration(s) 
(e.g., tanks, propellant and pressurization systems, integrated system health management, 
auxiliary propulsion systems, avionics and control systems, structures). 

The contractor shall assess the Technology Development necessary to meet identified preferred 
HLS configuration and propulsion systems requirements, and quantitatively evaluate technology 
status using established metrics, specifically NASA Technology Readiness Level (TRL), 
Carabili-t)' Cost Readiness Level (CRL), Manufacturing Readiness Level (MRL), and Preoess 
System Readiness Level (SRL). 

The contractor shall identify technology capability gaps in the HLS architecture and identify 
specific areas where technology development is needed. 

The contractor shall identify impacts to the HLS life-cycle costs resulting from the architecture 
elements studied. 

1.4.6 Test Planning Strategies 

• The contractor shall selectively identify suggested incremental development testing, including 
ground and flight testing, of architecture study identified HLS elements, including first, second 
and upper stage propulsion elements, to enhance the Heavy Lift System development. 

• The contractor shall develop proposed technology development road maps inclusive of test 
strategies consistent with gap assessments to mitigate development risks: 

As an example, if supported by the architecture study, the contractor shall provide a 
roadmap for developing modular liquid oxygen/kerosene (LOx/RP-1) launch vehicle 
engine propulsion systems that shall support implementation of a propulsion system 
development program in support of Heavy Lift. 

Further, if supported by the architecture study the contractor shall define a plan to utilize 
an available AJ26 engine to obtain significant insight and data relative to the performance 
and behavior of Oxygen-rich, staged combustion systems. 

1.4.7 Cost Reduction Strategies and Commonality with Other User Applications 

• The contractor shall identify aspects of a HLS (including stages, subsystems, and major 
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components) with commonality for other user applications, including NASA, Department of 
Defense (DoD), commercial, and international partners, including: 

If supported by the architecture study the contractor shall define incremental approaches 
that lead from technology characterization to new engine system development in a short 
period of time. 

As an example, if supported by the architecture study, the contractor shall study and define 
the parameters and performance characteristics for a scalable main engine system that shall 
have broad application not only to NASA Heavy Lift, but to other launch vehicles and user 
applications, including broader NASA missions, DoD, commercial, and international 
partners. 

If supported by the architecture study, the contractor shall also study and propose a plan to 
adapt this new engine system to existing vehicles in the U.S. fleet, specifically the Taurus 
II and Atlas V. 

Further, if supported by the architecture study, the contractor shall also evaluate and assess 
the potential economic benefits of a widely utilized engine system and how, once in 
production, the use of these engine systems in existing vehicles could reduce life cycle 
costs. 

• The contractor shall identify how innovative or non-traditional processes or technologies can 
be applied to the HLS to improve affordability and sustainability. 

The contractor shall assess the applicability and benefits of selective innovative 
technologies implemented by the contractor in other areas. 

The contractor shall assess the applicability and benefits of reusable system elements. 

The contractor shall assess the applicability of technology elements from foreign partners. 

The contractor shall discuss how commercial practices might be applied to accelerate 
development of Heavy Lift System elements. 

2.0 Additional Data Deliverables 

The contractor shall provide technical information concerning any invention, discovery, 
improvement, or innovation made by the contractor in the performance of work under this contract. 
Technology Reports shall be prepared in accordance with DRD 1380CD-001. 

The contractor shall prepare and submit a Final Study Report in accordance with DRD 1380MA-
003. 

The contractor shall prepare and submit an Organizational Conflict of Interest (OCI) Mitigation 
Plan in accordance with DRD 1380MA-004. 

The contractor shall report mishaps and safety statistics to the MSFC Industrial Safety Branch in 
accordance with DRD 1380SA-001. The contractor shall submit directly into the NASA Incident 
Reporting Information System (IRIS) or shall use the forms listed in section 15.4 ofDRD 1380SA-
001 or electronic equivalent to report mishaps and related information required to produce the 
safety metrics. 
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SECTION# SECTION TITLE 

HLS-1 SCOPE 

HLS-2 APPLICABLE DOCUMENTS 
HLS-2.1 Government Documents 
HLS-2.2 Non-Government Documents 

HLS-3 REQUIREMENTS 

HLS-3.1 System Definition 

HLS-3.2 System Characteristics 

HLS-3.3 Ground Segment 

HLS-3.3.1 Integration 

HLS-3.3.1 Integration 

HLS-3.3.2 Launch Pad 

HLS-3.3.3 Transportation and Handling 

HLS-3.4 Launch Segment 

HLS-3.4.1 HLLV Performance 

HLS-3.4.1 HLLV Performance 

HLS-3.4.1 HLLV Performance 

HLS-3.4.1 HLLV Performance 
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SECTION TEXT Reauirement# 
This specification establishes the requirements 
for the NASA Heaw Lift System (HLS). 

This section contains all of the HLS 
requirements. 
The Heavy Lift System (HLS) includes all 
requirements associated with de1.eloping the 
NASA HLS, including but not limited to the 
Ground Segment, the Launch Segment, and the 
In-Space Seqment. 
The Heavy Lift System (HLS) ... 

This section contains all of the Ground Segment 
requirements for the Heavy Lift System (HLS). 

This section contains all of the Integration 
HLS-057 

requirements for the Heaw Lift System (HLS). 

This section contains all of the Integration 
HLS-058 

requirements for the Heavy Lift System (HLS). 

This section contains all of the Launch Pad 
HLS-056 

reauirements for the Heaw Lift System (HLS). 
This section contains all of the Transportation 
and Handling requirements for the Heavy Lift 
System (HLS). 

This section contains all of the Launch Segment 
requirements for the Heavy Lift System (HLS). 

This section contains all of the Performance 
requirements for de1.eloping the Heavy Lift Launch HLS-001 
Vehicle (HLL V). 
This section contains all of the Performance 
requirements for de1.eloping the Heavy Lift Launch HLS-002 
Vehicle (HLL V). 
This section contains all of the Performance 
requirements for de1.eloping the Heavy Lift Launch HLS-024 
Vehicle (HLL V). 
This section contains all of the Performance 
requirements for de1.eloping the Heavy Lift Launch HLS-025 
Vehicle (HLL V). 
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Reauirement Tittle Reauirement Text 

Integration Approach The HLS Integration Approach shall be Vertical. 

Launch Vehicle Stack 
The HLS Launch Vehicle Stack Integrated Height Constraint 

Integrated Height 
Constraint 

shall be 390 11. 

KSC Space Launch The HLS shall be Launchable from KSC Space Launch 
Complex 39 (SLC-39) Complex 39 (SLC-39). 

Minimum Performance to 
LEO 

The minimum HLS performance to LEO shall be 100 mt. 

Flight Performance The Flight Performance Reser1.e (FPR) oftctal ideal dV for 
Reserve the mission shall be a minimum of 1%. 

Max Acceleration: lnline The HLS Max acceleration for lnline Cargo only Missions 
Cargo only Missions (g) shall not exceed Sg. 

Max Acceleration lnline The HLS Max acceleration for lnline Crew Missions shall net 
Crew Missions exceed 4g. 



SECTION# SECTION TITLE 

HLS-3.4.1 HLLV Performance 

HLS-3.4.1 HLLV Performance 

HLS-3.4.1 HLLV Performance 

HLS-3.4.1 HLLV Performance 

HLS-3.4.1 HLLV Performance 

HLS-3.4.1 HLLV Performance 

HLS-3.4.2 HLLV Engines 

HLS-3.4.3 HLLV Core 

HLS-3.4.3 HLLV Core 

HLS-3.4.4 HLLV Fairing 

HLS-3.4.4 HLLV Fairing 

HLS-3.4.4 HLLV Fairing 

HLS-3.4.4 HLLV Fairing 

HLS-3.4.4 HLLV Fairing 

HLS-3.4.5 HLLV Strap On Booster 
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SECTION TEXT Requirement# 
This section contains all of the Perfonnance 
requirements for developing the Hea-..y Lift Launch HLS-026 
Vehicle (HLLV). 
This section contains all of the Perfonnance 
requirements for developing the Hea-..y Lift Launch HLS-027 
Vehicle !HLLV). 
This section contains all of the Perfonnance 
requirements for developing the Hea-..y Lift Launch HLS-028 
Vehicle (HLLV). 
This section contains all of the Perfonnance 
requirements for developing the Hea-..y Lift Launch HLS-034 
Vehicle (HLLV). 
This section contains all of the Perfonnance 
requirements for developing the Hea-..y Lift Launch HLS-035 
Vehicle (HLLV). 
This section contains all of the Perfonnance 
requirements for developing the Hea-..y Lift Launch HLS-049 
Vehicle (HLLV). 
This section contains all of the requirements for 
developing the Hea-..y Lift Launch Vehicle (HLLV) 
enqines. 
This section contains all of the requirements for 
developing the Hea-..y Lift Launch Vehicle (HLLV) HLS-003 
core. 
This section contains all of the requirements for 
developing the Hea-..y Lift Launch Vehicle (HLLV) HLS-004 
core. 
This section contains all of the requirements for 
developing the Hea-..y Lift Launch Vehicle (HLLV) HLS-006 
fairing/payload shroud. 
This section contains all of the requirements for 
developing the Hea-..y Lift Launch Vehicle (HLLV) HLS-007 
fairina/oavload shroud. 
This section contains all of the requirements for 
developing the Hea-..y Lift Launch Vehicle (HLLV) HLS-008 
fairina/oavload shroud. 
This section contains all of the requirements for 
developing the Hea-..y Lift Launch Vehicle (HLLV) HLS-009 
fairinq/pavload shroud. 
This section contains all of the requirements for 
developing the Hea-..y Lift Launch Vehicle (HLLV) HLS-036 
fairing/payload shroud. 
This section contains all of the requirements for 
developing the Hea-..y Lift Launch Vehicle (HLLV) 
strap on booster. 
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Requirement Tittle Requirement Text 

Max Acceleration: The HLS Max acceleration for all Sidemount Missions shall 
Sidemount All Missions (g) not exceed 3g. 

Max Dynamic Pressure: The HLS Max dynamic pressure for Sidemount designs shall 
lnline not exceed 650 psf. 

Max Dynamic Pressure: The HLS Max dynamic pressure for lnline designs shall not 
Sidemount exceed 800 psf. 

MECO Altitude The HLS MECO altitude shall occur at 75 nmi. 

The HLS TLl(LOR) dV from 130 nmi circ shall occur at 3165 
TLl(LOR) dV 

mis. 

Launch Vehicle Ultimate The HLS Launch vehicle ultimate strength safety factor for 
Strength Safety Factor new stages shall be 1.4. 

Maximum Core Stage 
Length 

The Maximum Core Stage Length shall be 71.3 m (23411) 

Maximum Diameter The core maximum diameter shall be constrained to 10 m 
Constraint (3311) 

LEO 8.4 m (27.511) Fairing The minimum LEO 8.4 m (27.5 ft) fairing dynamic envelope 
length length shall be 25 m (82 ft). 

LEO 8.4 m (27.511) Fairing The minimum LEO 8.4 m (27.5 ft) fairing dynamic envelope 
diameter diameter shall be 7.5 m (2411). 

LEO 10 m (3311) Fairing The minimum LEO 10 m (33 ft) fairing dynamic envelope 
length length shall be 20 m (65 ft). 

LEO 10 m (3311) Fairing The minimum LEO 10 m (33 ft) fairing dynamic envelope 
diameter diameter shall be 9.1 m (30 11). 

The HLS Fairing shall be jettisoned when 3-sigma Free 
Fairing Jettison 

Molecular Heating Rate is less than 0.01 BTU/1tA'-sec. 



SECTION# SECTION TITLE 

HLS-3.5 In-Space Segment 

HLS-3.5.1 Upper Stage 

HLS-3.5.2 Transfer Stage 

HLS-3.5.3 Orion Capsule 

HLS-3.5.3 Orion Capsule 

HLS-3.5.3 Orion Capsule 

HLS-3.5.3 Orion Capsule 

HLS-3.5.3 Orion Capsule 

HLS-3.5.3 Orion Capsule 

Orbital Sciences Corporation 
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SECTION TEXT Re aui re me nt# 
This sectioo contains all of the In-Space 
Segment requirements for the Heavy' Lift System 
(HLS). 
This sectioo contains all of the requirements for 
developing the Heavy' Lift System (HLS) Upper 
Stage. 
This sectioo contains all of the requirements for 
developing the Heavy' Lift System (HLS) Transfer 
Stage. 
This sectioo contains all of the requirements for 
ensuring that the Heavy' Lift System (HLS) is HLS-005 
compatible with the Orion Capsule. 
This sectioo contains all of the requirements for 
ensuring that the Heavy' Lift System (HLS) is HLS-037 
compatible with the Orion Capsule. 
This sectioo contains all of the requirements for 
ensuring that the Heavy' Lift System (HLS) is HLS-038 
compatible with the Orion Capsule. 
This sectioo contains all of the requirements for 
ensuring that the Heavy' Lift System (HLS) is HLS-039 
compatible with the Orion Capsule. 
This sectioo contains all of the requirements for 
ensuring that the Heavy' Lift System (HLS) is HLS-040 
compatible with the Orion Capsule. 
This sectioo contains all of the requirements for 
ensuring that the Heavy' Lift System (HLS) is HLS-041 
compatible with the Orion Capsule. 
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Reauirement Tittle Reauirement Text 

Payload: Accommodate 
Orioo MPCV 

The HLS LV shall accommodate the Orion MPCV. 

Launch Abort System The Launch Abort System (LAS) mass shall be defined as 
(LAS) Mass 16,005 lbm. 

Boost Protect Cover (BPC) The Boost Prctect Ca.ier (BPC) mass shall be defined as 
Mass 2331 lbm. 

The BPC jettison shall occur 27 seconds after Upper Stage 
BPC Jettison 

ignition. 

The LAS jettisoo shall occur 30 seconds after Upper Stage 
LAS Jettison 

ignition. 

LAS+CM+SM+Vehicle The combined LAS+CM+SM+vehicle adapter length shall be 
Adapter Length defined as 70.711. 



SECTION# SECTION TITLE 

HLS-3.6 Programmatic 

HLS-3.6.1 Cost 

HLS-3.6.1 Cost 

HLS-3.6.2 Schedule 

HLS-3.6.2 Schedule 

HLS-3.6.2 Schedule 

HLS-3.6.2 Schedule 

HLS-3.7 Human Rating 

HLS-3.7 Human Rating 

HLS-3.7 Human Rating 

HLS-3.7 Human Rating 

HLS-3.8 E\0I-.ed HLS 

HLS-3.8 E\0I-.ed HLS 

HLS-3.8 E\0I-.ed HLS 

HLS-3.8 E\0I-.ed HLS 

HLS-3.8 E\0I-.ed HLS 

Orbital Sciences Corporation 
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SECTION TEXT Re aui re me nt# 
This sectioo contains all of the Programmatic 

HLS-019 
requirements for the Heaw Lift System (HLS). 
This sectioo contains all of the Cost 

HLS-017 
requirements for the Heaw Lift System (HLS). 

This sectioo contains all of the Cost 
requirements for the Heaw Lift System (HLS). 

HLS-018 

This sectioo contains all of the Schedule 
HLS-014 

requirements for the Heaw Lift System (HLS). 
This sectioo contains all of the Schedule 

HLS-015 
reauirements for the Heaw Lift Svstem (HLS). 

This sectioo contains all of the Schedule 
requirements for the Heaw Lift System (HLS). 

HLS-016 

This sectioo contains all of the Schedule 
HLS-055 

requirements for the Heaw Lift System (HLS). 
This sectioo contains all of the Human Rating 

HLS-010 
requirements for the Heaw Lift System (HLS). 
This sectioo contains all of the Human Rating 

HLS-011 
reauirements for the Heaw Lift System (HLS). 
This sectioo contains all of the Human Rating 

HLS-012 
requirements for the Heaw Lift System (HLS). 
This sectioo contains all of the Human Rating 

HLS-013 
requirements for the Heaw Lift System (HLS). 
This sectioo contains all of the requirements for 
E\Ol1.1ng the Heaw Lift System (HLS) beyond the HLS-050 
initial operational capability. 

This sectioo contains all of the requirements for 
E\Ol1.1ng the Heaw Lift System (HLS) beyond the HLS-051 
initial operational capability. 
This sectioo contains all of the requirements for 
E\Ol1.1ng the Heaw Lift System (HLS) beyond the HLS-052 
initial operational capability. 

This sectioo contains all of the requirements for 
E\Ol1.1ng the Heaw Lift System (HLS) beyond the HLS-053 
initial operational capability. 
This sectioo contains all of the requirements for 
E\Ol1.1ng the Heaw Lift System (HLS) beyond the HLS-054 
initial operational capability. 
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Reauirement Tittle Reauirement Text 

Gova€™ t O-.ersight/lnsight 
The HLS shall ensure that the U.S. Government (NASA) has 
o-.ersighl/insight into the program. 

SLC Costs from ATP SLC Costs from ATP through 1st flight shall net exceed 
through 1st Flight $11.5 B. 
Combined Annual SLS L V 

The HLS combined SLS LV and KSC Ground Processing 
and KSC Ground 

Costs shall net exceed $1.2B annually. 
Processing Costs 

Minimum Flight Rate 
The HLS shall ha-.e a Minimum Flight Rate of2 flights per 
year. 

ATP Vehicle Development 
The HLS shall ha-.e an ATP Vehicle development (Phase A) 

start of FY2011. 
Launch System 

The HLS shall ha-.e a Launch System Operational Capability 
Operational Capability 

Readiness (a.k.a.; IOC) by CY2016 
Readiness 

Maximum Flight Rate The HLS Maximum Flight Rate shall be 4 flights per year. 

Human Rated The HLS shall be Human Rated. 

Safety & Reliability 
The HLS Safety & Reliability compared to Shuttle shall be a 
minimum of 1 O times better. 

Anytime Abort capability The HLS shall ha-.e Anytime Abort capability. 

Single Failure Tolerance 
The HLS shall be Single Failure tolerant to catastrophic 
e-.ent or utilize some other appro-.ed DFMR approach. 

Evolved Performance to 
LEO 

The HLS Evol-.ed Performance to LEO shall be 150 mt. 

Beyood LEO 8.4 m (27.5 The minimum beyood LEO 8.4 m (27.5 11) fairing dynamic 
11) Fairing length en.elope length shall be 9 m (30 11). 

Beyood LEO 8.4 m (27.5 The minimum beyood LEO 8.4 m (27.5 11) fairing dynamic 
11) Fairing Diameter en.elope diameter shall be 7.5 m (24 11). 

Beyood LEO 10 m (33 11) The minimum beyood LEO 10 m (3311) fairing dynamic 
Fairing Length en.elope length shall be 9 m (8211). 

Beyood LEO 10 m (33 11) The minimum beyood LEO 10 m (3311) fairing dynamic 
Fairing Diameter en.elope diameter shall be 9.1 m (29 11). 
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Technology Readiness Levels (TRL) Color Coded 

TRL 

9 

8 

7 

6 

5 

4 

3 

2 

Definition 

Actual system 'flight proven' through 
successful mission operations 

Actual system com pleted and 'flight qualified' 
through test and demonstration (ground or 
space) 

System prototype demonstration in a space 
environment 

System/subsystem model or prototype 
demonstration in a relevant environment 
(ground or space) 

Component and/or breadboard validation in 
relevant environment 

Component and/or breadboard validation in 
laboratory environment 

Analytical and experimental critical function 
and/or characteristic proof of concept 

Description 

In almost all cases, the end of last 'bug fixing' aspects of true 'system development'. This might include integration of 
new technology into an existing system. This TRL does not include planned product improvement of ongoing or reusable 

In almost all cases, this level is the end of true 'system development' for most technology elements. T his might include 
integration of new technology into an existing system . 

TRL 7 is a significant step beyond TRL 6, requiring an actual system prototype demonstration in a space environment. 
The prototype should be near or at the scale of the planned operational system and the demonstration must take place in 
space. 

A major step in the level of fidelity of the technology demonstration follows the completion of TRL 5. At TRL 6, a 
representative model or prototype system or system - w hich would go well beyond ad hoc, 'patch-cord' or discrete 
component level breadboarding - would be tested in a relevant env ironment. At this level, if the only 'relevant environment' 
is the environment of space, then the model/prototype must be demonstrated in space. 

At this level, the fidelity of the component and/or breadboard being tested has to increase significantly. The basic 
technological elements must be integrated with reasonably realistic supporting elements so that the total applications 
(component-level, sub-system level, or system-level) can be tested in a 's imulated' or somew hat realistic environment. 

Following successful "proof-of-concept'' work, basic technological elements must be integrated to establish that the 
"pieces" w ill work together to achieve concept-enabling levels of performance for a component and/or breadboard. This 
validation must be devised to support the concept that was formulated earlier, and should also be consistent w ith the 
requirements of potential system applications. T he validation is "low-fidelity'' compared to the eventual system: it could be 
com posed of ad hoc discrete components in a laboratory. 

At this step in the maturation process, active research and development (R&D) is initiated. This must inc lude both 
analytical studies to set the technology into an appropriate context and laboratory-based studies to physically validate that 
the analytical predictions are correct These studies and experiments should constitute "proof-of-concept'' validation of 
the applications/concepts formulated at TRL 2. 

One:• bas.le physical prtnclples are observed, then at the next level of maturaUon, practical applk:dorii ofthoi• 
chiracteris1fes can be 'lnv.enlBd' 9r ldenllffed. H this Ml. the applleatlon is $1111 speculatii.le: there is not experimental 
prOQf or dif:illled anatysls to support the conjecture. 
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Manufacturing Readiness Levels (MRL) Color Coded 

MRL 

9 

8 

7 

6 

5 

4 

3 

2 

Definition Descri tion 
This is the highest level of production readiness. Engineering/design changes are few and 
generally limited to quality and cost impro-..ements. System , components or items are in 

Full Rate Production demonstrated and production and m eel all engineering, performance, quality and reliability requirements. 
lean production practices in place. Materials, manufacturing processes and procedures, inspection and test equipment are 

controlled to six-sigma or some other appropriate quality level. FRP unit cost meets goal, 
fundin sufficient for roduction al re uired rates. 

Low Rate Production demonstrated. 
Capability in place to begin Full Rate 
Production. 

Pilot line capability demonstrated. 
Ready to begin low rate production. 

Capability to produce systems, 
subsystems or components in a 
production representative en1.1ronm ent. 

Capability to produce a prototype 
system or subsystem in a production 
relevant environment. 

Capability to produce prototype 
components in a laboratory 
environment. 

Manufacturing Proof of Concept 
Developed 

l\llajor system design features are stable and proven in test and evaluation. Materials are 
available tom eel planned rate production schedules. l\llanufacturing processes and 
procedures are established and controlled to three-sigma or some other appropriate quality 
level to meel a low rate production environment. Production risk monitoring ongoing. LRIP 
cost goals met, learning curve validated. Actual cost model developed for FRP environment, 
with im act of Continuous im rovem enl. 

Detailed system design essentially complete and sufficiently stable to enter low rate 
production. All materials are available to meet planned low rate production schedule. 
Manufacturing and quality processes and procedures prown in a pilot line eswironment, under 

Detailed design is underway. Material specifications are approved. Materials available to meet 
planned pilot line build schedule. Manufacturing processes and procedures demonstrated in a 
production representative environment. Detailed produc bility trade studies and risk 

Initial mfg approach developed. Majority of manufacturing processes have been defined and 
characterized, but there are still significant engineering/design changes . Preliminary design of 
critical components com pleled. Produc bility assessments of key technologies complete . 
Prototype m aterials, tooling and test equipment, as well as personnel skills have been 
demonstrated on subsystems/system s in a production relevant environment. Cost targets 
allocated. Long lead and key supply chain elements identified. Industrial Capabilities 
Assessm ent (ICA) for MS B completed. Mfg strategy refined and integrated with Risk Mgt 
Plan. Cost model based u on detailed end-to-end value stream ma . 
Required investments, such as manufacturing technology developm ent identified. Processes 
to ensure manufacturability, produc bility and quality are in place and are sufficient to produce 
technology dem onslrators. Manufacturing risks identified for prototype build. Manufacturing 
cost drivers identified. Producibility assessments of design concepts have been completed. 
Key design performance parameters identified. Special needs identified for tooling, facilities, 
material handlin and skills. 

Conduct analytical or laboratory experiments to validate paper studies. Experimental 
hardware or processes have been created, but are not yet integrated or representative. 
Materials and/or processes have been characterized for manufacturability and availability but 
further evaluation and demonstration is r uired. 

~ b..,.. ~ngSClilnceand/orCC11C'lt-ll'l>edtl~ Ckrielt
ldeiifflcallan dmlterilll and~ ap~ .. lmled top.,.-studles and analysis 
~ and -- are1111 
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Phase 

Full Rate Production/ Sustainment 

Production & Deployment leading to 
a Full Rate Production (FRP) 

decision. 

Engineering & Manufacturing 
Development (EIIII)) leading to a 

Mlestone C decision. 
Engineering & Manufacturing 

Developm ent(EMD) leading to Post 
CDR Assessment 

Technology Development (TD) 
phase leading to a Milestone B 

decision. 

Material Solution Analysis (MSA) 
leading to a M lestone A decision. 

Pre-Material Solution Analysis 



Cost Readiness Levels (CRL) Color Coded 

Orbital Sciences Corporation 
Launch Systems Group 

CRL Description 

9 End of project actual cost 

8 Cost fit for very firm engineering decisions and very firm budget commitments (+/- 5%) 

7 Cost flt for firm engineering decisions and firm budget commitments (+/- 15%) 

6 Cost fit for PDR engineering decisions and PDR budget use(+/- 25%) 

5 Cost fit for preliminary engineering decisions and preliminary budget use (+/- 35% ) 

4 Cost fit for very preliminary engineering decisions and very preliminary budget use (+/- 45%) 
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System Readiness Levels (SRL) Color Coded 

9 System Deployment 

8 System Verification and Validation 

7 System Integration and Testing 

6 Sub-System Integration and Testing 

5 System Final Design and Start of Manufacturing 

4 Sub-Systems and Componets have been designed. 

3 System Architecture has been designed. 

2 System Requirements have been developed. 
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Ops 

ORR 

SVR 

T&V 

CDR 

PDR 

ACR 

SRR 
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System Readiness Levels (SRL) Mapped to Program Phases 

_f ....................... ~ Pro1ect at SRL 3 

lJser 
Requirements 

System 
Requirements 

\ 

\ 
Ar( hi'tectural System 
Design 

Sub-Syst em and 
Component Oes~gn 

ProJe<;t, or desjgn 
m od 1flc.a t,1on, I nrtl-atlon 

2 :3 

. . . . : . . . . . : . . . . . : . . . . . : . . . . . : . . . . . 

. . . . . . 

............ •111 •••••••••• 

Bui ld 

4 s 

Sy.stem 
Validation 

System 
Verification 

I 
lntegratfon, Verrfiaition and 

Testing ind uding prototyping 

I 

6 

Siub-5-)'stem lntegrati011, 
Verification and Testing 

1 

Oellvery Into Serv1ce 

8 

Progress.Ion a g,a1nst SRL.s 

Ops ORR SVR T&V CDR PDR ACR SRR 

D-9 

TM-22899 



Orbital Sciences Corporation 
Launch Systems Group 

This page intentionally left blank. 

D-10 

TM-22899 



Orbital Sciences Corporation 
Launch Systems Group 

APPENDIX E- HEAVY LIFT SYSTEM CONFIGURATION AND PERFORMANCE SUMMARY 

E-1 

TM-22899 



Orbital Sciences Corporation 
Launch Systems Group 

E-2 

TM-22899 



Orbital Sciences Corporation 
Launch Systems Group 

E-3 

TM-22899 



Orbital Sciences Corporation 
Launch Systems Group 

E-4 

TM-22899 



Orbital Sciences Corporation 
Launch Systems Group 

E-5 

TM-22899 



Orbital Sciences Corporation 
Launch Systems Group 

This page intentionally left blank. 

E-6 

TM-22899 



Orbital Sciences Corporation 
Launch Systems Group 

APPENDIX F-HEAVY LIFT SYSTEM GROUND FACILITIES ROM COST ESTIMATES 

F-1 

TM-22899 



Orbital Sciences Corporation 
Launch Systems Group 

HLS Facility ROM Cost Assessment 

TM-22899 

The Orbital team analyzed the existing KSC and Stennis ground facilities and infrastructure to 
identify required improvements to accommodate each of the heavy lift architecture concepts. 

Stennis: Engine testing infrastructure (e.g.; new/upgraded test stands) 

KSC Facilities: VAB, LCC, OPF, PHSF, O&C, SSPF, RPSF 

KSC Infrastructure: fueling systems, fuel tanks, Launch Pad 39A/39B, Mobile Transporter, 
Mobile Launch Platform 

Assumes that Existing KSC Facilities and Infrastructure can be Modified and Upgraded 

Stennis costs assume full up integrated engine tests (i.e.; costs driven by number of engines - no 
effort to determine costs for additional complexity of LH2 engines) 

Shuttle derived concepts assume that existing infrastructure (e.g.; VAB, Crawler, pad fueling 
systems and tanks, etc.) can be used with moderate modifications/upgrades 

Assumes that some new infrastructure must be developed (e.g.; new MLP, New Crawlers, new 
tanks, and new fueling systems for RP, etc.) 

These ROM cost estimates are parametric, and actual bottoms up cost estimates need to be worked 
in much more detail with NASA KSC 

The data provided in this Appendix was used by Orbital for reference in order to compare the costs 
of using existing vs. new MLPs and tank farm. 
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Model Based Systems Engineering Approach Applied to HLS Study 

TM-22899 

Although not identified as a task or deliverable in the Statement of Work, Orbital management 
approved the use of applying Model Based Systems Engineering (MBSE) tools and techniques on 
the Heavy Lift study. The motivation for using an MBSE approach was a desire to avoid the 
typical document-centric systems engineering approach, and employ one that was more model
centric, more useful, and (hopefully) more efficient. 

Since the MBSE effort was conducted by one of the study team-mates as an independent research 
project as part of a Masters of Systems Engineering research project, the effort associated with 
applying MBSE to the HLS study was performed in parallel with the HLS study outside of work, 
at no cost to NASA. Appendix F documents the results of using this methodology on the HLS 
study, and identifies the pros and cons of employing MBSE vs. a more traditional systems 
engineering approach. 

Background 

Currently systems engineering in most aerospace companies is performed using antiquated 
processes (e.g.; desktop spreadsheets, databases, analyses, and documents). System tasks are 
parsed out to the engineering team who do their best to communicate and coordinate the 
development of a complex system. However, as complexity of the system and the number of 
individuals involved increases, so does the likelihood of errors, miss-communication, and wasted 
effort. This inherent challenge increases dramically for large programs like the HLS, where many 
contractors are employed at multiple geographically distributed sites around the country. As a 
result, systems engineering oversight has to be increased, adding cost and schedule to the program. 

In contrast, a promising technology called Model Based Systems Engineering (MBSE) utilizes an 
integrated desktop based tool to perform and manage the entire system engineering life-cycle 
process via an integrated model-based environment. What was really attractive about using this 
technology on the HLS study was that Orbital already has an MBSE tool but was not using it on 
any of their programs. This provided for a research opportunity to explore how well MBSE could 
be utilized to execute a short duration program. 

The project sought to explore whether an opportunity existed to advance the state-of-the-art of 
Orbital's systems engineering processes to one that was more model-centric by exploiting an 
existing Orbital capability that is currently not being utilized. The goal was to employ MBSE as 
a research project, evaluate the costs and benefits, and determine whether a process improvement 
would benefit Orbital. 

MBSE vs. Traditional Systems Engineering 

Typically in aerospace companies, systems are developed independent of MBSE techniques or 
based on "quasi" MBSE approaches that do not use the industry established guidelines for MBSE 
(e.g.; INCOSE's "4-Pillars of MBSE"). When actual MBSE tools (e.g.; System Modeling 
Language (SysML)) and techniques are used, it is usually as something of an "afterthought" and 
either poorly integrated into the program, or the tools and techniques are miss-applied due to a 
lack of knowledge and/or experience with MBSE. 

For example, the traditional systems engineering approach would be to document system 
requirements in a specification ( e.g.; Word® document), then once the specification was approved 
the requirements document is either uploaded into a database, or the requirements are entered into 
a database by hand. The system architecture is developed independently of the requirements 
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development process - often in parallel - causing additional re-work due to the iterative nature of 
system development. Once the high level requirements and system architecture have been 
developed, the process is repeated for the major segments, elements, sub-systems, and 
components. If representative SysML-likemodels are produced they are generatedin a viewgraph 
program (e.g.; PowerPoint®) primarily for communication purposes. Typically, no attempt is 
made to electronically link requirements to the stagnant model, nor are any of the more useful 
SysML features enjoyed (e.g.; integrating mode! elements, behavior, and requirements together). 

Results 

In contrast, the approach used during this project was to develop the system architecture directly 
in the SysML tool, thereby maximizing the potential advantages of employing J:,,.IBSE early in the 
system engineering process. The generic systems modeling approach shown in the figure below 
illustrates how requirements definition leads to the logical architecture analysis, which in tum 
leads to the physical architecture analysis. Requirements were entered directly into the SysML 
tool, and functional flow block diagram models were generated in the tool and linked to the 
requirements. Finally representative architecture diagrams and system models were developed, 
and also linked back to the functional blocks which automatically linked the associated architecture 
elements to the appropriate requirement(s), thereby integrating the requirements with the end-to
end system design. 

As the architectures and system requirements matured, the SysML models evolved, eventually 
producing all views (i .e.; re qui rem ents, behavioral, configuration, and physical) necessary to fully 
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describe the resultant system architecture. By employing this model-centric approach from the 
beginning, the research project succeeded in avoiding many of the drawbacks associated with a 
typical document-centric systems engineering approach, and realized some of the efficiencies and 
benefits offered by MBSE on a real-world program that was of a short enough duration to complete 
the project within the confines of a few months. 

The MBSE techniques that were utilized facilitated development of a system-of-systems 
architecture in support of the NASA HLS launch vehicle architecture study. The project explored 
the effectiveness of employing MBSE to more efficiently define requirements, develop 
architectures, and document systems. 

Examples of the system models as developed in the tool are provided, including physical 
architecture diagrams, use cases, and functional flow block diagrams are provided in this appendix. 
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1 Summary 
Pratt & Whitney Rocketdyne (PWR) conducted a Heavy Lift & Propulsion Technology (HLPT) 

Systems Analysis & Trade Study under contract NNMl 1AA14C for NASA Marshall Space Flight Center 
(MSFC). The firm fixed price study contract was awarded under Broad Agency Announcement (BAA) 
NNM10ZDA001K1 in support of NASA's Space Launch System (SLS) planning activities. The systems 
analysis and trade study approach involved (1) assessment of SLS requirements and key decision 
attributes; (2) analyses of SLS vehicle concepts; and (3) assessment of capability gaps and technology, 
affordability, and innovative ideas with a focus on SLS affordability. The study included systems 
engineering utility analysis to capture the sensitivity of customer expectations as Key Decision Attributes 
(KDAs) and systematically balanced all objectives in proportion to their assessed importance. The KDAs 
and utility analysis were used to assess SLS vehicle configurations and provided a methodology to 
downselect a set of eight robust vehicle configurations covering a wide range of options for more detailed 
assessment. The study identified and assessed the technology, affordability, and innovative ideas for each 
of the downselected robust vehicle configurations and determined the improvements in development and 
recurring cost at the SLS vehicle system level. 

The following key conclusions and observations were identified in the study: 

1. Viable Shuttle-Derived vehicle configurations in the 130 mT class using a LOX/LH2 first stage, a 
LOX/LH2 second stage, and either solid or liquid strap-on boosters can meet the NASA budget 
profile and provide a 130 mT full-up payload capability at first operational flight. 

2. Utilization of existing and derivative engines provides a benefit of low Design, Development, 
Test and Evaluation (DDT&E) costs, less risk, and high demonstrated reliability. 

Effective use of existing RS-25D assets during development (use on 2 test flights) with 
early start and concurrent development of the improved-affordability RS-25E provides 
significant DDT&E and recurring cost savings. 
The F-lA gas-generator cycle engine provides the best option for a LOX/RP large 
booster propulsion application by leveraging PWR/NASA program heritage. 
The J-2X engine provides flexibility and extensibility as propulsion for an upper stage 
and in-space/Beyond-Earth-Orbit system. 

3. Several in-space propulsion system technology development opportunities were identified and 
preliminary technology development roadmaps were defined for Nuclear Thermal Propulsion and 
Power, Nuclear/Solar Electric Propulsion and Power, and LOX/Methane Chemical Propulsion. 

4. Significant PWR propulsion system cost reductions are enabled with incorporation of 
programmatic, technology, and engine-specific affordability innovations. 

PWR Consolidation Initiatives will reduce infrastructure cost by more than 40% and 
enable better fixed costs sharing through Flexible Mixed Model (FMM) operations. 
PWR has adequate production capacity for foreseeable NASA and Department of 
Defense (DoD) needs with some nominal capital required for higher rates. 
PWR's Flexible Mixed Model brings the benefit of PWR overall production rate across 
all customers to each program with up to 27% engine cost reduction. 
PWR is actively working specific affordability improvements for the RS-25E, J-2X, RS-
68B, and F-lA engines that are applicable to SLS. 
Opportunity exists to leverage PWR-NASA experience to reduce traditional NASA 
oversight costs. 
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PWR advanced materials and processes are showing strong near-term potential for 
reducing component-specific production costs. 
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2 Introduction 
PWR conducted a Heavy Lift & Propulsion Technology (HLPT) Systems Analysis & Trade Study 

under contract NNM11AA14C for NASA Marshall Space Flight Center (MSFC) with a period of 
performance from November 22, 2010 through June 3, 2011. This report documents the study 
methodology, systems analysis results, downselected set of robust SLS vehicle configurations, and 
prioritized set of quantified technology, innovations, and affordability improvements. 

2.1 Background 
NASA is seeking an innovative path for human space exploration which strengthens the capability to 

extend human and robotic presence throughout the solar system. NASA is laying the ground work to 
enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange 
points, and Mars and its environs. The Exploration Systems Mission Directorate (ESMD) is leading the 
Nation on a course of discovery and innovation that will provide the technologies, capabilities and 
infrastructure required for sustainable, affordable human presence in space. 

NASA is examining the trade space of potential heavy lift launch and space transfer vehicle concepts 
under the Space Launch System (SLS) planning activities. The focus is on affordability, operability, 
reliability, and commonality with multiple end users (NASA, Department of Defense (DoD), commercial, 
international partners, etc.) at the system and subsystem levels. For the purposes of this BAA, 
affordability is defined as lifecycle cost which consists of DDT &E, production and operations (fixed and 
variable). A major thrust of this activity is space launch propulsion technologies that will enable a more 
robust exploration program, support commercial ventures, and related national security needs. 

NASA BAA NNMlOZDA00 lK solicited proposals for Heavy Lift and Propulsion Technology 
Systems Analysis and Trade study to seek industry input on technical solutions in support of heavy lift 
system concepts studies. The objectives of the studies were to capture potential system architectures and 
identify propulsion technology gaps. The study efforts were to include architecture assessments of a 
variety of heavy lift launch vehicle and in-space vehicle architectures employing various propulsion 
combinations and how they can be employed to meet multiple mission objectives. The focus of the 
studies were to be on developing system concepts that can be used by multiple end users with a strong 
emphasis on affordability, based on the contractor's business assumption. 

PWR developed a detailed study plan that addressed each of the Technical Objectives called out in 
the BAA. Figure 1 summarizes the BAA Technical Objectives and indicates where each of the 
objectives were addressed in the study plan and statement of work as well as where they are discussed in 
this Report. 

2.2 Program Team 
Performing the HLPT study required forming a team with expertise in a wide range of disciplines 

encompassing vehicle, mission, con-ops, cost, reliability, and utility analysis; main propulsion system and 
engine subject matter experts. An experienced and committed team was assembled to conduct the HLPT 
study. As detailed in the program methodology, the study logic was established at the inception of the 
contract so that the appropriate team members could be identified and the study team could be formed. 
The PWR study team organization is shown in Figure 2. 

PWR formed a study team with proven experience and capabilities in the design and development of 
space flight-qualified systems for both NASA and the United States Air Force (USAF) and NASA MSFC 
propulsion system and technology development. The team used data based on space-qualified flight 
hardware programs, as well as data and knowledge gained on NASA MSFC propulsion system programs 
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in performance of the HLPT program. Detailed data on propulsion system life cycle cost (LCC) 
[DDT &E, production and operations (fixed and variable)], safety and reliability, development schedules, 
and technology roadmaps generated on ptior and cunent contracts and internally-funded projects, was 
leveraged in suppo1t of this study. 

• 
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Figure 1. PWR study addressed all technical objectives in the BAA. 
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Figure 2. Team orginazation was structured to responsively meet NASA needs. 

PWR's key subcontractor, SpaceWorks Engineering, fuc. (SEI), has over 10 years experience 
conducting similar vehicle and technology analysis studies for NASA, USAF, and c01mnercial customers. 
Since 2007, SEI has provided cost estimating and affordability integration suppo1t to the NASA 
Constellation Program Systems Engineering and futegration (SE&I) Strategic Analysis Cost Team, 
including model sensitivity analysis and integrated affordability assessments. SEI's work with NASA 
provided anchored LCC analysis for exploration missions and la1mch systems in the HLPT study. 

2.3 Program Approach 
Details of the study approach and results are presented in the following sections of the report. Figure 

3 summarizes the key study activities. The requirements assessment and key decision att1ibute discussion 
is detailed in Section 3. The SLS Vehicle Concept Analysis study activities and results are detailed in 
Section 4. The Affordability, Innovations, and Technology Assessment work is detailed in Section 5. 

Figure 3. Key activities of study approach. 
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PWR used a detailed Study Plan that focused the technical key contributors to meet our commitments 
on cost, schedule, and quality of deliverables. PWR continuously reviewed the study plan with NASA to 
ensure the study had correct and up-to-date focus. The study plan/schedule, provided in Figure 4, 
includes all summary project activities and obligations. 

Task Name Nov '1 O I Dec '1 O I Jan '11 Feb '11 IMar '11 Aor '11 Mav '11 Jun '11 
ORD Deliverables l , v V V V ; V V'+ 

Contract Award Effective Date 
... ..... ,- l 

~ I -
~ 12122 TIM 1 Briefing Package DRD 1362MA-002 

.. 4'2}i TIM 2 Briefing Package DRD 1362MA-002 

Final study Report DRD 1362MA-004 ~ 5119 

Final Scientific and Technical Report DRD 1362MA-001 " 5(19 

NASA New Technology Summary Report DRD 1362CD-001 

'~ ~2122 

• 5119 

OCI Mitigation Plan - DRD 1362MA-003 

Mishap & Safety statistics Reports DRD 1362SA-001 • • : • • i • <: 

10000 Project M anagement T T 

11000 Project Management & Administration ~ ~ ~ ~ ~ ~~~~~~ .. ~~~~~~ ... 
12000 Business Management & Contracts 
13000 Reporting - TIM 1 Briefing Generation & Presentation ~ ~.1k 13000 Reporting - TIM 2 Briefing Generation & Presentation 
13000 Reporting Final Reports 

20000 Re<1uire1nents Asse ssment 0 0 
21000 Update NASA Requirements & Groundrules rz,\. 
22000 Finalize Key Decision Attributes =, 
22000 Utillty Definition t, ....... 

30000 SLS Cont eI>t Systems Analysis T 

31000 Finalize study Plan .,,,~ 
31000 Vehicle Key Attribute Response Surface Equations 

. 
~ . 31000 SLS System Performance Analysis 

31000 ART Review, Assessment, Screening 
32000 Analyze Propulsion System Characteristics I i:il , 

40000 Technology, Innovations, Affordability Asse ssment T 

41000 Early Idea Identification .. . 
41000 Capabillty Gap Analysis & TRL Assessment ~ 

™ 
41000 Utillty Assessment of Improvements 

42000 Priorttization of Approaches 

42000 Detailed Analysis of Improvements 

42000 Technology Roadmaps & Recommendations 

Figure 4. Integrated Master Schedule was aligned to meet customer needs and milestones. 

Our Technical Approach followed a clearly defined integrated Work Breakdown Structure (WBS), 
Statement ofW ork (SOW) and Integrated Master Schedule ([MS) The study involved Requirements 
Assessment (WBS 20000), SLS Concept Systems Analysis (WBS 30000), Technology, Innovations, 
Affordability Assessment (WBS 40000), and Project Management (WBS 10000) The study used a 
standard process that features identification of ground-rules and assumptions, utility based selection 
criteria, alternate candidate development and maturation, independent key decision attribute assessments, 
capability gap identification, technology/innovations/affordability idea prioritization, and roadmap/risk 
reduction planning. Our Advisory Review Team (ART), with broad ~perience in space-qualified systems 
and studies, provided critical review and guidance at key decision points in the study, infused our industry 
domain knowledge and lessons learned to the core technical team, and provided a consistent view of all 
analytical results. 

6 
Distribution: US Government Agencies and US Government Agency Contractors Only 

Export Controlled 



Pratt & Whitney Rocketdyne, Inc RD11-155 

Figure 5 provides a more detailed depiction of the study approach including screening the SLS 
vehicle configuration point designs to enable downselecting a set of robust concepts and screening the 
technology, innovations, and affordability improvement ideas to provide recommendations and 
quantification of the potential benefits. Task boxes shaded in green were completed prior to the study 
contract work. 
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Propulsion 

System 
Characteristics 
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Technologies, 
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Figure 5. Our Team performed utility trades and analysis using a well defined process that 
leveraged the team capabilities and prior internally-funded work to assess over 2,200 SLS 

vehicle configuration point designs. 
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3 Requirements and Key Decision Attributes Assessment 
The PWR study team reviewed all documents associated with SLS requirements and ground rules and 

assumptions that were provided as reference material under the HLPT contract. 2 , 3 , 4 , 5, 6 , 7 , 8 After 
reviewing the reference material and incorporating lessons learned from prior PWR vehicle system study 
experience, a set of baseline ground rules and assumptions and conceptual definition requirements were 
developed for use in the HLPT study. The major study ground rules and assumptions are described in 
Section 3.3 under the related key decision attributes. 

3.1 Utility Analysis 

Utility analysis methodology was used in the study to identify and assess the key decision attributes 
relevant to the SLS. The utility analysis was led by a PWR subject matter expert with experience 
performing propulsion system level utility analysis on the J-2X engine program with NASA MSFC. The 
methodology enables assessment of competing design influences by balancing the identified objectives in 
proportion to their system-level importance. The utility analysis enabled quantitative comparisons among 
dissimilar attributes by developing mathematical models to map customer, end-user, and decision-maker 
preferences over the SLS trade space. A multi-functional team was used to assess the SLS objectives 
with the intent to capture the sensitivity of end customer expectations as defined key decision attributes. 

Utility analysis was used to score each SLS configuration using a common methodology. The overall 
utility is a function of the value of each attribute and represents overall strength of customer preference 
and is defined by the following equation: 

where: 
~=weighting of attribute i; 
Ui = utility function of attribute i; 
Xi= value of attribute i 

SLS key decision attributes and lower and upper bound values were defined as discussed in Section 
3.2. The utility function for each of the defined key decision attributes was developed as described in 
Section 3.3. The baseline weighting (or scale factor, k) for each KDA was systematically determined as 
detailed in Section 3.4 

3.2 Key Decision Attribute Deffaitions and Ranges 
The PWR multi-functional team including engineering, program management, manufacturing, and 

NASA customer relations representatives reviewed the NASA SLS and Heavy Lift Launch Vehicle 
(HLLV) objectives and pertinent reference material and defined a set of six SLS key decision attributes. 
The focus of the KDA definition activity was to capture quantifiable attributes that were expected to 
strongly influence the decision making process. The identified KDAs cover the life cycle of the SLS and 
therefore include the design, development, and test period as well as recurring operations for SLS 
launches and missions. 

Figure 6 provides a summary of the six SLS key decision attributes identified and assessed in the 
HLPTstudy. 
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Figure 6. SLS Key Decision Attributes were defined and ranges were set to facilitate utility 
analysis. 

The six KDAs are defined as follows: 

1. SLS Payload to LEO: The gross payload delivered by the SLS vehicle to a 30xl30 nmi low 
Eruth orbit (LEO) at 28.5° inclination from KSC. Payload is defined as the total injected 
mass at the destination orbit minus the bum out mass of the final stage. Quoted payload 
capabilities are gross mass delivered to final destination which includes any payload mru·gin. 
The unit of measurement for this KDA is metric tons (mT). 

2. SLS Development Schedule: The petiod from Authotity to Proceed (ATP) to Operational 
Capability Readiness (OCR) for the SLS configuration. Operational Capability Readiness is 
defined as being the date which flight tests have been successfully conducted and the Design 
Ce1tification Review has been completed. The unit of measurement for this KDA is months. 

3. SLS Safety: The probability of loss of crew for an SLS ascent to orbit. The lmit of 
measurement for this KDA is Mean Missions Between Failures (MMBF). 

4. SLS Development Cost through 1st Operational Flight: The Design, Development, Test, and 
Evaluation (DDT &E) cost including two test flights and the production and operations cost of 
the first operational flight. This KDA captures all SLS cost from ATP through and including 
the first operational flight. The lmit of measurement for this KDA is Fiscal Year 2010 billion 
dollars (FYI 0$B). 
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5. SLS Recurring Cost per Year: The production (including all fixed and variable) cost and 
operations cost per year. The unit of measurement for this KDA is Fiscal Year 2010 million 
dollars (FY10$M). 

6. Over/Under NASA Yearly Budget Profile: The highest yearly SLS cost relative to an 
assumed NASA budget profile. A negative value means that the predicted yearly SLS cost 
profile is under the NASA budget profile throughout the SLS development and production. 
The unit of measurement for this KDA is Fiscal Year 2010 million dollars (FY10$M). 

As part of the utility analysis methodology, lower and upper bound values for each KDA were 
defined. The KDA value bounds were defined to be wide enough to be able to capture and assess all 
reasonable SLS configuration options while not being so spanning that the impact of differences in KDA 
values would be diluted when comparing SLS configurations. Figure 6 provides the lower and upper 
bound values for each of the six KDAs. 

The lower and upper values for the six KDAs are as follows: 

1. SLS Payload to LEO: 70 mT to 160 mT 

2. SLS Development Schedule: 72 months to 96 months 

3. SLS Safety: 500 l\tITvfBF to 2000 l\tITvfBF 

4. SLS Development Cost through P1 Operational Flight: $SB (FY10$B) to $15B (FY10$B) 

5. SLS Recurring Cost per Year: $400M (FY10$M) to $1800M (FY10$M) 

6. Over/Under NASA Yearly Budget Profile: -$1000M (FY10$M) to +$1000M (FY10$M) 

3.3 Key Decision Attribute Utility Functions and Ground Rules and Assumptions 
A utility function, u;(x;), was constructed for each key decision attribute to model the strength of 

preference over the feasible range as defined in the prior section. The utility functions were developed 
through set of detailed exercises with the multi-functional PWR team evaluating hypothetical trades and 
degrees of risk aversion and facilitated by our subject matter expert. With appropriate ranges, the utility 
functions result in an "S"-shaped curve representing three distinct regions. The slope of each curve 
indicates the relative worth of marginal improvement. 

3.3.1 SLS Payload to LEO 

The utility function for this KDA is depicted in Figure 7. The shape of the utility function indicates 
that, above approximately 140 mT, there is a diminishing return on additional payload capability. 
Incremental improvements are most valuable in the mid-range of about 100 mT to 130 mT. 
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Figure 7. Payload to LEO Utility Function. 

The snidy team assessed the SLS reference mate1ial and established the following ground rnles and 
assumptions relevant to the SLS Payload to LEO KDA: (1) the payload range of 70 mT to 160 mT was 
intended to capture a wide range of potential SLS missions; (2) the vehicle and mission analysis 
methodology utilized the NASA HLL V trajecto1y / ascent flight profile ground rnles and assumptions 2; 

(3) the destination orbit was set at 30x130 nmi at 28.5° orbit from KSC; (4) all quoted payloads are based 
on a cargo configuration SLS; (5) vehicle weights and sizing includes 15% mass growth allowance on all 
dty masses excluding the engine; ( 6) vehicle weights and sizing includes fuel propellant rese1ve (FPR) of 
1 % of total ideal I). V to LEO with the final stage canying the entire FPR; (7) vehicle weights and sizing 
assumes Almninum-Lithium (Al-Li) tattles, d1y strnctures, and shroud; and (8) utilized NASA HLLV 
payload shroud volmne assumptions for in-line configmations to LEO. Additional details of the SLS 
vehicle analysis are included in Section 4.2. 

3.3.2 SLS Development Schedule 

The utility function for this KDA is shown in Figure 8. As indicated, the utility function for 
development schedule was detennined to be highly linear over the defined range of 72 months to 96 
months. 
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Figure 8. Development Schedule Utility Function. 
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The major ground mies and assumptions associated with the SLS development schedule are: (1) the 
period covers all work from ATP to OCR; (2) OCR occurs 6-12 months after the second test flight; (3) 
stage development schedules are based on the output from rnnning the NASA/ Air Force Cost Model 
(NAFCOM); (4) engine development schedules are based on intemal-PWR bottoms-up analyses; and (5) 
two test flights are included as part of the vehicle development schedule. Additional details of the 
development schedule detennination for SLS configuration options are included in Section 4.2. 

3.3.3 SLS Safety 
The utility function for this KDA is shown in Figure 9. The key ground mies and assumptions for 

SLS safety are: (1) all engines and stages were assumed to be human-rated and have reached operational 
man1rity; (2) engine out capability was not included in the analyses; (3) each vehicle configuration 
assumed a lam1ch abo1t system (LAS) with a common 95% LAS success; ( 4) event tree analysis-based 
vehicle reliability prediction with histolically-based subsystem and event reliabilities was used for all SLS 
configurations. 
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Figure 9. Probability Loss of Cre1v Utility Function. 

3.3.4 SLS Development Cost through J51 Operational Flight 
The utility function for this KDA is shown in Figure 10. The shape of the utility function indicates 

that, below approximately $8B, there is a dilninishing return on additional reduction i11 development cost. 
Incremental improvements are most valuable i11 the mid-range of about $8B to $12B. 

The major grom1d mies and assumptions associated with the development cost are: (1) NAFCOM 
was used for all stage and vehicle-level DDT &E cost estimates; (2) detailed PWR estimates were used for 
all engine DDT &E costs; (3) estimated costs include facility modifications cove1ing modification to 
mobile launch platfonu, crawler, pad ( one of each at a flight rate of I/year), and pad propellant tankage 
and includes development of ve1tical payload transpo1ter for Multi-Purpose Crew Vehicle (MPCV)/LAS 
integration with the SLS; ( 4) i11cludes the cost of two test flights during DDT &E and first operational 
flight; (5) includes any configuration-dependent fixed costs; (6) all estimates are prices in fixed FY2010$; 
and (7) all values include a standard 20% contingency/rough order of magnin1de (ROM) factor. 
Additional details of the development cost estimates for SLS configuration options are included i11 
Section 4.2. 
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Figure 10. Development Cost Utility Function. 

3.3.5 SLS Recurri11g Cost per Year 
The utility function for this KDA is shown in Figure 11. The shape of the utility function indicates 

that, below approximately $800M, there is a diminishing return on additional reduction in reClming cost. 
Incremental improvements are most valuable in the mid-range of about $800M to $ I 300M. The utility 
function range was set at $400M to $1800M to capture all configurations assessed and also to address all 
affordability improvements 
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Figure 11. Recurring Cost Utility Function. 

The major ground rnles and assumptions associated with the recuning cost are: (I) NAFCOM was 
used for all stage and vehicle-level production cost estimates; (2) detailed PWR estimates were used for 
all engine production costs; (3) Conceptual Operations Manpower Estimating Tool/Operations Cost 
Model (COMET/OCM) was used for configuration-based vehicle ground operations cost estimates; (4) 
includes any configuration-dependent fixed costs; (5) assumes one flight per year for initial trades; (6) all 
estimates are prices in fixed FY2010$; and (7) all values include a standard 20% contingency/ROM 
factor. Additional details of the recurring cost estimates for SLS configuration options are included in 
Section 4.2. 
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3.3.6 Over/Under NASA Yearly Budget Profile 

The utility function for this KDA is shown in Figure 12. The shape of the utility function indicates 
that incremental improvements are most valuable in the mid-range of about -$250M to +$250M. 

The key ground rnles and assumptions associated with the over/under cost are: (I) a fixed NASA 
yearly budget of $1.8B for SLS in fixed FY2010$; (2) capn1res the ability of an SLS configuration's 
development and production cost profile to fit a flat NASA SLS budget profile; (3) assumes the ability to 
stretch and/or phase the stage, engine, and facility development in order to fit to the NASA budget profile 
where feasible. Additional details of the over/under estimates for SLS configuration options are included 
in Section 4.2. 
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Figure 12. Over/Under NASA Yearly Budget Utility Function. 

3.4 Key Decision Attribute Baseline Weightings 
Baseline KDA weighting (scale factors) were developed by the team using a systematic process led 

by the PWR utility analysis subject matter expert. A set of detailed exercises were conducted to consider 
pairs of KDAs together to establish the relative scales of the individual KDA utility curves and to 
determine the trade factors between attributes. The results of the baseline KDA weighting assessment are 
shown in Figure 13. As indicated, the KDAs associated with affordability (Development Cost, Recuning 
Cost, Over/Under NASA Yearly Budget) account for 58% of the total weighting. It should be noted that 
SLS Safety was weighted at 8% as a result of the range chosen for that attribute (500-2000 mean missions 
between failures) with all configurations having improved safety with a higher MMBF than Shuttle 
ascent. The KDA weighting is indicative of the impo1tance of the six KDAs in differentiating between 
SLS configuration for decision-making pmposes and does not reflect the inherent irnpo1tance of an 
essential attribute such as crew safety. 
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Figure 13. Baseline KDA weighting was developed using systematic utility analysis process. 

3.5 Key Decision Attribute Alternate Weightings 
The baseline KDA weightings were developed to desc1ibe the end-user preferences to the best ability 

of the snidy team. In addition to the baseline KDA weightings, the sn1dy team assessed and developed 
three sets of alternate weighting scena1ios to capmre the sensitivity to alternative customer viewpoints. 
Figure 14 provides the baseline and alternate weightings for the six KDAs. Alternate Weighting Scenario 
1 assumed the viewpoint where the 130 mT LEO Payload value (stated in congressional language) was of 
higher importance. Alternate Weighting Scenario 2 expressed a viewpoint where recuning cost and life 
cycle cost was of higher importance dming the operational phase. Alternate Weighting Scenario 3 placed 
a higher impo1tance on the Initial Operational Capability (IOC) date. In each of the alternate weighting 
scenarios, a weighting of 30% was assigned to the highest impo1tance KDA and all other KDA 
weightings were proportionally adjusted downward. 
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Alt-1 Alt-2 Alt-3 
130 mT Recurring IOC Date 

Key Decision Attribute Baseline Payload Cost & LCC Higher 
Higher Higher Importance 

Importance Importance 

SLS Payload to LEO 30% 11% 13% 

SLS Development Schedule 18% 15% 14% 30% 

SLS Safety 8% 7% 6% 7% 

SLS Development Cost 
31% 26% 23% 27% 

through 1
st 

Opel'ational Flight 

SLS Rec.urring Cost per Year 6% 5% 30% 5% 

Ove1·/Under NASA Yearly 21% 18% 16% 18% 
Budget Pl'ofile 

Figure 14. Study assessed three alternate weighting scenarios to capture sensitivity to 
alternative custorner viewpoints. 

As stated previously, utility analysis was used to score each SLS configuration using a common 
methodology. The overall utility is a function of the value of each att1ibute and represents overall 
strengtl1 of customer preference and is defined by the following equation: 

where: 
lei = weighting of attiibute i; 
Ui = utility function of atti·ibute i; 
Xi = value of att1ibut.e i 

The mathematical relationships developed for each of the six key decision attJ.ibute utility functions 
were inco1porated into utility score calculations. Utility scores were calculated for each of the over-2,200 
SLS vehicle configuration point designs using the Baseline Weighting Scenado as well as each of the 
three Alternate Weighting Scenarios. The resulting scores for the baseline and alternate weightings were 
used in downselecting the set of eight robust SLS vehicle configurations as discussed in Section 4.3. 
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6 Results and Conclusions 
The objective of the PWR HLPT study was to use systematic analytical methodology to determine a 

set of robust SLS configurations that scored consistently high across a range of baseline and alternate key 
decision attribute weightings as opposed to promoting a single specific vehicle design. Based on the 
downselected set of eight robust SLS configurations, main propulsion system innovations, technology & 
affordability improvements were assessed and quantified. The results of the study as well as several key 
observations and conclusions are described below. 

6.1 Results - Key Decision Attributes 

As detailed in Section 3, the PWR multi-functional team reviewed the NASA SLS and HLLV 
objectives and pertinent reference material and defined a set of six SLS key decision attributes with a 
focus on capturing quantifiable attributes that were expected to strongly influence the SLS decision 
making process. The identified KDAs cover the life cycle of the SLS and therefore include the design, 
development, and test period as well as recurring operations for SLS launches and missions. Utility 
analysis was performed to define a set of equations to score and compare SLS configurations. A baseline 
set of weightings and three sets of alternate weightings were developed to assess the SLS configurations 
with the objective of downselecting a set of robust vehicle configurations. 

The six KDAs identified and used in the HLPT study are defined as follows: 

1. SLS Payload to LEO (mT): The gross payload delivered by the SLS vehicle to a 30Xl30 nmi 
orbit at 28. 5° inclination from KSC. 

2. SLS Development Schedule (months): The period from Authority to Proceed (ATP) to 
Operational Capability Readiness (OCR) for the SLS configuration. 

3. SLS Safety (MMBF): The probability of loss of crew for an SLS ascent to orbit. 

4. SLS Development Cost through P1 Operational Flight (FY10$B): The Design, Development, 
Test, and Evaluation (DDT&E) cost including two test flights and the production and 
operations cost of the first operational flight. 

5. SLS Recurring Cost per Year (FY10$M): The production (including all fixed and variable) 
cost and operations cost per year. 

6. Over/Under NASA Yearly Budget Profile (FY10$M): The highest yearly SLS cost relative to 
an assumed NASA budget profile. 

6.2 Results - SLS Vehicle Concept Analysis & Robust Configuration Downselect 

As described in Section 4, over 2,200 SLS vehicle configuration point designs were analyzed 
spanning five configuration sets with numerous engine options: (1) LOX/LH2 Core, LOX/LH2 Upper 
Stage, Solid Boosters; (2) LOX/RP First Stage, LOX/LH2 Upper Stage, (3) LOX/LH2 Core, LOX/LH2 
Upper Stage, Liquid Boosters; (4) LOX/RP Core and Boosters, LOX/LH2 Upper Stage; and (5) LOX/LH2 
Core and Boosters, LOX/LH2 Upper Stage. 

A robust conceptual vehicle analysis was performed on each of the 2,200+ SLS vehicle configuration 
point designs to determine estimates for each of the SLS KDAs. Conceptual vehicle design disciplines 

59 
Distribution: US Government Agencies and US Government Agency Contractors Only 

Export Controlled 



Pratt & Whitney Rocketdyne, Inc RD11-155 

analyzed include aerodynamics, propulsion, weights and sizing, trajectory, ground operations costs, 
DDT &E and production costs, safety and reliability, and DDT &E and production schedules. 

The results of each of these discipline analyses were used to calculate a utility score for each of the 
SLS vehicle configuration point designs using both a baseline set and three alternate sets of utility score 
weightings. These utility score results, along with calculations for overall configuration LCC and 
information about configuration applicability to non-NASA customers were used to downselect to a set of 
eight robust SLS configurations. 

Figure 22 summarizes the eight downselected configurations. Three of the configurations are in the 
class of the NASA SLS reference using a LOX/LH2 core (RS-25E or RS-68B engines), a LOXILH2 upper 
stage (J-2X or RS-25E engines), and two 5-segment PEAN SRBs. Two of the configurations also use a 
LOX/LH2 core and LOX/LH2 upper stage (J-2X) with four liquid boosters derived from the Atlas V 
LOX/RP core stage (RD-180 or F-lA engines). One of the configurations is an in-line two-stage vehicle 
with a LOX/RP first stage (F-lA engines) and a LOX/LH2 second stage (J-2X engine). An additional 
configuration uses three LOX/RP common booster cores (F-lA engines) and a LOX/LH2 upper stage (J-
2X engines). The final configuration uses three LOX/LH2 common booster cores (RS-68B engines) and a 
LOX/LH2 upper stage (J-2X engines). 

These eight downs elected configurations were each examined in detail with a range of potential PWR 
innovation, technology, and affordability improvements incorporated. 

60 
Distribution: US Government Agencies and US Government Agency Contractors Only 

Export Controlled 



Pratt & Whitney Rocketdyne, Inc RD11-155 

6.4 Key Conclusions & Recommendations 
PWR implemented a systematic analytical methodology which resulted in the downselection of eight 

robust SLS vehicle configurations. Innovation, technology, and affordability improvements were applied 
to these downselected SLS vehicle configurations with a focus on reducing SLS vehicle DDT &E and 
production costs. 

The following key conclusions and observations were identified as a result of this study: 

1. Viable Shuttle-Derived vehicle configurations in the 130 mT class using a LOX/LH2 first 
stage, a LOX/LH2 second stage, and with SRBs or LOX/RP LRBs can meet the NASA 
budget profile and provide 130 mT full-up payload capability at first operational flight. 

2. Utilization of existing and derivative engines provides a benefit of low Design, 
Development, Test and Evaluation (DDT&E) costs, less risk, and high demonstrated 
reliability. 

a. Effective use of existing RS-25D engine assets during development (use on 2 test flights) 
with early start and concurrent development of the improved-affordability RS-25E engine 
provides significant DDT&E and recurring cost savings. 

b. The F-lA gas-generator cycle engine provides the best option for a LOX/RP large 
booster propulsion application by leveraging PWR/NASA program heritage for a low 
risk and low cost propulsion development program. 

c. The J-2X engine provides flexibility and extensibility as propulsion for an upper stage 
and in-space/Beyond-Earth-Orbit system in the SLS architecture for human space 
exploration. 

3. Several in-space propulsion system technology development opportunities were identified 
and preliminary technology development roadmaps were defined for Nuclear Thermal 
Propulsion and Power, Nuclear/Solar Electric Propulsion and Power, and LOX/Methane 
Chemical Propulsion. 

4. Significant PWR propulsion system cost reductions are enabled with incorporation of 
programmatic, technology, and engine-specific affordability innovations. 
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a. PWR Consolidation Initiatives will reduce infrastructure cost by more than 40% and 
enable better fixed cost sharing through Flexible Mixed Model operations. 

b. PWR has adequate production capacity for foreseeable NASA and DoD needs with some 
nominal capital required for high production rates. 

c. PWR's Flexible Mixed Model brings the benefit of PWR overall production rate across 
all customers to each program with up to 27% engine cost reduction. 

d. PWR is actively working specific affordability improvements for the RS-25E, J-2X, RS-
68B, and F-lA engines that are applicable to SLS. 

e. Opportunity exists to leverage PWR-NASA experience to reduce traditional NASA 
oversight costs by formulating a shared/blended workforce with NASA and contractor 
participation to reduce the cost of customer oversight through innovative contracting. 

f. PWR advanced and low-cost materials and processes are showing strong near-term 
potential for reducing propulsion system component-specific production costs. 

Taken together, these affordability innovations were calculated to provide significant cost savings for 
the downselected SLS vehicle configurations. These cost savings range from $1.0B to $1.7B for the 
combined costs of DDT &E, two test flights, and first operational flight. The corresponding production 
cost savings ranged from $200M to $400M per flight. PWR is actively working many of these 
affordability improvements and stands ready to work together with NASA in implementing these and 
other innovations in support of an innovative, affordable, and sustainable path for human space 
exploration. 

62 
Distribution: US Government Agencies and US Government Agency Contractors Only 

Export Controlled 



Pratt & Whitney Rocketdyne, Inc RD11-155 

References 

1 NASA MSFC, "Broad Agency Announcement: Heavy Lift & Propulsion Technology Systems Analysis and Trade 
Study", 0MB Approval Number 2700-0087, Broad Agency Announcement NNM10ZDA001K Amendment 3, 
August 2010. 

2 NASA MSFC, "Architecture Study - ETO Launch Vehicle Team Ground Rules and Assumptions - Block 1 
Vehicles", October 2009. 

3 NASA MSFC, "Heavy Lift Study- Cost Team Preliminary Estimating WBS and Ground Rules & Assumptions", 
October 2009. 

4 NASA MSFC, "Ground Rules and Assumptions: Safety and Reliability", January 2011. 

5 Lyles, G., "NASA Space Launch Systems - Heavy Lift Launch Vehicle Summary of NASA Studies and Overview 
to HLPT BAA Participants", NASAMSFC, November 2010. 

6 NASA KSC, "Kennedy Space Center Key Driving Constraints", December 2010. 

7 Brown, C., "VAB Constraints", NASA KSC, November 2010. 

8 NASA, "Space Launch System Goals for use by SLS Study Teams", December 2010. 

9 Guynn, M.D., "Aerodynamic Preliminary Analysis System, Beginner's Guide," NASA Langley Research Center, 
1989. 

10 Vukelich, S.R., Stoy, S.L., Burns, K.A., Castillo, J.A., and Moore, ME., "Missile DATCOM Volume I - Final 
Report," McDonnell douglas Missile Systems Company, Report for Flight Dynamics Laboratory, Air Force Wright 
Aeronautical Laboratories, AFWAL-TR-86-3091, 1988. 

11 Lynn, E., "INTROS - INTegrated Rocket Sizing Program User's Manual," NASA Marshall Space Flight Center, 
2007. 

12 Brauer, G.L., Cornick, D.E., Habeger, AR, Petersen, F.M., and Stevenson, R., "Program to Optimize Simulated 
Trajectories (POST)," Final Report Martin Marietta Corporation, Denver, CO, 1975. 

13 Duffey, J., Webb, R.W., Mosher, T., and Risch, J., "Transportation Systems Analysis Operations Cost Model, 
OCM and COMET: User's/ Analyst's Guide, Version 3.0," Task report for NAS8-39209, General Dynamics Space 
Systems Division, 1994. 

14 "NAFCOM Contractor v2007 - NASA/ Air Force Cost Model," Science Applications International Corporation, 

2007. 

15 NASA, "Human Exploration of Mars Design Reference Architecture 5.0", NASA-SP-2009-566, July 2009. 

16 Braun, R., "A 21 st Century Space Exploration Enterprise", Presentation at NASA MSFC, May 27, 2010. 

63 
Distribution: US Government Agencies and US Government Agency Contractors Only 

Export Controlled 



ITAR RESTRICTED 

Space Launch Systems 

Systems Analysis and Trade Studies 

Final Report 

(b) ( 4) 

Northrop Grumman Systems Corporation, Aerospace Systems, El Segundo, 
California 

Dated: June 3, 2011 

Updated: June 26, 2011 to in corporate 
NASA comments 

George C. Marshall Space Flight Center (MSFC) 

National Aeronautics and Space Administration (NASA) 
Marshall Space Flight Center, AL 35812 

Prepared for Marshall Space Flight Center 
Under Contract NNMl 1 AAl 1 C 

WARNING - This document contains technical data whose export is restricted by the Arms Export Control Act (Title 22, U.S.C. 2751 
et seq) or the Export Administration Act of 1979, as amended, Title 50, U.S.C., App. 2401 , et seq. Violation of these export-control 
laws is subject to severe civil and/or criminal penalties. 

ITAR RESTRICTED 



NORTHROP GRUMMAN 

~ 
Aerospace Systems 

Foreword 

This 1eport documents work completed on the Space Launch Systems 

Systems Analysis and Trnde Studies (abbreviated SLS Studies), a Broad Agency .A.nnotmcement 

(BAA) contract NNM:l lAAllC. The work was performed by Northrop Gnnnman's Aerospace 

Systems, Huntsville, Alabama and Redondo Beach, California. :Mr. Timothy Flores, NASA 

Marshall Space Flight Center, was the NASA contracting officer's technical 1epresentative. •tpJM 
_____ • as program manager for Northrop Gnunman Corporation (NGC). IPB 
pppped NGC's system analysis;-was the NGC chief engineeJ and led the cost 

analysis and~as the configuration design and manufacturing engineer. Support 

contrnctors KT Engineering of Madison, Alabama, Nelson Engineering of Menitt Island, Florida 

and the University of Alabama Huntsville Propulsion Resea1ch CenteJ prnvided technical 

guidance and assistance to the project. A complete list of team members is given below. 

• (b) (4) 

• (b) (4) 

(b) (4) 

(b) (4) 

(b) (4) 

(b) (4) 

(b) (4) 

(b) (4) 

(b) (4) 

(b) (4) 

(b) (4) 

Use, duplication or disclosure of export controlled information is subject to the ITAR warning oo the title page of this document. 
SLS Study FinalR£port_NGC_Update_110626 doc:x ii 



NORTHROP GRUMMAN 

~ 
Aerospace Systems 

Contents 

Foreword ......................................................................................................................................... ii 

Table of Figures ............................................................................................................................. iv 

Abstrnct ........................................................................................................................................... 6 

Key Words ...................................................................................................................................... 6 

1. Intrnduction and Overview ..................................................................................................... 7 

2. Exploration Architectme Options ........................................................................................... 9 

2.1. GR&As, Alternatives (SOW 2.1} ........................................................................................... 9 

2.2. Exploration Architectme Options (SOW 3.1) ...................................................................... 11 

2.3. Study Approach Figures of Merit, Weighting Factms and Sensitivity (SOW 2.2, 2.3, 4.1) 15 

3. SLS Configuration Options for Alternative GR&As (SOW 3.2, 4.2) ................................... 29 

3 .1. SLS Configuration - Initial Trade Options .......................................................................... 29 

3.2. SLS Configuration Down.select ........................................................................................... 32 

3.3. Concept Description Packages ............................................................................................. 35 

3.4. FASTPASS Trajectory Analysis .......................................................................................... 37 

3.5. Prnduction and Operations Plans ......................................................................................... 38 

3.6. SLS Recommended Configuration ...................................................................................... 44 

3.7. Commonality Opp01tunities (SOW 3.4, 4.4) ........................................................................ 49 

3.8. Innovative OJ Nontraditional Processes or Technologies (SOW 3.3, 4.3) ........................... 52 

4. Incremental Development Options (SOW 3.5, 4.5) .............................................................. 56 

4.1. Configuration Family ........................................................................................................... 57 

4.2. Cross Feed Incremental Development ................................................................................. 58 

4.3. Domestic LOX/RP Engine Incremental Development ........................................................ 59 

4.4. Dedicated LEO Variant.. ...................................................................................................... 60 

4.5. Payload to LEO Growth Path .............................................................................................. 60 

4.6. In-space Refueling Inc1emental Development Options ....................................................... 61 

4. 7. Dedicated In-space C1yo-propellant Stage Incremental Development ................................ 62 

4.8. Payload to Escape Growth Path ........................................................................................... 64 

4.9. Prnduction and Operations Growth Path ............................................................................. 65 

5. Capability Gap Analysis ....................................................................................................... 66 

5.1. First Stage Main Engine Gaps and Opportunities (SOW 5.1) .............................................. 66 

5.2. Upper Stage Main Engine Gaps and Opportunities (SOW 5.2) ........................................... 68 

5. 3. Other SLS Gaps and Opportunities (SOW 5. 3} ................................ .................................... 69 

5.4. In-Space Prnpulsion Gaps and Opp01tunities (SOW 5.4) .................................................... 70 

Use, duplication or disclosure of export controlled information is subject to the ITAR warning on the title page of this document. 
SLS Study FinalR.eport_NGC_Update_110626 cloc:x iii 



NORTHROP GRUMMAN 

~ 
Aerospace Systems 

5. 5. Other In-Space Element Gaps (SOW 5. 5) ............................................................................ 72 

5.6. In-Space Element Flight Demonstrations (SOW 5.6) .......................................................... 73 

6. Appendix ............................................................................................................................... 74 

6.1. Study Technical Statement of Wmk (SOW) ....................................................................... 74 

Table of Figures 
FIGURE 1-1 SLS SU STAI NABILllY DRIVERS ..................................................................................................................... 7 
FIGURE 2-1 GR&A REVIEW ............................................................................................................................................. 9 
FIGURE 2-2 ADOPTED TECHNICAL GR&AS ................................................................................................................... 10 
FIGURE 2-3 ADOPTED COST GR&AS ............................................................................................................................ 11 
FIGURE 2-4 ADOPTED S&MA GR&AS ........................................................................................................................... 11 
FIGURE 2-5 SPACE TRANSPORTATION ARCHITECTURE ............................................................................................... 12 

FIGURE 2-6 IN SPACE DELTA V ..................................................................................................................................... 13 
FIGURE 2-7 MISSION PERFORMANCE .......................................................................................................................... 14 
FIGURE 2-8 SLS SERVICING MISSIONS ......................................................................................................................... 14 
FIGURE 2-9 FOM EVALUATION AND WEIGHTING APPROACH ..................................................................................... 15 
FIGURE 2-10 NGCCONFIGURATION NAMING CONVENTION ...................................................................................... 16 
FIGURE 2-11 INITIAL TRADE OPTIONS PAYLOAD FRACTION ........................................................................................ 16 
FIGURE 2-12 INITIAL TRADE OPTIONS PAYLOAD FRACTION RELATIVE RATING .......................................................... 17 
FIGURE 2-13 INITIAL TRADE OPTIONS MISSION RELIABILITY RELATIVE RATING ......................................................... 17 
FIGURE 2-14 INITIAL TRADE OPTIONS COST RELATIVE RATING .................................................................................. 18 
FIGURE 2-15 INITIAL TRADE OPTIONS WEIGHTED TOTAL RATING .............................................................................. 18 
FIGURE 2-16 INITIAL TRADE OPTIONS CRITICAL LAUNCHES ........................................................................................ 19 
FIGURE 2-17 INITIAL TRADE OPTIONS NON-CRITICAL LAUNCHES ............................................................................... 19 
FIGURE 2-18 INITIAL TRADE OPTIONS NORMALIZED MISSION RE LIABILITY TO ESCAPE VELOCITY ............................. 20 
FIGURE 2-19 INITIAL TRADE OPTIONS llFE CYCLE COST .............................................................................................. 21 
FIGURE 2-20 FASTPASS OPTIMIZATION PROCESS ....................................................................................................... 23 
FIGURE 2-21 PLOC AND PLOM ..................................................................................................................................... 24 
FIGURE 2-22 RELIABILITY ANALYSIS- DEPOTS ............................................................................................................ 24 
FIGURE 2-23 RELIABILITY ANALYSIS-SUBSYSTEMS & MMOD .................................................................................... 25 
FIGURE 2-24 DOWN SELECT FAMILIES -CRITICAL LAUNCHES ...................................................................................... 25 
FIGURE 2-25 DOWN SELECT FAMILIES - NON-CRITICAL LAUNCHES ............................................................................. 26 
FIGURE 2-26 DOWN SELECT FAMILIES MISSION RHIABIUTY ....................................................................................... 27 
FIGURE 2-27 LIFE CYCLE COST MISSION MANIFEST ..................................................................................................... 27 
FIGURE 2-28 NK206-2 LIFE CYCLE COST ....................................................................................................................... 28 
FIGURE 3-1 SLS CONFIGURATION - INITIAL TRADE OPTIONS ...................................................................................... 29 
FIGURE 3-2 SLS CONFIGURATION - INITIAL TRADE OPTIONS TANK LAYOUTS ............................................................ 30 
FIGURE 3-3 INITIAL TRADE OPTIONS- PAYlOAD TO ESCAPE VELOCITY ..................................................................... 31 
FIGURE 3-4 SLS CONFIGURATION OPTIONS-DOWNSELECT FAMILIES ...................................................................... 32 
FIGURE 3-5 SLS CONFIGURATION OPTIONS-DOWNSELECT FAMILIES TANK LAYOUTS ............................................. 33 
FIGURE 3-6 DOWNSELECT FAMILIES - PAYLOAD TO LEO ANO ESCAPE VELOCITY ...................................................... 34 
FIGURE 3-7 DOWNSELECT FAMILIES - LIFE CYCLE COST ............................................................................................. 35 
FIGURE 3-8 ND702 CONCEPT DESCRIPTION PACKAGE SUMMARY .............................................................................. 36 
FIGURE 3-9 ND702 FASTPASS ASCENT SIMUlATION ................................................................................................... 37 
FIGURE 3-10 NC601 MAJOR MANUFACTURING UNITS ANO TOOLING ....................................................................... 38 
FIGURE 3-11 NC601 PRODUCTION AND OPERATIONS FLOW DIAGRAMS ................................................................... 39 
FIGURE 3-12 NA702 MAJOR MANUFACTURING UNITS AND TOOLING ....................................................................... 40 
FIGURE 3-13 NA702 PRODUCTION AND OPERATIONS FLOW DIAGRAMS ................................................................... 40 
FIGURE 3-14 NH201-2 MAJOR MANUFACTURING UNITS AND TOOLING .................................................................... 41 

Use, duplication or disclosure of export controlled information is subject to the ITAR warning on the title page of this document. 
SLS Study Finalfu,port_NGC_Update_110626 cloc:x iV 



NORTHROP GRUMMAN 

~ 
Aerospace Systems 

FIGURE 3-15 NH201-2 PRODUCTION AND OPERATIONS FLOW DIAGRAMS ............................................................... 42 
FIGURE 3-16 PRODUCTION & OPERATIONS RELATIVE RATING ................................................................................... 43 
FIGURE 3-17 NGC RECOMMENDATION - NK206-2 ..................................................................................................... 44 
FIGURE 3-18 SLS RECOMMENDED VEHICLE FAMIL Y .................................................................................................... 44 
FIGURE 3-19 NK206-2 GENERAL ARRANGEMENT ....................................................................................................... 45 
FIGURE 3-20 NK206-2 MAJOR MANUFACTURING UNITS ............................................................................................ 45 
FIGURE 3-21 NK206-2 PRODUCTION FlOW ................................................................................................................. 46 
FIGURE 3-22 NK206-2 CONCEPT OF OPERATIONS ANO MISSION TIMELINE ............................................................... 46 
FIGURE 3-23 NK206-2 ASCENT SIMULATION ............................................................................................................... 47 
FIGURE 3-24 NK206-2 LIFE CYCLE COST. ...................................................................................................................... 48 
FIGURE 3-25 ALL LOX/RP STUDY CONFIGURATIONS ................................................................................................... 49 

FIGURE 3-26 ALL LOX/RP STUDY TANK LAYOUTS ........................................................................................................ 50 
FIGURE 3-27 ALL LOX/RP STUDY PAYLOAD TO LE0 ..................................................................................................... 50 
FIGURE 3-28 lOM HAMMERHEAD FAlRING ................................................................................................................. 51 
FIGURE 3-29 10M HAMMERHEAD FAIRING IN 6M PRODUCTION INFRASTRUCTURE ................................................. 52 
FIGURE 3-30 CROSS FEED CONCEPT OF OPERATIONS ................................................................................................. 53 
FIGURE 3-31 THROTTLE BACK AND CROSS FEED PERFORMANCE OPERATIONS ......................................................... 53 
FIGURE 3-32 THROTTLE BACK AND CROSS FEED SIMULATION RESULTS ..................................................................... 54 
FIGURE 3-33 CROSS FEED ENGINE OUT THRUST TO WEIGHT ..................................................................................... 54 
FIGURE 3-34 CROSS FEED SCHEMATIC- TANK TO MANIFOLD .................................................................................... 55 
FIGURE 3-35 CROSS FEED SCHEMATIC - TANK TO TANK ............................................................................................. 55 

FIGURE 3-36 THRUST SHELLS AND FILLET FAIRINGS COBOND ASSEMBLY .................................................................. 56 
FIGURE 3-37 SAMPLE SLS CLUSTER CONFIGURATION ................................................................................................. 56 
FIGURE 4-1 CONFIGURATION NK206 FAMllY .............................................................................................................. 57 
FIGURE 4-2 NK206 FAMILY TANK lAYOUT ................................................................................................................... 57 
FIGURE 4-3 CROSS FEED DEVELOPMENT OPTIONS ..................................................................................................... 58 
FIGURE 4-4 THREE BODY FIRST STAGE ENGINE QUANTITY ......................................................................................... 59 
FIGURE 4-5 THREE BODY LOX/RP FIRST STAGE ENGINE QUANTITY AND TYPE STUDY ................................................ 59 
FIGURE 4-6 DOMESTIC LOX/RP ENGINE DEVELOPMENT. ............................................................................................ 60 
FIGURE 4-7 DEDICATED LEO VARIANT ......................................................................................................................... 60 
FIGURE 4-8 LEO PAYLOAD GROWTH PATH .................................................................................................................. 61 
FIGURE 4-9 IN-SPACE REFUELING OPTIONS ................................................................................................................ 61 
FIGURE 4-10 IN-SPACE CRYO-PROPULSION STAGE ENGINE SIZING FOR lOW ENERGY NED MISSIONS ..................... 62 
FIGURE 4-11 IN-SPACE CRYO-PROPULSION STAGE ENGINE SIZING FOR HIGH ENERGY NED MISSIONS ..................... 63 
FIGURE 4-12 ISCPS CONFIGURATION OPTIONS ........................................................................................................... 64 
FIGURE 4-13 PAYLOAD TO EARTH ESCAPE GROWTH PATH ......................................................................................... 64 
FIGURE 4-14 NK206 FAMILY PRODUCTION STATION (STA} AND MANDREL NUMBER (M#) MATRIX ......................... 65 
FIGURE 4-15 PRODUCTION GROWTH PATH ................................................................................................................ 65 
FIGURE 5-1 FIRST STAGE MAIN ENGINE CATALOGUE ................................................................................................. 66 
FIGURE 5-2 FIRST STAGE MAIN ENGINE TECHNOLOGY & CAPABILITY GAPS & OPPORTUNITIES ................................ 67 
FIGURE 5-3 UPPER STAGE MAIN ENGINE CATALOGUE ............................................................................................... 68 
FIGURE 5-4 UPPER STAGE MAIN ENGINE TECHNOLOGY & CAPABILITY GAPS & OPPORTUNITIES .............................. 69 
FIGURE 5-5 OTHER SLS TECHNOLOGY & CAPABILITY GAPS & OPPORTUNITIES .......................................................... 69 
FIGURE 5-6 IN-SPACE PROPULSION TECHNOLOGY & CAPABILITY GAPS & OPPORTUNITIES ...................................... 70 
FIGURE 5-7 OTHER IN-SPACE TECHNOlOGY & CAPABILITY GAPS & OPPORTUNITIES ................................................ 72 
FIGURE 5-8 RECOMMENDED IN-SPACE CRYO-PROPELLANT MANAGEMENT FLIGHT DEMONSTRATIONS ................. 73 
FIGURE 6-1 SOW J-1-1 PARAGRAPH 2 ......................................................................................................................... 74 
FIGURE 6-2 SOW J-1-2 PARAGRAPH 3 ......................................................................................................................... 75 
FIGURE 6-3 SOW J-1-3 PARAGRAPH 4 ......................................................................................................................... 75 

FIGURE 6-4 SOW J-1-4 PARAGRAPH 5 ......................................................................................................................... 7 5 
FIGURE 6-5 SOW J-1-5 PARAGRAPH 5 CONTINUED ..................................................................................................... 75 

Use, duplication or disclosure of export controlled information is subject to the ITAR warning on the title page of this document. 
SLS Study FinalR£port_NGC_Update_110626 doc:x V 



NORTHROP GRUMMAN ,,------ Aerospace Systems 

Abstract 

This is the Northrop Grnmman fmal rep011 for the Space Launch Systems (SLS) Systems 
Analysis and Trade Study performed fm the National Aeronautics and Space Administrntion 
(NASA) Marshall Space Flight CenteJ. The SLS configuration design space has been thoroughly 
explmed with a compelling focus on sustainability. Key sustainability drivers are; incremental 
development within available funding prnfile, low production and operations fixed costs and 
SLS flexibility. Hundred of SLS configurations were assessed using the N01throp Grumman 
quick-sizer launch vehicle conceptual design tool. Promising concepts representing the entire 
design space were then sized using a full trnjecto1y nmlti-disciplinaiy optimization simulation. 
Computer aided design solid models were built to verify configuration geometiy. Payload 
fractions, mission 1eliability and lifecycle costs were analyzed for a variety for human space 
explorntion missions from low Earth orbit to Mars surface. Configurations were ranked using a 
Pugh relative rating method with a variety of weighting factms to test sensitivities fm near and 
long term emphasis. Many good SLS configuration options were identified. Northrop Gnnnman 
recommends a three body liquid oxygen and rncket propellant (LOX/RP) first stage with a liquid 
oxygen and liquid hydrogen (LOX/LH2) multi-purpose upper stage. This configuration ranks 
well for all criteria and sensitivities. The major discriminator fm the Jecommended configuration 
is the robust family of SLS vehicles that can be incrementally developed, using a single 
production system, with shared fixed costs, fo1 a wide va1iety of exploration, science and 
national security missions. This SLS family will be sustainable fm many decades of space 
explorntion. 
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1. Introduction and Overview 

Our Space Launch Systems (SLS) Systems Analysis and Trade Study has explored an 
unencumbered trade space with a wide variety of exploration architecture and SLS configuration 
options. The results are presented in this non-proprietary final report. This study evaluated a 
thorough set of SLS Vehicle configuration options using a set of decision attributes. The 
products are used to select a recommended SLS configuration that is sustainable for human 
exploration beyond Eru.th orbit including Mars surface missions. The study also identifies any 
major capability and technology gaps and opportunities to assist NASA in planning future SLS 
technology development activities. 

Figure 1-1 summarizes our key sustainability drivers for the space launch system based on 83 
yeru.·s of corporate experience in aerospace systems development, production and operations 
support. Our single greatest concern is that the SLS is sustainable for many decades of space 
exploration. We strongly believe in these drivers and recommend that the reader to refer to them 
often while evaluating this report. 

1. Incremental development within HSF funding profile human spaceflight (HSF) budget 
profiles are flat with very limited ability to absorb non-recurring spikes. Stretched out 
design development test and evaluation (DDT&E) to meet funding profile adds costs and 
inhibits progress 

2. Low Production and Operations Fixed Costs Low mission rate, flexible missions and 
long system life drive a compelling need for low fixed costs 

3. SLS Flexibility Exploration architecture and launch needs will evolve. Need to react to 
currently unknown missions and architectures. Needs to be available for unplanned and 
other user missions 

Figure 1-1 SLS Sustainability Drivers 

For our study approach we addressed the need to be flexible for 30+ years of exploration beyond 
LEO. This included selection of three reference missions to span near and long te1m. These 
included missions to 

• Low Energy Near Eru.th Objects (including Lunar surface) 
• High Energy Near Eru.th Objects and Mars orbit 
• Mru.·s Surface 

We recognize that allowances and robustness in the launch system architecture must 
accommodate the large unce1tainties in inherent in this 30+ year span, including questions about 
long duration crew requirements for habitability, consumables, micro gravity tolerance and 
radiation tolerance, means for capture, entry descent and landing at Mars and maturation of 
capability to remotely produce propellants, such as using Mars in-situ resource utilization 
(ISRU.) Other unce1tainties include in space propulsion capabilities and roles ( cryo-storage, 
electric propulsion, nuclear propulsion) and the potential for application of pre-deployed 
propellant and equipment on surface and in orbit. 

In addition to payload to orbit and escape, this study considered the payload volume and 
accommodations for a full range of missions, including large scale scientific missions, human in
space servicing of high value science and national security assets, and a the deployment of future 
national security assets in higher orbits. 
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Om study approach is established on evaluation of key affordability drivers and figures of merit 
(FOMs). In particula.J these evaluations were p1ioritized to the SLS key sustainability drivers: 

Om study of potential SLS vehicle configurntions conside1ed a wide 1anging trnde space. This 
included explorntion of imprnvements to cunent systems, such as EEL Vs, improvements to Ares 
V and application of Shuttle de1ived elements, such as the reusable solid rocket motors (RSRJvis) 
and Space Shuttle main engines (SSJvIE's). The evaluations applied two perfonnance modeling 
tools that opernted with successive levels of turnaround time versus model complexity and 
fidelity: quick-sizer produces truly instant configurntion assessments and F ASTPASS, prnvides 
high fidelity, industry benchma1k class outputs. The tools we1e calibrated to Saturn V, Ares V 
and Delta IV Heavy pe1fonnance and mass properties. We rough sized htmdJeds of initial 
concepts representing eight families and fom paths to escape. From this we p1escreened to 14 
concepts using a 1elative rating, Pugh matrix apprnach. 

We conducted trajectory and vehicle sizing to optimize payload to escape velocity for direct and 
in-space LOX refueling paths and p1epa1ed CAD models to validate vehicle genernl arrangement 
and iterated sizing as required. This information is captured in sets of concept description 
packages. We prepaJed 1elative ratings to Ares Vas a standard refe1ence. In conce11 with these 
evaluations the team conducted capability and technology push sessions with supplie1s in order 
to identify emerging launch vehicle capabilities. 

We then down selected ten concepts 1epresenting five families which we1e presented at the study 
technical interchange meeting-I (TIM-1). Assessments included 1eliability analysis for three 
sample missions and two paths and a lifecycle cost analysis for DDT&E and fixed and va1iable 
production and operations costs for 40 missions thrnugh 2036. Based on information gathered at 
TIM 1 and furtheJ study of in-space 1equirements, cross feed, engine layout, flexibility and 
growth paths we refined a subset of our configuration options and closed on a recollllilended SLS 
configuration. We recollllilend that the SLS be a th1ee body liquid oxygen and rncket propellant 
(LOX/RP) first stage with a liquid oxygen and liquid hydJogen (LOX/LH2) multi-purpose upper 
stage. 

Om recollllilended configuration and path f01ward were presented at the TIM-2 to complete the 
study. 

Use, duplication or disclosure of export controlled information is subject to the ITAR warning on the title page of this document. 
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2. Exploration Architecture Options 

2.1. GR&As, Alternatives (SOW 2.1) 

In this section we describe the overall study approach and provide example results presenting 
findings as well as illustrate the study methods. The study resulted in two basic conceptual trade 
study and analysis phases. The initial phase which was rep01ted at the SLS Study TIM 1 stepped 
through the process for a wide range of SLS vehicle configuration options. It provided ground 
mies and assumptions (GR&As) assessment, exploration architecture definitions and exercised a 
FOM assessment and weighting approach to provide an evaluation of these configurations and an 
initial down select of the most effective concepts. This section presents the GR&A, FOM 
assessments and weighting approach for this initial cycle. Section 3 summarizes the conclusion 
on the preferred launch vehicle concepts and then presents the results of the second iteration of 
the cycle, which was provided in TIM 2 and presented the NGC prefened concept resulting from 
this FOM evaluation approach. 

At the outset of the study we received the 
NASA GR&As supplied for consideration 
during the SLS Study. The GR&A's were 
assessed and categorized as to their 
applicability as shown in Figure 2-1. The set 
adopted as "OK as is" are found in Figures 2-
2, 2-3 and 2-4. These GR&A's are useful for 
nan owing the option space and providing a 
point of departure set of analysis assumptions 
and performance simulation modeling input. 
In a few instances we have depa1ted or 
updated these values, such as: use of 400 km 
altitude LEO basing orbit which is more 
appropriate for LEO aggregation, refueling 

Heavy Lift and Propulsion Technology Study 

Ground Rules and Assumptions Review 

NGC Assessment Tech Cost SM&A Total % 

Okas is 32 12 6 50 37% 

Concern for 
11 2 4 17 13% restrictions 

Concern for fair 
9 7 1 17 13% comparison 

Concern for study 
2 3 0 5 4% resources 

Details 32 3 4 39 29% 

Ask for info 
3 3 0 6 4% reference 

Total 89 30 15 134 100% 

and beyond LEO departure. Alternate Figure 2-1 GR&A Review 

perfo1mance calculation assumptions are used in place of Figure 2-2 19-32. See descriptions of 
the quick-sizer and F ASTPASS perfo1mance modeling tools in Sections 2.3. 
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Technical GR&As 
1. VAB Laun ch Vehicle Stack Integrated Height Constraint = 390 ft (potential trade CEV LAS integration at pad ) 

2. Maximum Core Stage Length = 234 ft (VAB d iaphragm limit) 

3. All Vehicle Stag es: Diameter Constraint = up to 33 ft. Diameters reported as outside diameters. 

4. For Lma Mssions .. . Lamch vdlide pctfload n du::les lhe CEV (CM/SM), aid/or LSAM, payload b lhe lmar 
surface, LSAM ad apter, and airborne support equipment (ASE). 

5. 
Quoted Launch vdlicle payload capatilities ae 'gross mass' deliva-ed kl fin al des tin a1ion 1M1ich includes any payload 
margin . 

6. POST 30 is a 3-DoF point mass trajectorysirrulation 

7. Launch from Pad 39A: gdlat = 28.608422deg, long =279.395910 deg , gdalt = Oft 

8. Grace GM02C g ravity model 

9. Grarn2007-Mean Annual Atmosphere-October2008 (EV44) 

10. Grarn2007-Mean Annual Winds-October2008 (EV44) 

11. Start simulation at lift-off (alll iquid) orSRB ignition (if using solids) 

12. Avoid instantaneous changes in vehicle attitude 

13. SRB apogee is unconstrained (product of analysis) 

14. Perigee and apogee are relative to a spherical earthwhoseradiusequalsearth'smean equatorial radius. 

15. MECO altitude is optinizedfor elliptical orbits, but must be~ 75 nmi (driven by heating rate constraint) 

16. 
For LEO Mission (No Uppa- Stage) -Gross payload capabil ity will be analyzed t>r 30 nmi x 130 nni@ 29° . . orbital 
circularization assumed to be provided by the payload. 

17. Peri gee and apogee are relative to a spherical earth whose radius equals earth's mean equatorial radius. 

18. F airing jettison weight ind udes: structures, TPS and acoustic/thermal blankets 

Unusable Tan k Vo lume (Ullage Gas/Manufacturing Tolerance/Loading Accuracy/Internal Equipment & 
19. Structures/Crye Tank Shrinkage): For all stage concepts: 0.04 (3% for gas volume and 1% for cryoshrinkage& 

intern altan k equipment) 

20. Miscellaneous Secondary Structures calculated as 5% of LVA Primary Structures for In line Configurations 

21. 
Yeh icle sizing is considered closed when the payload capabi lily is between the target payload and the target payload 
p lus 0.1%. 

22. 
FPR(SideMount and In line): FPR is 1% ofthetotal ideal dV forthemission; Final stage carries the entire FPR;Any 
excess FPR is not calculated as payload 

23. Fuel bias (SideMount) useSSP/ETvalues 

24. 
Fuel bias (lnline): Fuel biasmass (lbm) =0.0013*mixtureratio / 5.29* usablepropellant(basedon INTROS mass 
estimating relationship); Applies to fuel tanks ( core and upper stages) 

25. Residuals (SideMount): use SSP/ET values 

26. 
Residuals(lnline): Stage residuals mass (lbm) = 0.0631 • (usablep ropellant)"0 8469 (based on INTROS mass 
estimating relationship) 

27. Startpropellant(SideMount and In line): Core Stage calculated based on engine startup transients; Air Start Stages 
zero start propellant allocated 

28. Other propellant note: Ascent Propellant includes all LOX in vertical portion offeed line 

Other INTROS configuration note concerning Aeroshell for Upper Stage: Aero shell applied to inline configuration 
29. upper stage to protect MLI during ascent from aero heating environment. Aero shell jettisoned prior to earth departure 

burn; No Aeroshell applied to sidemount configuration upper stages 

30. No proof analysis on tanks. 

Used combined worst~ase loads analysis in LVA (i.e. all worst case loads happen simultaneously) with a 1.3 load 
31. uncertaintyfactorapplied. (This matchesverycloselyindividuallyrun load caseswithad ispersedmax q and a 1.5 

load uncertainty factor). 

32. Upp er Stag es use Cryogenic material properties (if available) 

Figure 2-2 Adopted Technical GR&As 
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SLS Study Final Report_ NGC _Update_ 110626 docx 1 0 



NORTHROP GRUHHAN Aerospace Systems 
~ 

CostGR&As 
1. Use a common WBS to ensure a consistent and complete capture of the vehicle life~yde costs 

2. Reserves will be applied appropriate to the level of maturity ofthecostdataorestirrate 

3. Actual Cost History- use "as is" ifno changes 

4. Vehicle development (Phase A) start in 2011 

5. 
HLLV Initial Operational Ccl)ability (IOC) deterrrina::I by scha::lule estimates provida::I DJ! data product teams: IOCas 
soon as possible; (if timeallow.:;)Assessrrentof IOCdateof 2020 

6. All cost estimates provided in FY2010dollars 

7. All time phased/funding costs are in real year dollars 

8. 
Inflation focbrs from lhe 2008 NASA New Start Infl ation lnde< br use in 2009: KSC cost estimates are phase by FY 
and reported in real year dollars 

9. Costs in dude the HLLV, Vehicle Integration, Ground Operations, and associated Full Cost Accounting elements 

10. 
Phasing of cost will be basa:I on an HLLV development stat in FY201 1 wilh IOC at the eaniest possiljedate basa::I 

on schedule assessment 

11. 
Carrying cost deina::I as rrinimum level of resources nea::la::I to maintain production ccl)ability, until combination of 

DDT&E and Production is sufficient to sustain 

12. Assume Shuttle is retired by the end of FY 11 

Figure 2-3 Adopted Cost GR&As 

S&MA GR&As 

1. 
Al l enginesAtehides have reocha::I operational maturity Therebre, data reflects inherent reliatili1y (mature) br lhe 

design, not first flight risk 

2. Engineering specs/standards apply or waivers required 

3. Government oversighVinsight required 

4. Constellation abort capability assumed 

5. 
LAS jettison assurna::I to occur 30 sec after final ascent stage engine stat. Post jettison aborts are accorrplisha::I 

with service module fornon-catastrophic failures. 

6. Abort Effectiveness is for the ascent phase only 

Figure 2-4 Adopted S&MA GR&As 

2.2. Exploration Architecture Options (SOW 3.1) 

For the study we considered a range of alternative exploration architecture approaches for 
establishing an operational and perfo1mance context for the SLS. We incorporated the flexible 
path and capability based exploration approach as outlined in the Human Spaceflight Plans 
Committee findings and the findings of the Human Exploration Framework Team (HEFT). The 
range of missions considered include near tenn human spaceflight objectives this decade, near 
ea1th destinations including Lagrange points and lunar orbit, hmar surface, extending to the 
ultimate destinations, including human Mars surface exploration in the 2030's. This architecture 
allows for different and evolving operational approaches for aggregating assets from multiple 
lalmches of the SLS to achieve the more demanding out year mission objectives. These include 
aggregation of exploration vehicles and space transpo1tation in LEO and other staging points, 
such as the Eaith-Moon Lagrange point I (EMLI) and various refueling approaches, including 
use of propellant depots at the different staging locations. 
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The adopted evolutiona1y exploration architecture shown in Figure 2-5 integrates the range of 
mission performance levels 

• Low Eaiih Orbit (LEO), such as for support of ISS 

• High Earth Orbit destinations such as GEO and Lagrange points 

• Early, Low Energy NEO (LENEO) and Lunai· 

• Mid era, High Energy NEO (HENEO) and Mars orbit 

• Late era Mars Sm·face human exploration. 

This architecture includes a time ordered sequence of staging approaches, including direct 
launch, LEO Aggregation, combined LEO aggregation and propellant depots, and HEO. This 
architecture can include a full range of mission objectives, including beyond LEO exploration 
(Moon, Near Earth Objects, and Mars), servicing of large space assets in LEO, GEO, Lagrange 
points, deployment of laTge aperture science payloads and deployment of large national security 
payloads. Instead of evaluating the SLS perfonnance against all the shown perf01mance levels 
(up and down in Figure 2-5) and architectures modes (across left and right in the figure) the 
study focused on six reference missions, denoted 1 a and 1 b for low energy NEO/hmar, 2a and 2b 
for high energy NEO/Mars orbit, and 3a and 3b for Mars cargo and surface missions. This is an 
appropriate simplification to evaluate SLS perfo1mance. The other missions, in the direct 
category and deployment and servicing of large telescopes ai-e still accommodated by the SLS, 
but these missions lie within the perfonnance of the six reference missions. 

D. t LEO A f LEO Aggregation & HEO Aggregat ion & 
irec ggrega ion Propellant Depots Depots 

. . . 

Mars 
Surface 

High Energy 
NEO / Mars 
Orbit 

Low Energy 
NEO / Lunar 
Surface 

High Earth 
Orbit, GEO 
&Lagrange 
points 

Low Earth 
Orbit 

Robotic missions 

Robotic missions 

Robotic NEO / Lunar 
& small Human Lunar 
missions 

Telescope I GEO 
satellite 
dep loy & 
service 

ISS 
servicing 

3a Mars propellant 
pre-deployment and 
cargo missions 

&Mars orbit 
missions 

1a Human 
NEO&large · 
Lunar 
missions 

Large Telescope 
deploy& 
service 

3b Human¾ 
Mars 
surface 
missions 

&Mars orbit 
missions 

1b Human 
NEO &large • 
Lunar 
missions 

IEl,~i•l•J1MMffiiffltnMA&@t-
Figure 2-5 Space Transp01tation Architecture 

Human +. Mars 
surface 
missions 

Human NEO 
& Mars orbit 
missions 

Human NEO 
&large 
Lunar 
missions 
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Launch vehicle performance levels are referenced to delivery to velocity at eruth escape (C3=0). 
Perfo1mance requirements at greater departure velocities (C3>0) are scaled up and for lower than 
escape velocities (C3<0) ru·e scaled down. This sizes the SLS upper stage for efficiency for 
beyond eruth orbit exploration missions. Perfo1mance required may alternatively be achieved by 
aggregation (multiple launches) or use of a propellant depot. Propellant depot concepts can be 
applied in different ways, including at LEO, MEO and Lagrange staging points and can be 
implemented for either LOX and LH2 or LOX, only. The latter is nearly as effective as LOX and 
LH2 in te1ms of additional performance, because of the approximately 6: 1 mass ratio of LOX to 
LH2 for typical c1yogenic engine mixture rations. The LOX only depot requires the needed LH2 
to be launched with the refueled vehicles, but the added mass is relatively small. LOX only 
depots are much less demanding for cryo-fluid management and neru· zero boil off storage. This 
is pruticularly trne for the the1mally demanding LEO orbit staging location. It is anticipated that 
the propellant depot capability will evolve to both LOX and LH2 with the maturing of c1yo-fluid 
management technology. In addition, evolving depots can be expect to be located at high energy 
orbit locations, such as the EMLl which would fmther simplify LH2 cryo-fluid management and 
would suppo1t increasing traffic for human exploration. 

The LENO/Lunar case is a lunar surface exploration mission, from the Constellation program. 
For the LENO variant we used a 52 metric tonne (t) exploration vehicle and in-space delta 
velocity (~V) obtained from the MSFC-supplied NEO missions. The LENO mission in-space 
~ V is 0.338 km/s for anival at the tru·get and 0.540 km/s for a retmn to ea.1th departure for a 
total, 0.878 km/s. Using rocket equation sizing and the exploration vehicle mass this dete1mines 
the SLS payload required at depruture. The payload at escape is bounded by 66t (including crew 
vehicle and in-space propulsion) for both Lunru· and LENO missions. 

Although the payload mass was calculated separately for the RENO mission, Mru·s Orbit and 
Mars Surface missions the perfonnance at escape velocity (Ve) are all approximately 165t and 
this value was used in the mission evaluation 
for all as shown in Figure 2-6. Considering 3.00 ~-----------

reference NEO missions, the HENEO mission • 
~ Vs were reduced down to the mean of the 2.50 +-------------

reference list providing a more reasonable 
requirement for this class of missions versus 
using the maximlllll energy version of the 
HENEO missions. Using the 50th percentile 
~ V the payload at escape is also l 65t. Using 
the maximum HENEO case results in a 
payload of 282 t. Figure 2-7 illustrates these 
perfo1mance levels at the earth escape 
reference point. Mars human surface 
exploration mission perfo1mance requirement 
is based on the NASA Design Reference 
Architecture five (DRA5), with in space ~ V 
of 1.7 km/sat destination anival and 1.5 km/s 
for Eruth return. Eruth departure C3 = 13.9 
km2/s2 which equates to 3.8 km/s depruture 
from LEO velocity. Unlike the HENEO 
mission which has a single flight to the NEO, 
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Figure 2-6 hi Space Delta V 
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DRA5 requires three separate flights. There are two cargo flights in the first Mars opp01tunity 
followed by the crew at the next opportunity. Each flight requires 165 t payloads to earth escape. 
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Figure 2-7 Mission Perfonnance 

C3 =0 

3000 

Mars Surface, one 
Flight (165 t) 

3500 

LENO/Lunar 
(66t) 

4000 

We also considered the volmne and accommodations for the SLS payload fairing for a range of 
applications, including large scale scientific missions, hmnan in-space servicing of high value 
assets and deployment of future national security assets as shown in Figure 2-8. 

Servicing Location 

LEO 200 km-1500km; 360 deg long . 
Ascending node 

LEO ISS Orbit, 52 deg , 500 km 

LEO polar orbit, sun synchronous o rbits 

GEO 

Earth-Sun Lagrange points 1 and 2 

Hubble Servicing Mission 4 
J. Grunsfeld 

Candidate Servicing Missions 

Multiple civil, military and international satellites. Refuell ing, equipment and 
payload exchange, deorbit and debris removal. 

Focused on ISS uti Ii zation. Servicing may occur at ISS, or if traffic warran ts, 
remote servicer could be deployed. 

A cycling servicing satellite could be used, applying d ifferential nodal 
regression. 

Dominated by commercial communication satellites. High potential fo r 
refuelling followed by ORU change outs 

Beneficial lo cation for large space observatories. Potentially very h igh value for 
serv icing. 

Servicing and Lagrange Point Ops 
for Astronomy, D. Lester 

Figw-e 2-8 SLS Servicing Missions 

Orbital Express, F. Kennedy 
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2.3. Study Approach Figures of Merit (FOMs), Weighting Factors and 
Sensitivity (SOW 2.2, 2.3, 4.1) 

Our study of potential SLS vehicle configurations considers a wide ranging trade space. This 
includes exploration of improvements to cmTent systems, such as EEL Vs, improvements to Ares 
V and application of Shuttle derived elements, such as the RSRMs and SSME's. We rough sized 
hundreds of initial concepts representing eight families for four paths. From this we prescreened 
to fomteen concepts using a FOM based relative rating Pugh matrix approach which is described 
in the following. 

We have considered FOMs from previous relevant programs and establish a set for this study 
with a strong focus on sustainability. FOMs are checked to assure they are quantifiable, objective 
and trnly drive a sustainable SLS system. In particular these evaluations are prioritized to the 
previously introduced SLS key sustainability drivers discussed earlier in Figure 1-1. 

SLS payload perfonnance is an essential perfo1mance indicator. See Section 3.1 showing the 
initial set of SLS configurations and families with conesponding payload pe1fonnance which is 
referenced as we have previously indicated, at earth escape velocity (C3=0). This is dete1mined 
by the essential role of the SLS to deliver large scale exploration payload to destinations beyond 
LEO. Similar to perfo1mance at LEO, the earth escape velocity point provides a common 
reference against which different SLS configurations can be compared. 

The selected payload perfo1mance FOM is the 
payload fraction defined as the payload 
divided by total vehicle diy mass for payload 
to LEO and to Eaith escape. This FOM is a 
strong indicator of the configuration payload 
lifting efficiency, since the diy mass di·ives 
development, production and even operations 
cost. The next principal FOM is vehicle 
reliability for delivery of payloads to escape. 
Mission reliability to escape velocity 
( complement of probability of loss of mission, 
PLOM) is used as the FOM, since vehicle 
reliability for the large ve1y high value human 
exploration payloads becomes a strong 
discriminator and is sensitive to vehicle 
complexities and number of failure critical 
components such as engines and separation 
systems. The last selected key FOM is life 
cycle cost (LCC). This is our prima1y metric 

Payload 

Reliability 

Cost 

Payload 
Fraction 

25% 

Reliability 

LEO 

DirecttoVe 

LOXonly 
DepottoVe 

Direct 

0.08 0.19 0.01 

0.08 0.05 0.05 

0.08 0.01 0.19 

0.13 0.19 0.06 
to Ve 1-----1----+----+----+ 
25% LOXonly 0 13 

Life 
Cycle 
Cost 
50% 

Depot · 

DDT&E 
(2011-2016) 0-25 

Fixed 
(2016-2036) 0-13 

Variable 
(2016-2036) 0-13 

Check Total 1.00 

0.06 0.19 

0.38 0.03 

0.10 0.10 

0.03 0.38 

1.00 1.00 

Figure 2-9 FOM Evaluation and Weighting Approach 

and complements the payload FOM. Figure 2-9 summai·izes these FOMs and shows how they 
are composed by FOM sub-elements and how the evaluation weighting applies to each of the 
FOMs and sub-elements. Three different weightings are employed, Wl, W2 and W3 which are 
used to test sensitivities for equally weighed, near te1m and far te1m emphasis. 
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Figure 2-10 shows our configuration naming 
convention used for the study. For the first 
technical interchange meeting (TIMI) we 
down selected 10 concepts in five families. 
Assessments included payload perfo1mance to 
escape velocity and reliability analysis for 
three sample missions with two paths. Life 
cycle costs were estimated for DDT &E and 
production and operations fixed and variable 
costs for a 40 missions manifest through 2036. 
The configuration options were refined based 
on TIMI infonnation and additional studies 
and resulted in a specific SLS configuration 
recommendation and growth path for TIM2. 

Figure 2-11 shows the payload fraction to 
escape velocity for each TIMI configuration. 

Aerospace Systems 

N ,t!GC C Constellation derived 

A Family A Atlas V derived 

6 #Core Engines D Delta IV derived 

01 Sequence1 H Newin-line LH2core 

K New in-line RP core 

s New side by side LH2 

T New side by side RP 

u Solid CS 

R Reusable Strap-Ons 

Z ln-Line3Stage 

Figure 2 -10 NGC Configuration Naming Convention 

The blue diamonds ai-e the payloads that can be delivered to escape velocity directly. The red 
squares are the payload to escape if the upper stage LOX tank is refueled in LEO. The direct 
payload fraction trends upward from 0.12 to 0.29 indicating a significant improvement versus the 
NC601 reference. Note in pruticular the increased efficiency of the RP liquid booster 
configurations, NK403 and NZ401. The increases going from the direct mode to the LOX 
refueling is dramatic and highlights how dominant LOX is to total mission mass. 
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Figure 2- 11 Initial Trade Options Payload Fraction 
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We used a Pugh relative rating matrix where each FOM sub-element is scaled to a range between 
-2 and 2 where O is the NC601 comparison standard. Weighting factors are then applied and 
summed across all sub elements for each configuration. Figure 2-12 shows the ratings for 
payload fraction. Configurations NH403, NK403 and NZ401 have superior perf01mance for all 
weighting sensitivities. 
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Figure 2-12 Initial Trade Options Payload Fraction Relative Rating 

Mission reliability weighting in Figure 2-13 indicates reasonable values for NH403 and NK403, 
but NZ401 is degraded because of reduced reliability due to increase number launches to carry 
out the same number of missions. 

2.0 

1.5 

1.0 

0.5 

• Reliability to Ve (wt1 equal weighting) 
- Reliability to Ve (wt2 near term favored) 
- Rel iability to Ve (wt3 long term favored} 

0.0 +-----<!-~---~---~--~---~--~---~---~--~--~ 

-0.5 • 
-1.0 • 
-1.5 • • • • 
-2.0 

NC601 ND401 ND702 NA701 NS302 NH403 NK403 NX601 NY801 NZ401 

l • ; I I • II .. • • • :; 

Figure 2-13 Initial Trade Options Mission Reliability Relative Rating 
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Figure 2- 14 Initial Trade Options Cost Rel ative Rating 

NY801 NZ401 

The cost ratings (Figure 2-14) show trends similar to the payload fraction and this time NA701 
and NZ401 shows superior perfo1mance. 

Figure 2-15 shows weighted total ratings in the f01m of high-low bars and indicating the ranking 
across all candidate configurations. Generally the presented configurations all rank better than 
the reference NC601 and collectively point to improvements in alternative approaches for 
achieving a sustainable SLS. NA702, NH403, NK403 and NZ401 all rank highly. NZ401 is high, 
but shows more sensitivity to the weighting scheme. 
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Figure 2 - 15 Initial T rade Options Weighted Total Rating 

NY801 NZ401 

The reliability and cost model FOM parameters are built up based on a mission and manifest 
established from the exploration architecture described in Section 2.2. This modeling is 
described in some detail below. An inte1m ediate input to the reliability models and LCC are the 
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flight rates for both critical (crew exploration vehicle and key cargo elements) and non critical 
(propellant or propulsion elements or stages that can be replaced by spares) missions shown in 
Figures 2-16 and 2-17. 
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Figure 2-17 Initial Trade Options Non-Critical Lam1ches 

These are input to dete1mine the reliability evaluations and LCC across the different 
configurations and mission modes such as described m Section 2.2, e.g., direct, LEO 
aggregation, and LOX-only depot mission modes. 
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The beneficial effect on mission reliability when using the LOX only depot mission mode can be 
seen in Figure 2-18. The values are n01malized to the reliability of the Ares V, NC601 reference 
configuration and the LENO/Lunar Surface Direct mission mode (solid blue line.) The solid lines 
show for the three missions (LENO/Llmar Surface, HENO/Mars Orbit and Mars Surface) 
reliability using the direct mode. For these the payload is either directly launched to its velocity 
at deprui:ure, or in the case where there are multiple critical payloads (Figure 2-16.), they are 
aggregated with associated departure stages for the eruih deprui:ure launch. The primary 
sensitivity in reliability is shown to be due to moving from the direct mode to the LOX depot 
mode, i.e. , going from the solid lines to the dashed lines in the figure. As shown in the reliability 
and safety modeling approach section, below, this reliability improvement is due to the economic 
feasibility of providing launch spares for the "non critical" propellant launches, see Figure 2-26 
showing this effect for the study downselect families mission reliability. 
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The initial trade options life cycle costs in Figure 2-19 also use the critical and non critical 
launches versus configuration to determine the overall flight rate which drives the LCC 
calculations. Our configuration development emphasis on affordability and sustainability results 
in significantly lower fixed costs for production and operations over the period 2016-2031 vs. the 
NC601 reference. The lowest LCC example is the NA701, cluster configuration vehicle which 
leverages the EELV vehicle production infrastrncture. 

Use, duplication or disclosure of export controlled information is subject to the IT AR warning on the title page of this document. 
SLS Study Final Report_NGC_Update_ll0626 docx 20 



NORTHROP GRUHHAN 

~ 

90 
~ 

;,: 
(.) 

80 

co 70 e 25 
~ 60 
0 
~ 

50 ~ 

0 
N 

40 .I!! 
"' 0 

30 (.) 46 
33 

34 30 29 
22 

Q) 

0 20 >-
(.) 

~ 10 ;;:j 

0 
I 

NC601 ND401 ND702 NA701 NS302 NH403 NK403 

= 
; I I ... • • ... - -

Figure 2- 19 Initial Trade Options Life Cycle Cost 

Trajectory Modeling and Optimizing Tools 

Aerospace Systems 

Variable Costs (2016-2036) 

• Fixed Costs(2016-2036) 

• DDT&E (201 1-2016) 

24 
18 

NX601 NY801 NZ401 

' .. ... .. 

The evaluations applied two perfo1mance model tools that operated successive levels of 
turnaround time vs model complexity and fidelity: quick-sizer yielding tmly instant 
configmation assessments and F ASTPASS, providing the high fidelity, industly benchmark class 
outputs. There tools were calibrated to Saturn V, Ares V and Delta IV Heavy characteristics. 
This optimization process operates at the vehicle, subsystem, and component levels. At each 
level, a suite of analytical tools were used to model various aspects of the problem. User 
requirements for payload size, desired orbit, environmental limitations, etc. were collected and 
used as design constraints or objective fonctions in vehicle synthesis. 

Quick-Sizer: To facilitate a thorough exploration of the SLS configuration trade space we 
developed a launch vehicle quick-sizer before study go ahead and updated it during study 
execution using company discretionary funds. The quick-sizer uses the ideal rocket equation, 
catalogue solid rocket booster (SRB) and liquid rocket engine perfonnance parameters, legacy 
stage mass fractions and deliberately conservative thmst to weight consfraints. It solves for 
payload to a selected mission delta velocity (.0. V) and sizes propellant volllllles, stage mass, 
residuals mass and dry mass for each stage. Our sizer is built in MS Excel and uses a series of 
look up tables to ve1y quickly populate an SLS configuration option with catalogue SRB 
parameters, liquid rocket engine parameters and legacy stage mass fractions. The investigator 
defines the number a type of stages, quantity and type of engines, most relevant legacy stage, 
payload fairing shape and size, any throttle back settings and whether cross feed is used or not. 
In addition the investigator can select whether liquid rocket boosters have common tanks with 
the core or are unique. The investigator closes the configuration using a variety of built-in sizing 
and convergence macros. There are macros to solve for a given payload, to adjust payload and 
staging point for thmst to weight constraints, to update tank volumes and to solve payload for a 
given set of tank volumes and thrnst to weight constraints. For bums with multiple propulsion 
types such as a f1rnt stage bum with SRBs assisting a liquid rocket core, the sizer calculates a 
composite specific impulse (ISP) from the mass flow, thmst and quantity of engines. Gravity 
loss, nozzle pressure loss and aerodynamic drag are approximated by adding an increment to the 
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mission t,.,. V. Legacy stage mass fractions without engines are used to calculate dry mass without 
engines and engine dty mass is discretely added using the number of engines and catalogue 
engine dty mass data. The payload fairing and interstage mass are estimated discretely using 
calculated or CAD modeled sUTface areas, payload fairing frontal area, maximum acceleration 
and legacy areal densities. Using the quick-sizer an investigator can setup and solve an SLS 
configUTation in a few minutes. This has allowed us to assess hundreds of options with consistent 
and conservative methods. Often we perfonned these assessments dUTing team web meetings and 
were able to quickly model anyone's proposed SLS configurntion option in real time. We 
compared quick-sizer results for known launch vehicles including the Saturn V and Delta IV 
Heavy and the predicted perfonnance for the Ltmar Capability Concept Review (LCCR) version 
of Ares V. Qick-sizer results are typically 5-10% less payload using OUT conservative thrust to 
weight constraints and mass fractions. Promising SLS options are much more rigorously 
analyzed using the FASTPASS full simulation described below. In all cases FASTPASS predicts 
more payload than our quick-sizer usually within 5-10%. Our sizer has allowed us to explme 
many more SLS configuration options than we could possibly have accomplished without it and 
it enabled all study members to pru1icipate and have their ideas evaluated. In retrospect we 
probably could have included a step wise calculation of gravity loss, nozzle pressure loss and 
aerndynamic drag using numeric methods within MS Excel and could have eliminated most of 
the conservatism and had better resolution fm detail featUTes such as cross feed. Fm this 
conceptual level study though OUT quick-sizer wmked ve1y well. 

F ASTP ASS: The Flexible Analysis System for Trnjectory Performance of Advanced Space 
Systems (FASTPASS) computer program was used to model and optimize each promising 
launch vehicle configuration. FASTPASS is a flexible, multidisciplina1y design optimization 
framework with embedded trnjectory optimization similar to the industry standard Program to 
Optimize Simulated Trajectories (POST). FASTPASS has a simpler and mme powerful user 
interface and inc01porntes a comprehensive sizing model to enable rnpid simultaneous 
optimization of the vehicle and trajectory. FASTPASS has been used in suppo11 of many NASA 
programs and studies, including but not limited to the Space Launch Initiative, the Space 
Exploration Initiative, Rocket Based Combined Cycle Single and Two Stage to Orbit studies, 
National Launch System, Advanced Launch System, Bantam Low Cost Booster, Orbital Space 
Plane, Shuttle-C, Liquid Rocket Booster, Liquid Fly-Back Booster, X33Nenturestar and Ares V. 
FASTPASS results have been compared with POST on a number of occasions and found to 
consistently match within 0.5% 
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Figure 2-20 F ASTPASS Optimization Process 

F ASTPASS uses a central synthesis database to store info1mation throughout the optimization 
loop. The vehicle, perfo1mance, and optimization modules all communicate through this 
database. Descriptions of a few of the critical modules and groundrnles used for SLS simulations 
are summarized in the following paragraphs. The F ASTP ASS program strncture is illustrated in 
Figure 2-20. FASTPASS has an extensive libra1y of liquid and solid propellant propulsions 
systems, weight estimating relationships, and aerodynamic models that were used to rapidly 
synthesize new launch vehicle configurations. 

Reliability and Safety Modeling Approach 
We accumulate the reliability of the launch vehicle using bulk reliability for each subsystem 
ftmctional block for each of the launch vehicle elements, such as stages (Figure 2-21). The plot 
shows in blue the estimated failure rates in ppm for each of these subsystems. The reliability 
product across all these elements results in the estimated vehicle reliability, alternately the 
PLOM. 

Subsystem failure rates are estimated using analysis of prior US lalmch vehicle experience. We 
factor these to represent a human rated lannch vehicle to achieve nominal launch reliability of 
99%. This is to allow comparison of various mission approaches and architectures since we were 
mainly interested in the differences; however we also wanted to sta1t with something reasonable. 
The study also evaluates the SLS for PLOC considering its possible role of delivering crew to 
orbit. We can achieve good crew safety given a 95% abo1t capability. We incorporated engine 
catastrophic failure fractions and estimated a much reduced 20% abo1i reliability in those cases. 
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Figure 2-21 PLOC and PLOM 

The main tlnust of our reliability analysis is to look at the objective of aggregating multiple
vehicle launches of the SLS and loitering on orbit prior to departure. The aggregation can be in 
the fonn of component or stage aggregation, or by using depots. The reliability problems for 
both are similar, but to keep it manageable, this discussion concentrates on depots. 

For a depot to be effective in supporting a large vehicle departure to deep space, it must 
successfully operate in low eaith orbit while the propellant is brought up. This could be for a 
period of one to two years. We have applied understanding gained from Northrop Gnunman 
unmanned satellites, such as Compton, 
Chandra, and Aqua/ Aura that must operate 
reliability for 5, 10 and 15 years. The same 
models that are used to design these satellites 
can be used to show that high, 99% reliability 
over two years can be expected for an 
appropriately designed depot, or loitering 
stage as shown in Figure 2-22. 

Our reliability models for depots include the 
high reliability subsystems and include the 
reliability (probability of no penetration) of 
tank MMOD shields. These results ai·e derived 
from detailed modeling that was done on our 
CEV Service Module design for safe 
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Figure 2-22 Reliability Analysis - Depots 
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operations at ISS over 60 months total 
proximity period. (Figure 2-23) 

This analysis of reliability addresses the 
fundamental problem of how big the SLS 
vehicle should be. Ideally the launch vehicle 
would launch the missions to the Asteroids, 
the Moon or Mars using a single launch. That 
of course would be too large. However if the 
mission is reduced to many flights using 
smaller launches, the probability of 
successfully executing the launch campaign 
becomes prohibitively low. The problem is 
addressed by dividing the vehicles into two 
classes of payload, critical and non critical 
(Figures 2-24 and 2-25). Critical payloads 
need to be launched with high assurance, since 
their loss would cause a catastrophic loss and 
end to potentially a multi-billion dollar 
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mission. Non critical payloads have much Figw-e 2-23 Reliability Analysis - Subsystems & MMOD 
more replaceable items, such as propellant. 
Figure 2-26 shows how each of the candidate vehicle configurations perfonn for our reference 
missions. It is assumed that without a depot all payloads are critical. A depot, in this case for 
LOX-only allows the grouping of critical and non critical payloads. These are the con esponding 
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non critical payloads for the reference missions. As can be seen, since one can anange to replace 
the loss of the 11011 critical payloads (a single spare is usually sufficient) there results a dramatic 
improvement in mission reliability. 

Right after TIMI NGC met with the TMT Safety and Mission Assurance group to review our 
approach. hl summaiy the approaches we have used and the one used by MSFC are ve1y similar 
and appear to produce comparable results. 
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Life Cycle Cost Evaluation 
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The updated missions are fed back into the mission manifest (Figure 2-27) for the life cycle 
costing. The life cycle costs are computed for the candidate vehicles broken down into DDT &E, 
fixed and variable cost for the 26 years of development and operations and launching 40 SLS 
supported missions as shown in Figure 3-7. Generally multiple lannches are perfo1med for each 
mission as shown previously in Figure 2-24 and 2-25. The salient result is reduced fixed costs 
shown for the selected vehicle configurations in compai·ison with the NC601 with its large fixed 
production and operations infrastructure. Figure 2-28 presents the breakout according to the 
recollllllended configuration component elements. 
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Cost modeling is based on the following assumptions, input date and ground rnles. 

Assumptions: 

• FYl 1 Constant Dollars 
• Industly development with 20% NASA program support 
• 6 year development from 2011 through 2016 
• DDT&E program includes a single unmanned demo flight in 2016 
• 25 years of operations from 2016 through 2036 

Mission Man if est: 

• 13 LENEO/Lunar Surface Missions 
• 13 HENEO/Mars Orbit Missions 
• 4 Mars Surface Missions between 
• 10 Science or DoD Missions 

Shared Infrastructure where applicable: 
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3. SLS Configuration Options for Alternative GR&As (SOW 3.2, 4.2) 

A key aspect of our N01ihrop Grnmman SLS configuration trade study approach was our ability 
to consider a wide variety of vehicles in a broad range of vehicle families. We took an 
unconstrained view, enabling us to remain creative in our concept development and ensure that 
the SLS is trnly sustainable within the expected funding profile. Although a number of traded 
options and associated vehicles were eliminated almost immediately, we uncovered 
combinations of ve1y promising features that prompted fmiher analysis and then are used 
improve the perfo1mance of a variety of vehicle configurations. This section documents our trade 
space evolution from an initial trade set of five configuration families to our down selected set, 
consisting of three families supporting fuither, detailed analysis. The study cuhninates with the 
No1ihrop Grnmman recommended SLS configuration, NK206-2 described in detail, below. We 
also summarize our analysis of critical features that apply to a range of SLS elements and 
wan ant fuither consideration . 

3.1. SLS Configuration - Initial Trade Options 

Hundreds of configurations were analyzed using our in-house quick-sizer tool (see description of 
tool in Section 2.3). The ten vehicles shown in Figure 3-1 below represent the five SLS 
configuration families we selected for detailed analysis and presented at TIMI. Refer to Figure 
2-10 for an explanation of the naming convention. NC601, our Ares V-like reference vehicle, is 
characteristic of Constellation-derived options with a constant 1 Om diameter. Tank layouts for 
NC601 and all other initial trade vehicles are illustrated in Figure 3-2. 
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Figlll'e 3-1 SLS Configlll'ation - Initial Trade Options 
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Our novel composite clustered interstage concept described in Section 3 .9 is a key feature of the 
vehicles shown in the EEL V Booster Cluster family. These vehicles take advantage of existing 
EEL V booster core designs and production infrastmcture and tend to reduce vehicle mass and 
stack height. ND401 is a cluster of four Delta IV Common Booster Cores (CBCs) while ND702 
inc01porates six around a central CBC for a total of seven. The natural geometry of six equally
sized circles spaced evenly around a central seventh optimizes the launch pad footprint. NA701 
is similar to ND702 but utilizes seven Atlas V Common Core Boosters (CCBs). The primary 
launch loads are unifonnly distributed through the clustered interstage in all of the cluster 
configurations, so the booster fo1ward mounts are unchanged from the cmTent design. A key 
affordability feature of this family is that few modifications are required to existing EEL V 
boosters. The clustered interstage is the enabling feature. 

Alternative Upper Stage Layouts 

NC601 ND401 ND702 NA701 NS302 NH403 NK403 

Liquid Hydrogen (LH2) 

Rocket Propellant (RP) 

Liquid Oxygen (LOX) 

Solid Rocket Propellant (SRP) 

Payload Volume(PL) 

NX601 NY801 NZ401 

Figure 3-2 SLS Configm-ation - Initial Trade Options Tank Layouts 

NS302 represents a family of vehicles that feature common diameter side-by-side core and upper 
stages with all LOX/LH2 propulsion. Three common core segments are staged simultaneously. 
The upper stage side-mounted drop units cany ascent LH2 and are jettisoned in LEO. The upper 
stage center unit canies all upper stage LOX and only the LH2 required for the escape bmn. 
Affordability drivers include a common reduced diameter throughout the vehicle, common major 
unit production in a reduced footprint infrastrncture and a steady state line of balance at low 
production rates. 

The fomih family includes two-stage vehicles with liquid rocket boosters (LRBs). NH403 is an 
all LOX/LH2 vehicle with common 7.5m diameter LRBs, core and upper stage. NK.403 features 
common 6.5m diameter elements, but utilizes LOX/RP LRB and core propulsion. In this family, 
the core stage and LRBs all fire on liftoff. Similar to the side-by-side concepts, this family 
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benefits from common diameter elements throughout, common major unit production in a 
reduced footprint and a steady-state line of balance at low rates, yet designed into a more 
traditional LRB two-stage configuration. 

The final trade options family consists of three strap-on three-stage vehicles with varying core 
stages and LOX/LH2 second and upper stages. Although they may appear similar to other 
vehicles in our trade space, the solid rocket booster, LOX/LH2 and LOX/RP core stages 
(NX601, NY801 and NZ401 , respectively) contain the only engines that fire at liftoff. What 
looks like a central core stage is actually the second stage in the strap-on 3-stage configurations. 
All vehicles are shown in Figure 3-1 and Figure 3-2 with upper stages encapsulated by extended 
payload fairings. This is a critical feature for dedicated in-space vehicle architectures (ref Section 
4.7) but not a requirement for a multi-pmpose upper stage. 

Perfo1mance for the ten initial trade vehicles is shown below in Figure 3-3 in the fonn of payload 
to escape velocity. The payload capability of our trade set ranged from 21 (ND401) to 74 
(NH403) metric tons direct to escape velocity. As expected, all vehicles significantly benefit 
from the availability of a propellant depot (reference Section 2). With LOX only refueling, the 
smallest vehicle in our trade space, ND401 performance increases from 21 to 4 7 metric tons, 
while the largest, NH403 increases from 74 to 148 metric tons to escape velocity. All vehicles at 
least double their payload perfo1mance with the addition of a LOX only propellant depot, with 
the exception of NY801 at 186%. The Constellation-derived NC601 vehicle witnesses the 
greatest perfonnance increase at 232%. Payload to escape velocity is one metric we used to 
compare our initial trade vehicles prior to our configuration downselect. For all others, reference 
Section 2. 
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Figure 3-3 Initial Trade Options - Payload to Escape Velocity 
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3.2. SLS Configuration Downselect 

After TIMI , we conducted a configuration downselect resulting in the set of vehicle families 
shown in Figure 3-4. Whereas the TIMI initial configurations were representative of a wide 
trade space within each family, these particular vehicles are the result of our first level of 
detailed analysis. All TIMI options outscored our Constellation-derived NC601 vehicle 
(reference Figure 2-15) but, as our baseline, we continued to trade our downselected vehicles 
against it. The highest scoring families contained the EEL V Booster Cluster and the LRB 2-
Stage vehicles. We eliminated the Side-by-Side family. The NS302 representative vehicle was 
too complex for its limited staging benefit. All three-Stage options were eliminated because we 
detennined that cross feed can provide the same benefits in two-stage LRB configurations at 
lower cost (reference Section 3.8). We replaced ND40I with NA702 within the EELV Booster 
Cluster family and added NK205-2 based on promising results from our all-RP commonality 
study described in Section 3.7. ND401 is a nice compact vehicle but it was just too small with 
many critical launches required per mission. We also replaced NH403 and NK403 with NH201-2 
and NK206-2 respectively to reduce the number of total engines and take advantage of the 
natural staging benefit of three-engine LRBs combined with a two-engine core. 

NC601 

Constellation 
Options 

Many Options in 3 SLS Configuration Families 

• -
NA701 NA702 ) \. NH201-2 NK206-2 NK205-2 ) 

- -----y------- -------y-------
EELV Booster Cluster Options LRB 2 Stage Options 

Figure 3-4 SLS Configuration Options - Downselect Families 
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Our downselected vehicle tank layouts are shown below in Figure 3-5. The added vehicles, 
NA702 and NK205-2 take advantage of common propulsion throughout. Similar to NA701, 
NA702 features seven Atlas V CCBs but has a single RD-180 upper stage. NK205-2 has two 
LRBs with three RD-180s each, a central core stage with two RD-180s and a single RD-180 
upper stage. NH201-2 utilizes two LRBs, each with three RS-68C engines, a core stage with two 
RS-68Cs and a single J-2X upper stage. Its TIMI predecessor, NH403, was a common core/LRB 
configuration with four RS-68B engines each. NK206-2 replaced NK403 and again reduced the 
number of engines moving from a common core/LRB configuration with a total of twelve RD-
180s to its design, sized with two LRBs with three RD-180s each, a central core stage with two 
RD-180s and a single J-2X upper stage. Alternative upper stage layouts are also included to 
demonstrate the flexibility that still remains within the downselected configurations. 

NC601 ND702 

Alternative 
Upper Stage 

Layouts 

NA701 NA702 NH201-2 

Liquid Hydrogen (LH2) 

Rocket Propellant (RP) 

Liquid Oxygen (LOX) 

Solid Rocket Propellant (SRP) 

Payload Volume (PL) 

NK206-2 NK205-2 

Figure 3-5 SLS Configuration Options - Downselect Families Tank Layouts 
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Figure 3-6 Downselect Families - Payload to LEO and Escape Velocity 

We compared the perfo1mance of our downselected vehicles as shown in Figure 3-6, again in 
te1ms of payload to escape velocity. We also included the fallout LEO payload (28.5° at 400km) 
for reference. On average, the LRB 2-Stage vehicles outperfonned the EELV Booster Cluster 
options but fell short of the NC60 I baseline. In te1ms of affordability, the Life Cycle Cost (LCC) 
analysis in Figure 3-7 designated NK206-2 as the lowest cost option while still placing 107 
metric tons to LEO. Much of the LCC cost benefit of the cluster and LRB 2-Stage vehicles is 
rooted in fixed cost stemming from the reduced infrastrncture required to produce and operate 
each configuration, which we discuss further in Sections 3.5 and 3.6. Reduced infrastrnctures are 
largely the result of the application of smaller, multiple core and booster elements which reduces 
the facto1y and transportation "footprint" and multiplies the opportunism for commonality of 
strnctural elements and subsystems and introduce opportunities for more efficient, parallel line 
production systems. More commonality ripples also into reduced need for large supp01t teams 
with large numbers of specialized groups to handle diverse vehicle components. The reference 
NC601 has the largest fixed costs resulting from its use of in-place, large infrastrnctures, such as 
for the RSRMs and the ET-derived vehicle core stage. 
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Figw·e 3-7 Downselect Families - Life Cycle Cost 

3.3. Concept Description Packages 

NK205-2 

.. " ... 
We created PowerPoint concept description packages (CDPs) for eve1y interesting configuration 
identified and analyzed throughout our SLS trade study. These stand-alone packages summarize 
relevant descriptive data outlining each configuration and include a vehicle description pointing 
out affordability drivers, alternative configuration options, vehicle and tank layouts, concept of 
operations with F ASTP ASS mission timelines, and a look into the required production 
infrastructure in tenns of major manufacturing units. Major manufacturing units are defined as 
shell elements and major engine procurements. These CDPs were key in transfening 
configuration data to the Technical Management Team immediately as they became available. 

Figure 3-8 is a summary of the data contained in the ND702 CDP. This pruiicular vehicle, 
ND702 features a cluster of seven Delta IV Collllllon Booster Cores (CBCs) and distributes 
lam1ch loads through our novel clustered interstage. The upper stage is sized for two J-2X 
engines and contains a tapered intertank between the LH2 tanks and a reduced major diameter 
LOX tank. Encapsulating the upper stage and/or reducing the mass/stack height by utilizing a 
common bulkhead approach are two noted configuration options. Affordability drivers include 
the utilization of existing CBC infrastmcture, clustered interstage thmst shells that are 
manufactured in a reduced production footprint, and an overall reduced mass. ND702 requires 
seven off-the-shelf Delta IV CBCs and two J-2X engines. Six interstage thmst shells are built 
using our In-situ Manufacturing System (IsMS). The payload fairing bruTel and ogive segments, 
aft ski1i frnstum and the tapered intertank are all built in panels to minimize the production 
footprint on the same IsMS using unique mandrel tooling. The upper stage thmst cone, the 
payload adapter fitting, two upper stage LH2 half tanks, t\vo upper stage LOX half tanks and six 
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interstage fillets are built ve11ically on unique tools. A snapshot of the ND702 FASTPASS 
mission timeline is also presented in Figure 3-8. 

Figure 3-8 ND702 Concept Description Package Smnmary 
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3.4. FASTPASS Trajectory Analysis 

FASTPASS was utilized throughout this trade study to validate om quick-sizer results and 
provide optimized sizing infonnation for promising vehicle configurations. One output from 
FASTPASS that contributed to om down.select decisions was a set of trajectory plots 
sullllllarized below in Figure 3-9. The plots chart the following data, all as a function of the 
mission tirneline: 

• Thrnst to Weight 
• Dynamic Pressme, q (KPa) and Acceleration (g's) 
• Relative and Ine1tial Velocity (rn/sec) 
• Altitude (lan) and Acceleration (g's) 
• Angle of Attack (deg) and q-alpha (KPaxdeg) 
• Heating Rate (KWm2/sec) with Indicated Fairing Jettison 
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3.5. Production and Operations Plans 

We developed production and operations plans for the five families presented at TIMI. fu this 
section we present production and operations plans for a representative vehicle from each 
downselected family. These vehicles include NC601, our Constellation-derived baseline, 
NA702, a cluster of seven Atlas V CCBs, and NH201-2, the all LOX/LH2 vehicle from the LRB 
2-Stage family. All composite tanks and dry stmcture are assumed in this analysis. Although 
these plans mention and picture specific vehicles, they apply to any configuration within that 
vehicle family. The example vehicles are compared in te1ms of major manufacturing units and 
their associated production footprint, and the required operations infrastmcture. Note that the 
structural mass fractions used in the perfo1mance calculations assumed legacy metallic structure 
weights. Use of composites would reduce dry and tank stm ctures by from 10% to 30%, 
indicating the conservative nature of our perfo1mance analysis. This approach leaves open the 
option to build low risk, high margin composite stmctures to further reduce costs. 

Baseline Vehicle NC601- Constellation Derived Family 
The major manufacturing units and tooling required to produce NC601 are shown in Figure 3-10 
below. Two fabrication stations and five unique tooling mandrels are required to build fifteen 
composite shells. The first station is a 1 Om-class IsMS with two unique tooling mandrels. 
Mandrel #1 is a cylindrical baITel section with a domed end used for fabricating half tanks and 
cylindrical dry structure. Since the infrastmcture is ah-eady in place to produce 1 Om diameter 
structures, the payload fairing is built as one unitized stmcture on Mandrel #2 using tooling plugs 
along the future longitudinal splice joint locations. The fairing is tr·immed into petals, the tooling 
plugs are removed and the separation system is installed. The second station is a Vertical 
Laminating Station (VLS). Shells with aspect ratios not conducive to our cantilevered IsMS 
approach are fabricated vertically using a variety of traditional laminating approaches like 
automated fiber placement or hand lay-up, depending on the design. Unique Mandrels #3, #4 and 
#5 are required for the core stage thmst shell, the upper stage thmst cone and the payload adapter 
fitting, respectively. The infrastmcture required to produce the 5-segment solid rocket boosters 
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Figure 3-10 NC601 Major Manufactming Units and Tooling 
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Figure 3-11 NC601 Production and Operations Flow Diagrams 

and engines are not shown, but are considered in the s11111111a1y analysis ahead in Figure 3-16. 

With this approach we are able to fabricate the entire vehicle within a 12-month production 
interval as shown in Figure 3-11. A physics-based lamination model developed on an 
independent effo11 grounds our individual shell fabrication durations. We outfit as many 
subsystems and components while the tanks are in half segments in Group A. We join the tanks 
circumferentially prior to stage mate. Propulsion system integration and checkout follows and we 
bring in the boat tail and payload adapter fitting in Group C. The closeout row illustrates the 
major deliverables including the solid rocket boosters. 

The NC601 operations flow diagram is also presented in Figure 3-11. Major elements are 
brought via rail or barge to a modified Vehicle Assembly Building (V AB) for ve11ical integration 
and processing. A fully integrated vehicle is transported to the launch pad using a new crawler 
and Mobile Launch Platfo1m. This approach provides flexibility for an increased launch rate or 
adding vehicle elements to the stack due to the number of dedicated facilities and ve11ical 
transportation to the pad. Fixed costs are high with this approach, which was a major driver in 
our life cycle cost analysis. 

Example Vehicle NA702 - EELV Booster Cluster Family 
The major manufacturing units and tooling required to produce NA 702 are shown in Figure 3-
12. Three fabrication stations and eight unique tooling mandrels are required to build twenty-one 
composite shells. In comparison to the baseline NC601, the higher number of shells is due to the 
individual shell quantity required to build such a large payload fairing on reduced diameter 
infrastrncture as described in Section 3.8. The individual thrnst shells that eventually fo1m the 
clustered interstage also add to the total. This does not account for the seven Atlas V CCBs as 
they are considered major procurements. This production infrastrncture is much smaller than that 
of NC601. The first fabrication station is a 7.6m-class IsMS with three unique tooling mandrels. 
Mandrel #1 is a cylindrical banel section with a domed end used for fabricating the upper stage 
half tanks. Mandrels #2 and #3 are used for payload fairing segments. Station #2 is a smaller 
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Figure 3-12 NA702 Major Manufacturing Units and Tooling 

IsMS in the 4m range that is capable of building the six tlnust shells. Smaller, but similai- to 
NC601, a VLS is required with four unique mandrels to build the noted components. 

Figure 3-13 shows the production plan and operations flow diagram for NA 702. The number of 
shells per fabrication station for this paiiicular vehicle is ve1y low which leads to a production 
interval well within one year. Fundamentally, sub-assembly and group outfiting process are 
similai· to NC601 although on a much smaller scale. The clustered interstage adds a significant 
sub-assembly and Group B outfitting task that can begin as soon as the first thrnst shell leaves 
Fabrication Station #2. 

CCBs and other components an-ive by air or barge and are processed horizontally, eliminating 
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Figure 3-13 NA 702 Production and Operations Flow Diagrams 
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any need for the V AB. Processed elements are moved to the launch pad using existing or 
modified CCB t:ransp01tation equipment. On-pad integration is enabled by the relatively small 
individual elements and the overall reduced stack height. A mobile service tower with a 
reasonable crane is used to lift and stage the elements. This extra time on the launch pad is well
suited for the expected low flight rates and helps minimize the required infrastructure, thus 
reducing fixed cost. A rigid composite shell, the clustered interstage will even se1ve as the CCB 
fo1ward alignment tooling fixture in this low cost operations approach. 

Example Vehicle NH201-2 - LRB Two-Stage Family 
The major manufacturing units and tooling required to produce NH201-2 are shown in Figure 3-
14. Two fabrication stations and eight unique tooling mandrels are required to build thi1iy-five 
shell elements. The total number of NH201-2 shells is significantly higher than the previously 
discussed vehicle examples but they are all built in a common manufacturing footprint. Solid 
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Figw-e 3-14 NH201-2 Major Manufacturing Units and Tooling 

rocket or EELV booster infrastrncture is not required. Fabrication Station #1 is similai- to that of 
NA702 and falls into the 7.5m class. Its Mandrel #1 baiTel section is extended to accommodate 
longer half tanks. IsMS Mandrel #2 is unique to this family of vehicles. As presented in Figure 
3-12, NA702 requires a unique veli.ical tool for the nose cap. As discussed in Section 3.7, 
Mandrels #3 and #4 ai·e required to build the 1 Om diameter payload fairing in this reduced 
diameter infrastructure. Finally, a VLS is required with four unique tooling mandrels. 

NH201-2 will push Fabrication Station #1 to its maximum capacity as shown in Figure 3-15. It is 
possible to fabricate this relatively high number of shells and close out the major NH201-2 
deliverables within a one year production inte1val, but only once the production line reaches 
steady state. Any production rate increase can be accommodated by adding a third IsMS 7.5m 
fabrication station while still maintaining a small footprint. This vehicle also requires increased 
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Figure 3-1 5 NH201-2 Production and Operations Flow Diagrams 

outfitting and sub-assembly stations as compared to NC601 and NA702 due to the common core 
stage and booster production plan. 

The Operations Flow Diagram is shown in Figure 3-15. The 7.5m core and LRBs can be barged 
to the processing facility similar to the Shuttle External Tanlc Engines and payload fairing petals 
ani.ve to the appropriate facility via air or barge. NH201-2 is processed horizontally in either a 
dedicated or shared horizontal processing facility. This pruticular family offers flexibility when it 
comes to vehicle integration. One option is to transport the core and LRB segments individually 
ru1d ve1tically integrate on the pad using a mobile service tower and crru1e. Alternatively, the core 
and LRBs are integrated horizontally, transpo1ted to the pad as a single lmit and lifted to vertical 
using a fixed pad erector similar to Delta IV Heavy. Either way, the encapsulated payload is 
staged once the vehicle is ve1tical using the mobile service tower and crane. The operations costs 
ru·e considered moderate for this family of vehicles. Although the V AB is again not required, 
there are increased on-pad facilities as compared to NA 702. 

Production and Operations Relative Rating 
Relative qualitative analysis ofNA702 and NH201-2 to the baseline NC601 vehicle is presented 
in Figure 3-16. Again, these compru·isons are representative of the vehicle families and are not 
limited to the example vehicles. After summarizing critical features of the production and 
operations plans a compa1i.son was made noting whether each example vehicle in the given 
category was cleru-Iy better (green), about the same (yellow) or clearly worse (red) than the 
Constellation-derived reference vehicle NC60I.Both vehicle families scored better than the 
baseline vehicle in three of the four categories. Pad operations was the only category where the 
large Ares V-like vehicle competed with the smaller vehicles. In this case the dedicated 
processing and integration facilities decrease the total amount of activity perfo1med at the pad, 
but the reduced stack heights and similar processes to cmTent EELVs eruned NA702 and 
NH201-2 a yellow rating. In the Fabrication, Assembly and Integration, and Transpo1tation 
categories both the EEL V Cluster family and the LRB two-stage family options scored clearly 
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better. There were not any instances where the example vehicles scored clearly worse than the 
NC601 reference vehicle. 
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Figure 3-16 Production & Operations Relative Rating 
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3.6. SLS Recommended Configuration 

The No1tluop Grnmman team recommends 
configuration NK206-2 as shown in Figure 3-
17. This two-stage vehicle features two liquid 
rocket boosters (LRBs), each powered by 
three RD-180 class LOX/RP engines. The 
core uses two RD-180 class engines and the 
upper stage a single J-2X. With cross feed 
NK206-2 can launch 122 t to LEO and 52t to 
escape. The three booster and two core engine 
layout provides staging that closely 
approximates the efficiency of a three stage 
vehicle without the attendant additional 
complexity and cost. Three stage perfo1mance 
and engine out capability can be achieved by 

I 
10mHH 
Payload 
Fairing 

1XJ-2X 
Upper Stage 

Aerospace Systems 

(2) 3X RD-180 LRBs 

2XRD-180 
Core Stage 

1,325t 487t 

27t '148t . - 268t 99t 

1,325t 487t 

Figw-e 3-17 NGC Recommendation - NK206-2 

inc01porating cross feed as described in Section 3.8. Engine out capability may prove to be 
essential to successfully mount out year multiple launch missions to Mars and high energy NEO 
flights. The vehicle configuration is ve1y compact. The 6m diameter core and liquid boosters are 
sized to accommodate the RD-180 engine envelope and can accept an upgrade to a domestic 
large RP engine when it becomes available. This compact configuration directly translates to a 
reduced production and operations footprint which are strong contributors to the lower LCC cost 
for this vehicle as shown previously in Figures 3-7 and 3-24. 

NK206-2 scores well for all criteria and 
weightings and offers a family of options in 
addition to this very capable vehicle. NK 206-
2 provides a high degree of adaptability and 
can evolve upward and downward in capacity 
to flexibly accommodate NASA exploration 
and other national user needs as shown in 
Figure 3-18 and discussed in Section 4. The 
NK206 family offers perfo1mance ranging 
between 30 and 196t to LEO. As already 
mentioned it is sized to optimally inco1porate 
a domestic high thrnst RP engine as discussed 
in Section 4.3. Variants include single stick 
vehicles that could be available if needed for 
ve1y safe transpo1i of crew to orbit and many 
other lower payload missions. The NK206 
family allows development within NASA 
budget funding levels while making steady 
progress to a super heavy lift vehicle for Mars 
exploration. 

Figure 3-19 shows the NK206-2 basic 
dimensions. The primary dimensions are in 
meters and the secondruy dimensions in 

NGC Recommended 
Configuration 

NK206-2 

u ... 611'~.IU .68~11>1 

• • .:.++ 
Affordability Features 

• Common 6m Diameter LRBs, Core and Upper Stage 
• RD-180 class LOX/RP strap on LRBs and Core 
• Competitive domestic LOX/RP core and LRB engines 

shared with USAF 
• Common J-2X based Upper Stage 
• Common tank tooling and production system 

throughout 
• Family ofvehidesprovide more optimum sizing fora 

wider variety of exploration, science and national 
security missions 

Figw-e 3-18 SLS Recommended Vehicle Family 
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parentheses are in feet. Three RD-180 class engines nest nicely in the 6m base diameter with the 
addition of small nozzle fairings. A smaller base diameter may be possible with further 
refinement but will require a longer vehicle for the required propellant volume. The core with 
interstage is 27.5m long and the upper stage with payload adapter is 27.4m long. The payload 
fairing is a 1.375 aspect ratio tangent ogive with a O.lm leading edge radius. The payload fairing 
length can be modified by vru.ying the barrel length. 

¢ 10 
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C 232 l 

t 

¢ 6 
[20) 

l-- 21.s 
190 1 

2 7 4 ----------190) 

:I 

Figure 3-19 NK206-2 General An-angement 

18. 5 
r 61 1 

Figure 3-20 shows the NK206-2 major manufacturing units. All tanks are built in unitized ban-el 
and ellipsoid dome halves. The bru.Tel length is stretched or sho1tened for the required propellant 
volume. The LRB nosecones, thrnst strnctures, boat-tails, interstage and payload adapter are all 
built as unitized shells. The 1 Om diru.neter 
hammerhead payload fairing is broken up into 
a nose cap and panels to fit in the same 
production infrastrncture as the rest of the 6m 
base diameter major units. 

Figure 3-21 is a summru.y NK206-2 
production flow. After some initial leru.ning 
the vehicle can be produced within a year. 
There are three shell fabrication stations that 
build all of the major units shown previously 
in Figure 3-20. Each major unit is stuffed with 
as much equipment and provisions as possible 
while in their most accessible state in the 
group A outfitting station. Thmst cones to 
tank halves and tank baITel subassemblies are 
next along with the installation of group B 
equipment. Major mate JOlllS common 
bulkheads. At this point proof pressure 

--
3X RD-180 each 2XRD-180 

Payload Fairing 
Segments .. 

1XJ-2X 

Figure 3-20 NK206-2 Major Manufacturing Units 
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acceptance testing can be perfo1med. Next the engines and other high value propulsion 
equipment are installed and checked out. Next are the final group C installations and then the 
vehicle elements are closed out and shipped to the launch site ready for stacking. 

Weeks from 2 2 3 3 3 3 3 4 4 4 4 4 5 
go ahead 6 8 O 2 4 6 8 0 2 4 6 8 0 
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Figure 3-21 NK206-2 Production Flow 
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ascent simulation data plots. Note that the minimum thrnst to weight at lift off, LRB jettison and 
upper stage ignition are all healthy and the altitude profile is smooth. Maximum accelerations are 
reasonable along with all ascent characteristics. In this case the dynamic pressure is nil by the 
time the heating rate is low enough for payload fairing jettison. 
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Figure 3-24 shows the NK206-2 life cycle cost for the 40 mission manifest shown previously in 
Section 2.3 Figure 2-27. The LCC is low for this vehicle due to its 6m base diameter, compact 
size and common production infrastructure. The small production and operations footprint keeps 
fixed costs low. The spikes and valley in this profile are driven by the multiple launches needed 
for higher energy missions can be smoothed by staggering the vehicle production. 
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Figw-e 3-24 NK206-2 Life Cycle Cost 
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3.7. Commonality Opportunities (SOW 3.4, 4.4) 

Main Propulsion Commonality - All LOX/ RP Study 

Aerospace Systems 

During our trade study we discovered that a dedicated in-space cryo-propulsion stage may be 
prefeITed over a multi-purpose upper stage (see Section 4.7). This opened up the design space for 
an all LOX/RP vehicle since the upper stage would no longer have to perfonn the escape bum. 
Due to common propulsion throughout the main engines, reduced tank sizes, simpler the1mal 
management and the near term availability of a selection of capable engines, we hypothesized 
that an all LOX/RP vehicle would be more affordable. We optimized our highest scoring 
vehicles for RD-l 80s, RD-171 s, F-lAs and Merlin 2s using either demonstrated or predicted 

- • 
_ t __ 

u'u, M IJltM • • ---NK501 NK701 NK202 NK203 NK201 NK205 NA702 
5F1-ACore 7F-1ACore Al l F-1As All RD-171s All M-2s All RD-180s All RD-180s 

3 J-2X Upr Stage 5 J-2X Upr Stage 
'---y-1 

In-Line LOX/RP Core All LOX/RP LRBs, Core Atlas V Booster Cluster 
LOX/LH2 Upper Stage and Upper Stage with LOX/RP Upper Stage 

Figure 3-25 All LOX/RP Study Configw-ations 

perfo1mance data. The resulting configurations are illustrated in Figure 3-25. Tank layouts for 
the study vehicles are presented in Figme 3-26. NK203, with its triple RD-171 LRBs, dual RD-
171 core and single RD-171 upper stage is the highest payload perfonner out of the all LOX/RP 
vehicles as shown in Figure 3-27. Its large envelope RD-171 engines may call for some 
interesting thrust stmctures at such a small common core and LRB diameter. 
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NK501 NK701 NK202 NK203 NK201 

Figlll'e 3-26 All LOX/RP Study Tank Layouts 

Aerospace Systems 

Liquid Hydrogen (LH2) 

Rocket Propellant (RP) 

Liquid Oxygen (LOX) 

Solid Rocket Propellant(SRP) 

Payload Volume (PL) 

NK205 NA702 

Although the F ASTP ASS LEO payload prediction of nearly 100 metric tons for the smallest 
vehicle in this mix seems reasonable (Figure 3-27), our similarly sized SLS vehicle 
recommendation, NK206-2 with its J-2X upper stage, outperfonns NK205 by 25 metric tons. 
Our study detennined that, although an all-LOX/RP configuration looks very promising for a 
LEO only vehicle, we really need a multipurpose LOX/LH2 upper stage for early hlllllan 
exploration beyond earth orbit and long duration one-way science and exploration caTgo 
missions. Therefore, we recommend developing a LOX/LH2 Upper Stage from the onset. 
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Figw-e 3-27 All LOX/RP Study Payload to LEO 
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Payload Fairing Commonality- 10m Hammerhead Fairing Study 
Payload fairing size requirements have yet to be defined. It appears that volume driven payloads 
would benefit from a 10m diameter fairing, but the banel length has not been detennined. For 
our Constellation-derived baseline vehicle we have already discussed utilizing the available 1 Om 
In-situ Manufacturing System (IsMS) to build a unitized composite payload fairing with the 
expectation that it will be cut into petals for payload encapsulation and fairing jettison. Most of 
our highest scoring SLS configurntions though have core stages in the 6m - 8m range. This study 
investigated production system commonality opportunities to build a 1 Om hammerhead payload 
fairing using existing reduced diameter infrastrncture. 

Our NGC recommended vehicle, NK206, was used as the example for this study, but this 
concept applies to virtually any reduced diameter vehicle with a hammerhead fairing 
requirement. This also enables flexibility with the fairing shape and ban-el length and with 
today's analysis tools, mission-tailored fairings are possible with minimal fixed tooling cost 
deltas. Our goals in this study include the 
utilization of common infrastructure used 
throughout the vehicle, a minimized amount 
of unique tooling, and the ability to 
accommodate payload-specific ban-el lengths. 
We assumed all composite constrnction, the 
capability to splice both longitudinally and 
circumferentially, common IML tooling and 
common manufacturing processes. This 
tooling approach enables the design flexibility 
to increase laminate gauges outward as 
required and common manufacturing 
processes throughout the vehicle allow for 
flexible production flow plam1ing and a large 
fabrication learning curve. 

NK206 is a 2-Stage vehicle with a 6m 
diameter core and two common-diameter 
liquid rocket boosters as shown in Figure 3-

Reference Vehicle NK206 
• 6m Core Stage 
• (2X) 6m LRBs 
• 10m Hammerhead Fairing 

10m 

1.375NR 
/ Tangent 

JI Og ive 

-
' 

T 
8m 

Barrel 

1 
I- 6m -I 30Deg 

Taper 

28. We have chosen a 1.375 aspect ratio Figw-e 3-28 10m Hammerhead Fairing 

tangent ogive fairing to reduce aerodynamic drag and provide a relatively benign and large 
payload environment as compared to a biconic design. The thirty degree taper is arbitrary and 
does not impact the feasibility of this study. 

As shown in Figure 3-29 we split this fairing circumferentially in three locations creating a nose 
cap, ogive panels to include a po1tion of the cylindrical section for splicing, and banel panels 
which include the hammerhead taper. The 2m nose cap as shown is also an arbitrnry dimension 
and can be altered as required for optimized separation. For this 6m diameter production 
infrastrncture we fabricate the panels in six 60 degree segments. For larger diameter core stage 
vehicles above 7 .5m we are able to fabricate the panels in four 90 degree segments. In this case, 
the 6m IsMS is available for use from the basic vehicle production line. The only required major 
shell fabrication tooling additions consist of a two-sided banel/taper mandrel, a similar ogive 
mandrel and a nose cap tool. The tool surfaces of the mandrels are nested to minimize the cross 
sectional area. 
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\1/hen the barrel and ogive segments are through fabrication we outfit any payload 
accolilillodations or required secondary features and assemble the segments into six 60 degree 
petals. Depending on the separation requirements we either splice the nose cap to one of the 
petals and deliveJ six 60 degree segments, or we longitudinally splice the petals togetheJ to fonn 
three 120 degree OJ two 180 degree fairing segments. To inc1ease the barrel length we simply 
fabricate additional cylindrical sections and add circumfe1ential splices as required. 

The 6m diameter envelopes shown in Figure 3-29 illustrate that, with nested tooling surfaces and 
our vehicle-coII1II1on manufactming approach, 1 Om diameter haII1II1erhead fairings can be built 
using the same reduced diameter production infrastructure as the rest of the vehicle. 

3.8. Innovative or Nontraditional Processes or Technologies {SOW 3.3, 4.3) 

Innovative Technology-Throttle Back and Cross Feed Study 
Throttle back of the core engines after initial ascent is used successfully on the Delta IV Heavy 
to gain some staging benefit by depleting the LRB propellant before the core and jettisoning the 
LRBs. McDonnell Douglas, Boeing and now the United Launch Alliance have also studied cross 
feed for the Delta IV Heavy and SpaceX has stated they are considering cross feed for their 
Falcon 9 Heavy. We therefme decided to perform a throttle back and cross feed study for our 
SLS three body first stage configuration family. As shown in Figme 3-30 we chose our 
LOX/LH2 NH201-2 configuration as an example vehicle fm this study. For throttle back and 
cross feed lift off has all first stage engines at 100% power to meet our lift off thrust to weight 
constraint of 1.2. 
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For throttle back the core engines are set to 
their reduced power setting as specified by the 
engine supplier about 60 seconds into ascent. 
At that point in the ascent sufficient propellant 
has been burned to maintain adequate thrnst to 
weight with the core engines at reduced power 
for acceptable gravity losses. The LRB 
engines maintain full power to LRB tank 
depletion and are then jettisoned. The core 
engines are then throttled up to full power for 
the remainder of the first stage bum. This 
provides some staging benefit and is a good 
solution for the Delta IV Heavy where the 
LRB and core tanks have common engines 
and propellant volume. Figure 3-31 shows 
there is a modest but easily achieved payload 
benefit due to throttle back for the NH201-2 
configuration family. 

For cross feed all first stage engines are fed 
from a common manifold and bum at full 
power until the LRB tanks until depleted. 

Aerospace Systems 

Example Configuration NH201-2 
• (2) LRBs with (3) RS-68Cs each 7.5mdiameter 
• Core Stage with (2) RS-68Cs 7.5m diameter 
• Up per Stage with (1) J-2X 7.5m diameter 
• Hammerhead Payload Fairing to 10mdiameter 

Figm-e 3-30 Cross Feed Concept of Operations 

Then the LRBs are jettisoned. Since all engines are fed from a common manifold the core tanks 
ai-e full at LRB staging. This provides staging efficiency nearly equal to a three stage vehicle 
since all the chy mass associated with the bum up to the LRB staging point is jettisoned with the 
LRBs and there is not an ru.tiall de leted core tank ch mass to can fu1ther. 
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• Quick Sizer Two Stage with Strap on Liquid Rocket Boosters (LRBs) 
• Trajectory Simulation Throttle Back (TB) and Cross Feed (CF) Quick Study 
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Fi2ure 3-32 Throttle Back and Cross Feed Simulation Results 

Cross feed also enables engine out options not othe1w ise available which can greatly improve 
launch reliability. Since all first stage tanks feed all first stage engines via a common engine 
manifold if any one of the first stage engines fails the stage can still feed all remaining engines 
through LRB tank depletion or longer off the core tank only. This provides a variety of engine 
out options depending on payload, which engine fails and at what time dming ascent it fails. 
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Innovative Technology- Clustered Interstage 
Om clustered interstage study hypothesis is; if Atlas V Common Core Boosters (CCBs) or Delta 
IV Common Booster Cores (CBCs) can be aggregated with minimal changes, then SLS 
development costs would be greatly reduced and production fixed costs would be dramatically 
lower due to the smaller size of major elements and shared use with the USAF Evolved 
Expendable Launch Vehicle (EEL V) program. 
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We developed a clustered interstage concept that enables the aggregation of off-the-shelf EEL V 
boosters without forcing major changes to the booster design or production infrastrncture. Our 
design features a set of composite tlnust shells that smoothly distribute the individual booster 
loads to a unifo1m rnnning load at the SLS upper stage interface. This concept can reasonably 
cluster between two and seven individual boosters. fu the seven booster example the natural 
geometry of six equally spaced boosters provides a centerline zone for the seventh as described 
in the NA702 reduction Ian in Section 3.5. 

One of the integration benefits is that the blended thrnst shells fo1m a natural volume to nest the 
upper stage engine nozzle as shown in Figure 3-37. This open draft volume is more than 
sufficient to allow the upper stage to separate in a simple axial translation without any need to 
split or independently separate the interstage. The rigid interstage may also serve dual use as the 
forward alignment tool required for on-pad 
integration. 

4. Incremental Development Options 
(SOW 3.5, 4. 5) 

fucremental development is one of our key 
SLS sustainability drivers as discussed in 
Figure 1-1. fucremental development is also 
synergistic with our other sustainability 
drivers, low fixed costs and flexibility. Our 
recommended configuration NK.206-2 with its 
three body LOX/RP core and J-2X LOX/LH2 
upper stage is paiticularly strong in 
incremental development options. This section 
discusses major vehicle incremental 
development options and the resulting growth 

a dha 

ConceptND404 
• 10m Hammerhead Fairing 
• Adv J-2X Upper stage 
• (4) DeltalVCBCs 
• (2) 4-segment RSRMs 

Section thru Interstage 
Showing J-2X Nozzle 

Clearance 

Figure 3-37 Sample SLS Cluster Configuration 
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path for payload to low Eai1h orbit (LEO) and for payload beyond Eaith orbit (BEO). 

4.1. Configuration Family 

One of the most attractive features of a three 
body first stage configuration is the family of 
vehicles that ca.ii be incrementally developed 
from the basic. Figure 4-1 shows the family of 
vehicles that can be developed from our 
recommended NK206-2 configuration. Our 
recommendation is to optimize the upper stage 
and liquid rocket boosters (LRBs) for the 
NK206-2 vehicle and then synthesize the rest 
of the family from the -2 configuration. 

A single stick two engine first sta.ge vehicle 
(NK206-SS2) can be developed from the 
NK206-2 vehicle using the same upper stage 
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and interstage and a modified two engine core. NK206 NK206 NK206 NK206 NK206 NK206 

The - SS2 strnight payload fairing can share -ss2 -s53 -2 -3 -4 -4EX 

the same production system and tooling as the 
basic LRB nosecones. As shown in Figure 4-2 

Figure 4-1 Configuration NK206 Family 

the two engine core is stretched from the basic -2 core to provide a 30 metric tonne (t) payload to 
LEO. A trade should be conducted during preliminaiy design whether to update the strnctural 
sizing for the lower ine11ial loads or to use the -2 sized elements as is. If composite constmction 
is selected the - SS2 shares the same production system and tooling as the basic -2 and can be 
resized for the lower loads by reducing the composite plies and or core thickness. 

A three engine single stick vehicle (NK206-SS3) can also be developed from the basic -2 similar 
to the - SS2. For the -SS3 the three engine LRB is sho11ened to make the -SS3 core. Our tank 
production system fabricates half tank major units joined circumferentially at mid banel. The 
banel length can be stretched or sho11ened for optimum tank volume. As for the - SS2 the 
structural sizing can be updated for the lower ine1tial loads for a 48t payload or the basic -2 
sizing can be retained with some payload penalty. 

The single stick vehicles can be introduced first for an eai·ly or lower cost initial operating 
capability or added later after the basic -2 is 
deployed. Whether deployed first or later the 
single stick vehicles shai-e the same 
production and operations system as the basic 
-2 and conu-ibute to the SLS sustainability by 
sharing fixed costs and providing flexibility 
for a wide variety of exploration, science and 
national security missions. 

As our spacefaring capabilities grow over the 
decades a need for greater lift capability may 
arise. When greater lift is needed the basic -2 
vehicle can be grown by adding LRBs to 
develop the NK206-3 and NK206-4 vehicles. 
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Since the LRBs are sized principally by tank pressure the basic -2 LRBs should be useable for 
the -3 and -4 without updates. The upper stage, interstage and core are the same volume as the 
basic -2 but will require stmctural sizing updates for the bigger payload ine11ial loads and LRB 
attach points. The launch pad will of course need to be updated fm additional LRBs. 

If our spacefaring requi1ements continue to grow the cme stage can be stretched for an optimized 
4 LRB configuration NK206-4EX. The LRBs are unchanged, the core is stretched, the LRB 
attach point is moved and the upper stage, interstage and core require updated structural sizing. 
The payload fairing can also be stretched if volume becomes a driveL The launch pad would be 
modified at that time for the talleJ stack. 

A majm strength of the NK.206 configuration family is its incremental development robustness 
covering LEO payloads from 30 to 196t using a single production system. 

4.2. Cross Feed Incremental Development 

Section 3.8 discusses the si 
tanks. 
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4.3. Domestic LOX/RP Engine 
Incremental Development 

The quantity and type of LOX/RP engines is a 
critical consideration for three body first stage 
configurations. Figure 4-4 shows the LEO 
payload for combinations of LRB and core 
engines and log regressions through each 
engine type. The nomenclature is 
LRBllCorelLRB2. Note that in all cases 
having more engines in the LRBs has better 
return than the same number of engines in 
each body. Note also that the point of 
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Figure 4-4 Three Body First Stage Engine Quantity 

diminishing returns is our recommended 31213 engine layout. The regressions cmve gently 
however which indicates that 211 12 and 41314 layouts can be considered in early design trades. 

Figure 4-5 shows the LEO payload versus total vehicle dry mass for the same combinations of 
engine quantity and type. This log regression is through all the options except for the F-lA 
options which are not competitive. The regression has a very good statistical cotTelation to the 
data. This plot again shows that options with more LRB engines than core engines are prefetTed. 
Our recommended 31213 RD-180 class engine layout is in the desired zone of diminishing returns 
but the plot also shows that fewer larger engine 21112 M-2 and RD-171 options are also 
interesting. We therefore recommend that the 31213 RD-180 class option be the advanced design 
point of depa1ture and that a higher thrust 21112 option be thoroughly evaluated. 
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Figure 4-5 Three Body LOX/RP First Stage Engine Quantity and Type Study 
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The RD-180 and its heritage engines have 
been in production in Russia and the fo1mer 
Soviet Union for decades and are used for the 
USAF on the Atlas V Evolved Expendable 
Launch Vehicle (EELV). There are concerns 
however with the rigor of their pedigree and 
long term stability of their supply chain. A 
domestic LOX/RP engine with a sea level 
tlnust level about 4.5MN (IMlbf) is therefore 
desired. We therefore recommend that a 
competitive LOX/RP first stage engine 
program be initiated for use on the SLS and as 
an upgrade to the Atlas V EEL V. Figure 4-6 
shows our recommended NK206-2 
configuration and an engine upgrade 
configuration NK206-2EU using the RS-84 
predicted perfonnance as an example of a next 
generation engine (NGE). 
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FigW"e 4-6 Domestic LOX/RP Engine Development 

We recommend that the first stage LOX/RP engine quantity and thmst level be a high priority 
advanced trade with film requirements for the NGE established by SLS System Requirements 
Review (SRR) and fed to the competitive domestic engine development program. The SLS can 
be initially deployed with tanks sized for the NGE but using cunent RD- I 80s until the NGE is 
available. This will likely require a separate thmst shell detail design but allows time for an 
incremental domestic LOX/RP engine development within available funding limits. 

4.4. Dedicated LEO Variant 

All of the configurations shown previously have been developed for exploration beyond Earth 
orbit (BEO) and have multi-pmpose upper stages that can perfo1m an Earth escape bum. As 
shown in Figure 4-7 we could develop a LEO only upper stage with more payload to LEO 
configuration (NK206-2LEO). The upper stage could be shortened for the LEO ascent bmn 
propellant only and the diy mass associated with the escape bmn propellant converted to LEO 
payload. This fact should be considered when 
comparing NK206-2 to other vehicles and 
external requirements and expectations. 

The SLS primary mission is exploration 
beyond Ea.1th orbit so we do not recommend 
developing the LEO only variant. For any 
LEO only SLS missions we recommend that 
the upper stage have propellant offloaded for 
the most available payload 

4.5. Payload to LEO Growth Path 

Sections 4.1 through 4.4 above describe how 
our recommended SLS configuration NK206-
2 can be incrementally developed as a family 
and with cross feed, engine quantity and type 
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Figure 4-7 Dedicated LEO Variant 
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and by optimizing the upper stage. Figure 4-8 shows how all of these incremental developments 
provide a very robust LEO payload growth path. It is remarkable that one configuration family 
can be gracefully developed and deployed over time fulfilling mission payloads from 30-196t. 
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Figure 4-8 LEO Payload Growth Path 

4.6. In-space Refueling Incremental Development Options 

In Section 2 the dramatic payload and mission reliability benefits of refueling in LEO were 
discussed. Figure 4-9 shows three basic approaches for LEO refueling that can be developed 
incrementally as our exploration capabilities mature and payload to escape requirements grow. 
The first and easiest is to transfer propellant from payload tanks during ascent. This delivers a 

6AA 
Transfer Propellant 
during ascentfrom 

payload tanks 

Transfer LOX onlyorLOX 
&LH2fromdepotor 
expendable tankers 

Figure 4-9 In-space Refueling Options 
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fully fueled upper stage to LEO where the payload tank is jettisoned and the stage rendezvous 
and docks with an exploration spacecraft. Since the prnpellant is tJansferred under load this 
approach can be used while micro-gravity prnpellant transfer methods are developed. The next 
approach is the transfer of propellant from a tanker m depot on orbit. This can start with LOX 
only and LH2 can be added later when long durntion LH2 stornge methods are matured. The last 
approach avoids micro-gravity propellant transfer by undocking full propellant tanks from a 
tanker m depot and plugging them into an exploration spacecraft. The tanks can be launched to 
LEO by the SLS or by commercial commodity contracts. 

4.7. Dedicated In-space Cryo-propellant Stage Incremental Development 

Multi-purpose upper stages were used on Apollo/Saturn and were planned for Constellation fm 
Eai1h ascent and trnns-lunar injection (TL]). The upper stage thrust level and TLI bum can be 
effectively perf01med by a single J-2X class engine. A single engine is acceptable due to the free 
return available from the moon if main propulsion is lost. Exploration beyond Eai1h mbit 
however requires main propulsion to return to Earth. The main propulsion system must theref me 
be ve1y reliable and most likely requires redundancy to meet acceptable reliability. 
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minute bum. These are all reasonable so three RL-1 Os is an acceptable engine selection for 
LENEO in-space c1yo-propulsion stages (ISCPS). One J-2X is adequate for escape but is overkill 
for the destination bums with very sho11 burn times that must be timed exactly. Two J-2Xs are 
much too big for an ISCPS and even for upper stage ascent. The NGE is a better fit with two 
engines having a reasonable thrnst to weight and bum time during escape and reasonable thrust 
to weight and bum times with one engine out at the destination. 

We can begin human exploration with multi-pmpose single J-2X upper stages for lunar missions 
with a free return. The multi-purpose J-2X stage is also useful for one way science missions and 
explorntion cargo missions beyond Earth orbit. Fm human exploration LENEO missions an RL-
10 based destination propulsion stage can be incrementally developed or for less demanding 
missions the Multi-pmpose Crew Vehicle (MPCV) can use its service module propulsion. For 
future more demanding missions we recommend that a purpose built LOX/LH2 NGE be 
developed around lOOKlbf thrnst specifically optimized for long duration in-space operntions 
and quiescent periods. Two of these engines are sized optimally fm a dedicated ISCPS. 
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Relieving the ISCPS from ascent bum 
requirements simplifies the upper stage and 
opens up the design space for the ISCPS. 
Figure 4-12 shows a few of many concepts. 
An interesting concept (NISCPSOl) sizes 
center core tanks for the escape bum and 
packages the destination propellant in saddle 
tanks. After the escape bum the center tanks 
conve1t to pressurized compa1tments that have 
some radiation shielding from the saddle 
tanks. The center compaitments also provide 
access to the propulsion system for servicing. 
Another concept (NISCPS02) shows how 
propellant tanks can be plugged in to the 
ISCPS. The LH2 tanks are lai·ge due to low 
energy density and NISCPS03 illustrates how 
these large tattles might be used to advantage. 

Escape burn core tanks 

NISCPS02 
Rendezvous & dock 

with MPCV 

NISCPS02 
Add p lug in 

LOX& LH2Tanks 

with destination burn saddle tanks 
launched by SLSas a payload 

4.8. Payload to Escape Growth Path Figure 4-12 ISCPS Configw-ation Options 

Sections 4.6 and 4.7 describe how in-space capabilities can be grown incrementally for in-space 
refueling and advanced ISCPS capabilities. Figure 4-13 shows how the incremental in-space 
capability growth complements the incremental growth of the SLS. This two axis growth path 
provides a robust path fo1ward for many decades of exploration beyond Eruth orbit. 
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4.9. Production and Operations 
Growth Path 

Section 3.5 discusses our production and 
operations plans. The matrix in Figure 4-14 
shows how the production system shown in 
Figure 4-15 can be developed incrementally. 
For the - SS2 vehicle the light blue stations 
and mandrels are required. For - SS3 only 
mandrel 6 (M06) needs to be added. For -2 
mandrels M07, M08 and M09 are added. The 
entire NK206 family can be produced with the 
blue and green stations and mandrels. 
Depending on production rate, stations 3 and 4 
and mandrels Ml 1 and M12 may be added. 
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5. Capability Gap Analysis 

We executed proprietary info1mation agreements (PIAs) with the major launch vehicle 
subcontractors and rocket propulsion suppliers and conducted a two phase capability and 
technology gap and opportunity analysis. In the first phase we conducted a capability and 
technology push where we asked the suppliers to info1m us on their capabilities and technologies 
that they believe we should be aware of as we explored the SLS configuration trade space. In the 
second phase we came back to the suppliers with a capability and technology pull where we 
sha1·ed our SLS study findings and assessed any gaps and additional opportunities. This was done 
at the vehicle configuration level. The University of Alabama Huntsville (UAHuntsville) 
Propulsion Research Center provided additional input and assessments. We protected all 
proprietary infonnation and have not included any proprietary info1mation in this report. 

5.1. First Stage Main Engine Gaps and Opportunities (SOW 5.1) 

Figure 5-1 is a non-proprietaiy exce1pt from our first stage main engine catalogue compiled with 
input from Aerojet, Pratt and Whitney Rocketdyne and SpaceX. We obtained the RD-171 and 
and RD-180 data using the NPO Energomash web site. In all cases we used the supplier data as 
is in both our quick-sizer and full trajecto1y simulation analysis. The RD-171 and RD-180 are 
provided as modules including actuators but to be conse1vative we did not adjust their dty mass 
for engines only. 

First Stage Main Engine 

Parameter -----------Oxidizer LOX LOX LOX LOX LOX LOX LOX LOX LOX LOX 
Fuel 1111 LH2 LH2 RP-1 RP-1 RP-1 RP-1 RP-1 LH2 LH2 LH2 

Thrust SL klbf 416 416 1,800 860 1,049 1,627 1,700 702 702 702 

Thrust SL 1.85 1.85 8.01 3.83 4.67 7.26 7.56 3.12 3.12 3.12 

Thrust vacuum klbf 512 512 2,021 933 1,168 1,774 1,940 797 797 797 

Thrust vacuum 2.28 2.28 8.99 4.15 5.20 7.90 8.63 3.55 3.55 3.55 

ISP SL sec 367 367 271 311 301 309 283 363 363 368 

ISP vacuum 453 453 304 338 335 337 322 412 412 417 

Chamber pressure psia 2,994 2,994 1,161 3,722 2,800 3,560 2,000 1,560 1,560 1,560 

Chamber pressure 20.6 20.6 8.0 25.7 19.3 24.5 13.8 10.8 10.8 10.8 

Mixture ratio 6.04 6.04 2.27 2.72 2.70 2.60 2.40 5.97 5.97 5.97 

Length 168 157 221 140 147 163 186 137 137 137 

Length m 4.27 3.99 5.61 3.57 3.73 4.15 4.72 3.47 3.47 3.47 

Engine Diameter 96 94 144 124 101 1-58 138 91 91 91 

Engine Diameter m 2.44 2.38 3.66 3.14 2.57 4.02 3.51 2.32 2.32 2.32 

Expansion ratio 1111 70 70 16 37 36 37 30 22 22 22 

Mass dry klbs 7.78 8.10 19.9 12.1 13.0 20.9 12.5 15.1 15.1 12.7 

Mass dry 3.53 3.68 9.03 5.49 5.90 9.50 5.68 6.88 6.88 5.77 

Throttling % 67% 67% 80% 47% 47% 56% TBD 55% 55% 55% 

Mass flow 0.51 0.51 3.01 1.25 1.58 2.39 2.72 0.88 0.88 0.86 

Figw-e 5- 1 First Stage Main Engine Catalogue 

Use, duplication or disclosure of export controlled information is subject to the IT AR warning on the title page of this document. 
SLS Study Final Report_NGC_Update_ll0626 docx 66 



NORTHROP GRUHHAN 

~ 
Aerospace Systems 

As shown in Figure 5-2 we did not identify Technology Gaps 

any first stage main engine technology gaps. 1111 ._N_one _____________ lll 
There are two significant capability gaps, 
CG0l Domestic LOX/RP first stage engine 
and CG02 LRB to core cross feed subsystem. 

CG0l: The F-lA, RS-84 and M-2 are all 
potential domestic substitutes for the Russian 
RD-171 and RD-180 engines but none exist 
today. The F-lA has low sea level ISP and 
tlnust to weight and does not appear to be 
competitive. The RS-84 and M-2 are 
competitive but are preliminaiy design and 
conceptual design engines respectfully. 
Clearly the technology exits to produce a 

Capability Gaps 

l'!!Jl!!lll'II Domestic LOX/RP engine 1m bf class aililill--------
Ill 

LRB to core cross feed subsystem 

Technology Opportunities 

Reciprocating feed system for lower 
pressure LRB tanks 

Capability Opportunities 

El Main propulsion modules 

lwlJ Shared core & LRB subsystems 

TLR3 

Figure 5-2 First Stage Main Engine Technology & 
Capability Gaps & Opportunities 

competitive domestic LOX/RP first stage engine and we recoilllllend that a competitive 
development program be initiated with a down select to a single supplier at SDR or perhaps 
PDR. This should be coordinated with the USAF as a shai·ed upgrade for the Atlas V. 

CG02: LRB to core cross feed has useful precedent in the Atlas I and II engine manifold and 
Shuttle external tank disconnects. Atlas I and II jettisoned booster engines from a coilllllon 
manifold while the sustainer engine continued tln1.1sting at full power. Atlas I had 3 failures in 11 
launches that were unrelated to the engine staging. Atlas II had 63 out of 63 successful launches. 
The common LOX/RP engine manifold is exactly analogous to our recommended LRB tank to 
core tank to coilllllon engine manifold cross feed concept discussed in section 4.2. The Shuttle 
external tank to orbiter quick disconnects can se1ve as a reference design for the LRB to core 
tank quick disconnects. We believe therefore that the cross feed mechanical design has a sound 
legacy to draw on and is a straight forward development. The significant capability gap is the 
integrated cross feed pressurization and propellant transfer control system. This should be much 
easier with our recoilllllended LOX/RP three body first stage than with LOX/LH2.We 
recoilllllend that NASA lead an integrated ground test bed develop and certify the cross feed 
control system and that the engine manifold and tank quick disconnects be rigorously tested at 
the component level. This can all be done with confidence on the ground. 

TO0l : UAHuntsville has a proprietary reciprocating feed system that has the potential to provide 
the high pressure propellant required for pressure fed engines or the moderate pressure propellant 
required for pump fed engines from a small set of tanks that are sequentially filled, pressurized 
and vented. This could be phased in once the technology was proven as a preplanned 
improvement without changing engines. This technology could also enable pressure fed first 
stage engines that could be much simpler, more reliable and lower cost than pump fed engines 
since the large tanks are at low pressure with good mass fractions. Considerable investigation is 
required to validate the benefits and sort tln·ough an implementation path for first stage pressure 
fed engines. Contact Nortln·op Gmilllllan or UAHllllStville Propulsion Research Center for more 
information. 

We identified two first stage main engine capability opportunities CO0l main propulsion 
modules and CO02 shared core and LRB subsystems. 
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COOi : Our recommended NK.206-2 configuration has three engine LRBs and a two engine core. 
This offers the opp01tunity to integrate engines, their controllers and other components in three 
engine and two engine main propulsion modules. We believe there are considerable benefits to 
this approach in production flow, cost and reliability. This approach also facilitates the single 
stick variants within the NK206 configuration family. We believe this is a straight f01ward 
development that can be executed as pait of the basic program. 

CO02: Om recommended three body LRB and core configuration is similar to the Delta IV 
heavy but the LRBs ai·e not independent stages. This offers the oppo1tunity to shai·e subsystems 
between the core and LRBs and maybe some with the upper stage. Avionics is an obvious 
potential shared subsystem and is in om baseline. The pressurization and feed subsystem and the 
tlnust vectoring and control subsystem ai·e other strong candidates. Again we believe this is a 
straight fo1ward development that can be executed as part of the basic program. 

5.2. Upper Stage Main Engine Gaps and Opportunities (SOW 5.2) 

Figure 5-3 is a non-proprietaiy excerpt from our upper stage main engine catalogue compiled 
with input from the engine suppliers. The engine suppliers proposed a number of proprietai·y 
next generation engines. We have listed a LOX/LH2 upper stage NGE engine with target tln·ust 
level and ISP suitable for an In-space C1yo-propulsion Stage (ISCPS). As discussed in section 
4.7 the J-2X is a good choice for an upper stage and escape bum stage and we recommend that 
its development be completed for the SLS. 

Figure 5-4 shows that we have not identified any gaps for upper stage main engines. We have 
identified capability oppo1tunity CO03 for a retractable nozzle. The J-2X has a lai·ge nozzle for 
high altitude and vacuum perfo1mance. The large nozzle drives a ve1y long interstage which 

Upper Stage Main Engine 

Parameter 11!:ii• -IUSWINN;JSM=fllUli·MI-
Oxidizer LOX LOX LOX LOX LOX 

Fuel - LH2 LH2 LH2 LH2 LH2 

Thrust vacuum k bf 294 22 25 23 100 

Thrust vacuum MN 1.31 0.10 0.11 0.10 0.44 

ISP vacuum sec 453 452 466 450 466 

Chamber pressure psia 1,337 611 637 624 

Chamber pressure MPa 9.22 4.21 4.39 4 .30 

Mixture ratio - 5.50 5.50 5.88 5.50 

Length in 184 90 164 86 

Length m 4.66 229 4.15 2.19 

Engine Diameter in 116 45 84 58 
TBD 

Engine Diameter m 2.96 1.14 2.13 1.46 

Expansion ratio 92 84 285 130 

Mass dry klbs 5.59 0.398 0.664 0.450 

Mass dry 2.54 0.18 0.30 0.20 

Throttling % NA NA NA NA 

Mass flow tis 0.29 0.02 0.02 0.02 

Figme 5-3 Upper Stage Main Engine Catalogue 
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drives total SLS stack height and impacts the Technology Gaps 

maximum bending moment. In addition the 1111 None 1111 
interstage does not have pressure relief like ---------------

Capability Gaps 
the tanks and has conespondingly higher axial 
ine1iial loads. A retractable J-2X nozzle may 1111 .. No_ ne _____________ _ 

prove to be a good trade and more than offset Technology Opportunities 

its delta mass and cost by interstage mass and 1111 .. No_ ne ____________ lll 
cost savings. 

5.3. Other SLS Gaps and 
Opportunities (SOW 5.3) 

Figure 5-5 shows that we have identified two 
other SLS capability gaps CG03 and CG04. 

Capability Opportunities 

ml Retractable nozzle for shorter interstage 

Figw-e 5-4 Upper Stage Main Engine Technology & 
Capability Gaps & Opportunities 

CG03: There have been two recent payload fairing separation subsystem failures impacting 

Technology Gaps 
impo1iant missions. The SLS fairing is by far 
the largest fairing ever proposed and twice the 
diameter of the largest fairings currently in 1111 ... No_ ne ____________ llll 
use. SLS payloads and missions will be 
con espondingly higher value. Ve1y high 
reliability separation systems are therefore 
required with demonstrated reliability through 
extensive testing. Redundancy may also be 
required. fu addition the SLS fairings require 
an operations approach that is practicable for 
their size. We believe this gap can be closed 
with existing technologies through an 
extensive certification and acceptance 
program. The thennal vacuum chamber at 
NASA's Glenn Research Center Plum Brook 
Station is suitable for development and 
ce1tification testing but of course the test 
fairings will need to be assembled nearby or 

Ill 

• 
Capability Gaps 

Reliable an<l operable separation soosystems for 
ve!)'. laroo ~y=loa,,,_,d,_,t=ai=ri =s _______ _ 
Autonomous rendezvous and docking subsystems 
for very large high fluid mass fraction exploration 
elements 

Technology Opportunities 

.. Digital pyrotechnic separation system safe, 
llliil arm and initiation subsystems TLR7 ~.. -------------...__ llliaal Mechanical latch and release subsystems _TRL6 

Capability Opportunities 

IIIJ Composite cry0-tanks 

El Composite common bulkheads 

Figw-e 5-5 Other SLS Technology & Capability Gaps 
& Opportunities 

onsite. RecmTing acceptance testing needs to be near or at Kennedy Space Center and will 
therefore have to be at ambient conditions. This will drive the subsystem design and ce1iification 
approach. Fairing operations will require huge alignment fixtures or state of the rut determinant 
assembly methods. 

CG04: The fo1mer Soviet Union and Russia routinely conduct autonomous rendezvous and 
docking (AR&D) and we clearly have the technology. But AR&D has not been done for the ve1y 
large elements with 90% fluid mass planned for future exploration beyond Earth orbit. The 
computing power, algorithms and appropriate sensitivity sensors exist but an integrated 
subsystem and operations design needs to be developed and the mechanical approach needs to be 
selected and developed. Much of this can be done via simulation and ground testing. The 
exploration mission planning should incrementally prove this capability backed up by continued 
ground simulation and specific testing. 

Figure 5-5 also indentifies other SLS technology and capability opportunities. 
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TO02: Ensign Bickford Aerospace and Defense (EBA&D) infonned us on the potential benefits 
of modem digital pyrotechnic safe, ann and initiation subsystems. This approach uses the vehicle 
bus instead of discrete wiring and should better enable built in testing (BIT) and reduce access 
requirements and the associated risk of induced damage during access. 

TO03: Planetaiy Systems Co1poration has deployed mechanical latch and release subsystems for 
many payloads and we believe there is potential to extend this technology to payload fairing 
separation subsystems. This may greatly simplify the certification and acceptance issues 
discussed in CG03 through demonstrated reliability and cycle testing of actual mission hai·dwai·e. 

CO04: We believe the technology exists for composite c1yo-tanks and the production capability 
can be put in place for the 6m diameter LOX, RP and LH2 tanks required for our recommended 
NK206-2 configuration. Previous and cmTent NASA programs have demonstrated the required 
technologies and the composites production know how exists in the aircraft industiy. Composite 
constmction is paiiicularly suitable but is not required for our recommended NK206-2 
configuration. The disti-ibuted loads and common diameters enable a common composites 
production infrastmcture with shai·ed low fixed costs for all elements and vehicles in the NK206 
family. 

COOS: Common bulkheads were successfully developed for the LOX/LH2 Satmn SII and SIVB 
stages and are used routinely on current LOX/RP and LOX/LH2stages. The reduction in stack 
height and shared pressure loads is atti·active at the vehicle level but controlling metallic 
constmction to tight enough tolerances for film adhesive bonded common bulkheads is daunting. 
Fortunately composites common bulkheads can be co-cured or co-bonded where uncured 
composite facesheets naturally confo1m to shape and wash out any film adhesive bonding critical 
tolerances. We believe all the technology exists for LOX/RP composite common bulkheads. For 
LOX/LH2 composite common bulkheads the technologies successfully tested on the Space 
Launch Initiative program composite LH2 cryo-tank program need to be applied to a common 
bulkhead application. A nested bulkhead similar to the Arianne 5 advanced upper stage might be 
a good compromise. We believe LOX/RP common bulkheads should be baselined for NK206-2 
ai1d the LOX/LH2 upper stage traded during preliminary design. 

5.4. In-Space Propulsion Gaps and Opportunities (SOW 5.4) 

Figure 5-6 indentifies three technology gaps, 
one capability gap, one technology 
opportunity and two technology opportunities 
for in-space propulsion. 

TG0l: Long duration LH2 storage has been 
identified by many fomms and repo1is as the 
number one technology need for exploration 
beyond Ea1ih orbit. We agree and have 
suppo1ied this assessment in our repo1is, RFI 
responses and at the March 22, 2011 National 
Research Council panel on space propulsion. 
We believe a system solution can be found 
using our vacuum jacketed composite c1yo
tank technology with cmTent best technology 
multi-layer insulation and smaii application of 

Technology Gaps 

~ Long duration LH2 storage ------------------TRL3 .. In-space cry0-transfer TRL3 

Long duration high retiability LOX/LH2 main TRLS 

-

-..:---:---C:-"7'-:-:--:7'"~=-::-:=--,.-__ 

propulsion system 

Capability Gaps 

ma In-space LOX/LH2 engine 100 klbf class 

- Technology Opportunities 

Reciprocating feed system pressure fed 
gioes wrthJgw.,main,tank p ssu e 

Capability Opportunities 

El Main propulsion servicing 

TLR3 

ml Dedicated in-space nozzles (plug, aerosp ke, etc) 

Figw-e 5-6 In-space Propulsion Technology & 
Capability Gaps & Opportunities 
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current technology c1yo-coolers. The system solution should evaluate prnductive uses for boil off 
hydrogen that 1elax the LH2 storage requirements. 

TG02: In-space cryo-transfer of LOX and LH2 is the second highest technology need for 
explorntion beyond Earth orbit. F01tunately, as discussed in section 4.6, in-space 1efueling by 
cryo-transfer is not 1equired for initial exploration and there is plenty of time to develop 
solutions. Micro-gravity propellant scavenging technologies are a candidate but may not be 
required. Current technology dedicated settling thrusters are always possible but will add mass 
and cost. Vehicle system level and operations solutions should be evaluated along with new 
technologies. Potential system level solutions include using attitude contrnl system thrusters for 
propellant settling and another is to use a main propulsion stru1 subsystem to settle prnpellant and 
apply a small acceleration for fluid transfer. Operationally required burns including ascent, depot 
orbit maintenance, escape, course correction, destination inse11ion and Ea11h return should all be 
taken advantage of to use their acceleration to settle and transfer propellant. 

TG03: As discussed in Section 4.7 there is a compelling need fm a highly reliable long duration 
in-space main propulsion system for human explorntion beyond Earth orbit without a free return. 
We would categorize this as a capability gap if not for the ve1y long in-space duration and 
extensive quiescent periods. Long term space vacuum and in-space radiation may alter the 
effectiveness of engine seals and other materials. Testing the vacuum effects is hard to do on the 
ground but could be done at the International Space Station (ISS). There is not any effective 
accelerating aging method for vacuum effects so a long exposure test at the ISS may be required. 
Deep space radiation effects cannot be duplicated at the ISS due to the Van Allen belts but can 
be tested on the ground using particle accelerators such as the Brnokhaven National Laboratory 
cyclotron. Accelerated testing may be possible for radiation effects by increasing the rndiation 
intensity. Combined effects testing can be done as a secondary objective fm Ullillanned missions 
beyond Earth orbit. Fortunately there is time to incrementally develop and test long duration in
space reliability as our human explorntion prngram beyond Eai1h orbit expands over the decades. 

CG05: Also discussed in Section 4.7 is the need for a right sized in-space LOX/LH2 engine. This 
is cleady a capability gap to size the engine correctly if the technology gap described in TG03 
above is treated separntely. 

TO04: The UAHuntsville reciprocating feed system described in technology opp011unity TO0l 
for the first stage main engine has more potential for in-space c1yo-prnpulsion systems (ISCPS). 
Once developed this technology can help solve technology gaps TG02 and TG03. Pressure fed 
instead of pump fed in-space propulsion should be more reliable and less vulnernble to the deep 
space envirnnment. This technology merits a dedicated development prngrnm. We recommend 
that a task order be established under the Research and Technologies for Aerospace Prnpulsion 
Systems (RTAPS) program or other contrncting mechanism. 

CO06: In-space propulsion system servicing is an important opportunity for human exploration 
beyond Earth mbit. The exploration spacecrnft can be configured to accommodate propulsion 
system servicing by packaging c1itical propulsion components in accessible pressurized 
compartments. Built in test and simulations should also be included so the crew can rehearse 
mission bums during transit or in destination orbit and take corrective servicing actions as 
required. This will greatly imprnve in-space propulsion system mission reliability and crew 
independence and confidence. We recoilllllend that ISCPS system study program be established 
with multiple contractor pai1icipation similar to this SLS BAA study. 
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CO07: In-space propulsions systems may prefer alternative nozzles from launch vehicle nozzles 
and there is an opp011unity to explore plug, aero-spike and other approaches. This may provide 
better plume expansion for in-space perfo1mance and may enable alternative general 
aiTangements that facilitate in-space servicing or other desirable capabilities. This opp01tunity 
can also be included in the ISCPS system study recommended above 

5.5. Other In-Space Element Gaps (SOW 5.5) 

Figure 5-7 identifies two technology gaps, one capability gap, one technology opp01tunity and 
one capability opportunity for other in-space elements. These are not specific to the Space 
Launch System (SLS) but impact the payload 
requirements for the SLS and the multi
purpose upper stage versus dedicated in-space 
c1yo-propulsion stage (ISCPS) trade discussed 
in Section 4.7. 

TG04: Crew galactic cosmic ray (GCR) 

Technology Gaps 

Solar particle event (SPE) detection and 
severity assessment 

Capability Gaps 

radiation protection is a very serious gap for ml Solar radiation event radiation protection 

long duration human exploration beyond Earth 
orbit. Shielding methods can be effective 11\1• 

Nuclear thermal propulsion 
against solar paiticle events (SPEs) but not 

Technology Opportunities 

against GCR radiation. Secondaiy radiation Capability Opportunities 

from spacecraft and shielding materials also El LOX/LH2 propellant depots 

TRLX 

TRL3 

need better understanding. _In addition there 
are large biological unce1tainties that limit the 
ability to evaluate risks and effectiveness of 

Figure 5-7 Other In-space Technology & Capability 
Gaps & Opportunities 

mitigation actions. The most effective method is to minimize human exposure by sho1tening the 
crew transit time. This will require much more LOX/LH2 than cunently envisioned or nucleai· 
propulsion. The ve1y large payloads to escape velocity enabled by LOX/LH2 propellant 
refueling discussed in Section 4.5 Figure 4-8 may shorten transit times sufficiently. Decoupling 
crew and cargo delive1y, developing a dedicated ISCPS, providing the additional LOX/LH2 for a 
more rapid crew transit and sending unmanned elements and cargo by minimum delta V transit 
will likely be necessaiy for high energy near Ea1th object (HENEO) missions. Other propulsion 
approaches such as nuclear the1mal may be required to solve the GCR exposure issue long te1m. 
F01tunately we can begin human exploration beyond Ea1th orbit with sho1ter missions and 
develop means to solve GSR exposure over time. The NASA Human Research Program (HRP), 
Space Radiation Program Element (SRP) needs to be fully suppo1ted and we recommend that a 
rapid crew transit study be established with industly similar to this SLS study. 

TG05: Sola1· particle event (SPE) forecasting ai1d alerts with accurate hazard predictions is a gap 
for human exploration beyond Eaith orbit. CmTent methods will likely over predict hazards 
driving mmecessaiy crew shelter requirements. Better correlation between solai· observations and 
SPE radiation levels and timelines are needed. This approach will also benefit predicting SPE 
hazai·ds to general Eaith orbiting assets and ground systems helping society as a whole. Solar 
weather buoys could be deployed to measure SPE radiation levels directly but the quantity of 
buoys necessaiy to cover a sufficient solar radiation window is likely prohibitive. A limited 
number of buoys may be sufficient to conelate solar observations. This gap is cleai·ly beyond the 
scope of the SLS but the SLS could be used to deploy new solar obse1vatories and or solar 
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weather buoys. Solar weather buoys could be deployed as secondruy mission objectives during 
exploration mission transits. 

CG06: Solar pa1iicle event (SPE) crew radiation protection is a capability gap that cru1 be solved 
for human exploration beyond Eruth orbit by configuring the spacecraft to utilize propellant, 
potable water and waste water as shielding for crew compruiments. This can be concentrated for 
a sto1m shelter and or crew sleeping compa1tments. 

TO05: Nucleru· the1mal propulsion technology development should be revived as a potential 
longer tenn solution to crew transit times and GCR radiation exposure. This beyond the scope of 
the SLS but the SLS can launch a nucleru· the1mal propulsion spacecraft and provide LH2 to 
LEO as a propellant. 

CO08: LOX only depots can greatly expand an SLS multi-purpose upper stage payload to escape 
velocity as discussed in Section 4.5 Figure 4-8. LOX and LH2 depots expand the payload 
capacity by a further increment and can also provide LH2 for nuclear the1mal propellant and as 
radiation shielding. As the technology gaps TG0l and TG02 are resolved at first LOX and then 
LOX/LH2 depots can be deployed. LOX and LH2 deliveries can be a c01mnercial commodity 
buy or can be additional SLS non-critical missions. 

5.6. In-Space Element Flight Demonstrations (SOW 5.6) 

Figure 5-8 sUilllnat-izes the recommended in-space c1yo-propellant management flight 
demonstration we submitted as prut of the Flagship Technology Demonstration request for 
info1mation NNH10ZTT003L. This in-space demonstration properly suppo1ied by ground 
texting matures passive and active cooling methods for long term c1yo-storage, c1yo-fluid 
transfer, c1yo-coupling mechanisms and c1yo-propellant conditioning for engine strui. Please 
refer to the NNH10ZTT003L RFI response for more details. 

Launch Configuration 
for 5m Payload Fairing 

Active & Passive Cooling Modes 
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160deg view 
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Figw-e 5-8 Recommended In-space Crye-propellant Management Flight Demonstrations 
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6. Appendix 

6.1. Study Technical Statement of Work (SOW) 

Aerospace Systems 

The following Figures 6-1 through 6-5 are the technical paragraphs from our study contract 
SOW. We included them in this appendix to assist the reader in conelating the SOW paragraph 
numbers added in italics to relevant section heading of this report to SOW tasking. 

2.0 HEAVY LIFT LAUNCH VEHICLE (HLLV) DECISION ATTRIBUTES 

The contractor shall develop and define a set of decision attributes including variations to guide the 
definition and assessment of a wide variety of HLLV system options. 

2.1 Document HLPT STUDY Ground Rules and Assumptions 
The contractor shall receive and review government provided HLLV study g round rules and 
assumptions (GR&A) after contract award. The contractor shall recommend alternative GR&A and 
variations to GR&A to help guide a thorough exploration of HLLV options. 

2.2 Define HLPT Study Figures of Merit 
The contractor shall synthesize figures of merit (FOM) with variations to support the analytical 
assessment and comparison of HLLV options. FOMs shall be objective and supported by calculation 
with care to define significance and uncertainty. 

2.3 Define Nominal Weighting Factors and Sensitivity Range 
The contractor shall define a set of weighting factors suitable for adding FOMs together into objective 
summary scores for various HLLV options. The weighting factors shall reflect the relative importance 
between FOMs. The contractor shall determine a sensitivity range in the weighting factors to support 
sensitivity and uncertainty analyses. 

Figure 6-1 SOW J-1-1 Paragraph 2 
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3.0 EXPLORATION ARCHITECTURE AND HLLV CONFIGURATION OPTIONS 

The contractor shall define a sufficient set of exploration architectures and HLLV configuration options 
to tho roughly represent the available trade space. This set of options shall be a tool to capture 
technology opportunities (technology push) and later a tool to assess technology and capability gaps 
(technology pull). 

3.1 Define Exploration Architecture Options 
The contractor shall define a set of exploration architectures for human space exploration beyond earth 
orbit. Each architecture shall support a variety of missions over many decades and not be 
suboptimized fo r any sing le destination. The architectures shall consider options for inspace refueling, 
various propellants, advanced in-space propulsion, reusability, multifunctionality, affordability and 
commonality. This architecture definition shall be at a conceptual level and shall avoid false resolution 
details and cosmetic graphics. 

3.2 Define HLLV Configuration Options for Alternative GR&AS 
The contractor shall define a set of HLLV configuration options for the study GR&As established in 
Subsection 2.1 and the architectures defined in Subsection 3.1. This HLLV configuration definition shall 
be at the conceptual level. Each configuration shall be appropriately defined by a general arrangement 
computer-aided design (CAD) model and configuration description package (CDP). CAD models shall 
be at the conceptual definition level without false reso lution or resource consuming details. The CDP 
shall be a MS PowerPoint briefing package with CAD screen shots, basic dimensions, major 
equipment tables , and a concept of operations diagram. Lengthy narratives are not desired. 

3.3 Define Innovative or Nontraditional Processes or Technologies 
The contractor shall identify innovative or non-traditional processes or technologies that can be applied 
to the heavy lift systems to dramatically improve its affordability and sustainability. Processes shall 
include business and organization concepts as well as technical design and manufacturing methods. 
Technologies shall include new or emerg ing as well as novel ways of app lying existing techno logies 
from other industries or applications. 

3.4 Define Commonality Opportunities 
The contractor shall identify aspects of a heavy lift system (including stages, subsystems, and major 
components) that could have commonality with other user applications, including NASA, Department of 
Defense (DoD), commercial, and international partners. 

3.5 Define Incremental Development Options 
The contractor shall identify incremental development testing , including ground and flight testing, of 
heavy lift system elements that could enhance the heavy lift system development. This shall include 
the synergism between nonrecurring development certification testing , recurring acceptance testing 
and flight operations vehicle health and performance monitoring 

Figure 6-2 SOW J-1-2 Paragraph 3 
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4.0 HLLV STUDY CONFIGURATIONS ANALYSIS 

The contractor shall analyze the set of exploration architectures and HLLV configuration options 
defined in Section 3 against the decision attributes defined in Section 2. Care shall be taken to keep 
this analysis at the conceptual level with all options analyzed to an equivalent depth without false 
resolution or unnecessary details. This analysis shall be used to help identify and prioritize the highest 
leverage capability gaps in Section 4. 

4.1 Analyze Architecture Sensitivity to Weighting Factors 
The contractor shall analyze the sensitivity of the architectures defined in Subsection 3.1 against the 
range in weighting factors established in Subsection 2.3. 

4.2 Analyze Alternative GR&AS Impact 
The contractor shall analyze the alternative HLLV configurations defined in Subsection 3.23.1 against 
the f igures of merit and range in weighting factors established in Subsections 2.2 and 2.3. 

4.3 Analyze Innovative or Nontraditional Processes or Technologies Impact 
The contractor shall analyze the alternative HLLV configurations defined in Subsection 3.33.1 against 
the figures of merit and range in weighting factors established in Subsections 2.2 and 2.3. 

4.4 Analyze Commonality Opportunities Impact 
The contractor shall analyze the commonality opportunities defined in Subsection 3.43.23.1 against the 
figures of merit and range in weighting factors established in Subsections 2.2 and 2.3. 

4.5 Analyze Incremental Development Options Impact 
The contractor shall analyze the incremental development options defined in Subsection 3.53.1 against 
the f igures of merit and range in weighting factors established in Subsections 2.2 and 2.3. 

Figtu·e 6-3 SOW J-1-3 Paragraph 4 
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5.0 HLPT CAPABILITY GAP ANALYSIS 

The contractor shall identify capability gaps associated with the set of architectures and HLLV 
configurations defined and analyzed in Sections 3 and 4. For each capability gap the contractor shall 
identify specific areas where technology development may be needed. Items identified as requiring 
technology development shall be quantitatively evaluated using established metrics, e.g. NASA 
Techno logy Readiness Level (TRL), Capability Readiness Level (CRL), Manufacturing Readiness 
Level (MRL), Process Readiness Level (PRL). 

5.1 First Stage Main Engine Gaps 
The contractor shall identify capability gaps associated with the f irst-stage main engine functional 
performance and programmatic characteristics required to support each HLLV configuration defined 
and analyzed in Sections 3 and 4. The minimum set of functional performance characteristics identified 
shall include engine thrust, specific impulse (tsp), mixture ratio , mass, throttle range, and physical 
envelope. This assessment shall include Liquid Oxygen/Rocket Propellant (LOX/RP), Liquid 
Oxygen/Liquid Hydrogen (LOX/LH2), and Liquid Oxygen/Methane (LOX/CH4) main engine systems. 
The minimum set of programmatic characteristics identified shall include an estimated overall life -cycle 
cost (i.e., Design, Development, Test, and Evaluation (DDT&E), production and operations (fixed and 
variable) per engine cost), development schedule, and production rate. The contractor shall identify 
any impacts to overall life-cycle costs of the heavy lift system based on the engine studied . 

5.2 Upper Stage Main Engine Gaps 
The contractor shall identify capability gaps associated with the upper-stage main engine functional 
performance and programmatic characteristics required to support each HLLV configuration defined 
and analyzed in Sections 3 and 4. The minimum set of functional performance characteristics identified 
shall include engine propellants, thrust, lsp, mixture ratio, mass, throttle range, and physical envelope. 
The minimum set of programmatic characteristics identified shall include an estimated overall life -cycle 
cost (i.e., DDT&E, production and operations (fixed and variable) per engine cost), development 
schedule, and production rate. The contractor shall identify any impacts to overall life-cycle costs of the 
heavy lift system based on the engine stud ied. 

Fiimre 6-4 SOW J-1-4 Paragraph 5 
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5.0 HLPT CAPABILITY GAP ANALYSIS (cont.) 

5.3 Other HLLV Gaps 

Aerospace Systems 

The contractor shall identify capability gaps associated with all other technical aspects of each HLLV 
configuration def ined and analyzed in Sections 3 and 4, e.g., tanks, propellant and pressurization 
systems, integrated system health management, auxiliary propulsion systems, avionics and control 
systems, structures. The contractor shall identify test and integrated demonstrations to mitigate risk 
associated with the gaps. 

5.4 In-Space Space Propulsion Gaps 
The contractor shall identify capability gaps associated with the in-space space propulsion elements 
functional performance and programmatic characteristics required to support each configuration 
defined and analyzed in Sections 3 and 4. This assessment shall include LOX/H2 and LOX/CH4 
propulsion systems. The minimum set of functional performance characteristics identif ied shall include 
propellant definition, thrust, lsp, mixture ratio, mass, throttle range (if any), and physical envelope. The 
minimum set of programmatic characteristics identif ied shall include an estimated overall life-cycle cost 
(i.e., DDT&E, production and operations (fixed and variable) per engine cost), development schedule, 
and production rate. The contractor shall identify any impacts to overall life-cycle costs of the heavy lift 
system based on the engines studied. 

5.5 Other In-Space Element Gaps 
The contractor shall identify capability gaps associated with all other technical elements of 
the in-space space propulsion elements defined and analyzed in Sections 3 and 4, e.g. , tanks, 
propellant and pressurization systems, cryogenic fluid management, integrated system health 
management, auxiliary propulsion systems, avionics and control systems, structures , autonomous 
rendezvous and docking. The contractor shall identify test and integrated demonstrations to 
mitigate risk associated with the gaps. 

5.6 In-Space Element Flight Demonstrations 
The contractor shall identify what in-space space propulsion elements, if any, which should be 
demonstrated via space f light experiments. 

Figm-e 6-5 SOW J-1-5 Paragraph 5 continued 
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United Launch Alliance (ULA) is pleased to support NASA on the Heavy Lift and 
Propulsion Technology (HLPT) Trade Study. With ULA's legacy of over 1,300 launches 
from the Atlas and Delta programs we hope that our study insights, merged in the 
marketplace of ideas coming from other HLPT contractors, will help NASA identify the 
best possible SLS concepts going forward. 

1. 1 Overview 

The HLPT Study has been interesting because of the flexibility NASA provided to 
contractors write their own statements of work. Each contractor, based on their 
companies strengths and interests, have emphasized different aspects of the trade. 
Some have focused on vehicles or cost estimating, others on the system engineering 
process. Some contractors focused on broad tradespace, and still others focused more 
deeply on individual concepts. Taken together these contracts will have provided NASA 
a greater breadth of study than they could have received from a single constrained 
statement of work. 

ULA's approach has been to have a strong vehicle focus, including vehicles in the 
trade space that leveraged EEL V synergies to help NASA affordability. Though the 
vehicle families introduced are EELV centric, we attempted to make a very fair 
assessment of their advantages and disadvantages relative to a Shuttle derived 
reference vehicle. Another area of focus has been cost estimating looking at vehicle 
evolutions rather than point designs. Rather than doing traditional bottoms-up 
estimates, we used a subcontractor, Advatech Pacific, to help us with parametric cost 
estimating due to the bread of the tradespace. We feel that this has been a very 
successful approach, creating a more even assessment across configurations, and 
allowing us to share cost estimates that might have otherwise been too competition 
sensitive if they had been based on traditional bottoms-up estimating methods. Finally, 
we included the propellant depot dimension into several of these scenarios to help 
NASA better define the architecture level implications of depots. 

1.2 Affordability 

During the course of the study an emphasis on helping SLS affordability has been a 
clear priority. The focus of our tradespace has been to try and leverage ULA 
affordability lessons learned to address this critical need. Our existing EELV program 
provides valuable insights, both positive, and negative to help address affordability. 

The tenants of these affordability principles are: 

1. Share Engines and Engine Contractors with the Air Force: Obvious 
opportunities exist for leveraging the same engines, or at least same engine 
suppliers to avoid NASA or the Air Force carrying the full overhead of these 
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producers. The loss of synergy between the AF and NASA with the retirement 
of SSME, makes this a very real issue for ULA. Though a the current time the 
impact is felt on the Air Force side, the same can be true for NASA if it chooses 
NASA unique engines vs. engines that share industrial base with the Air Force. 

2. Eliminate Dedicated Facility Cost: Another large opportunity is to leverage the 
Decatur manufacturing facility, 30 minutes from NASA/MSFC with overhead 
paid for by the Air Force vs. restarting the dedicated Michaud facility. This is 
obviously true for 4-5m diameter stage configurations, but ULA also has 
provided separate data on Decatur's ability to support larger diameter 
production at reasonable cost. Choices between solids utilizing the dedicated 
Promontory Utah facility and liquid engines, which can share overhead with the 
Air Force is another example 

3. Get Build Rates Up: The SLS system is burdened with the likelihood that 
affordability constraints will allow the SLS vehicle to fly only once or twice a 
year, far below the optimal production rate. By leveraging modular concepts, 
actual build rates can be raised into an efficient rate, even if the launch rate 
remains low. One concept shown has 7 Delta IV cores strapped together to 
make a single booster. If it was flown twice a year we would be producing 14 
additional cores per year, which combined with very similar EELV cores, would 
put the Decatur factory at peak efficiency even while flying SLS at a suboptimal 
flight rate. 

4. Pursue Commercial Development Environment to the Greatest Extent Practical: 
ULA recognizes that the SLS will be a NASA owned system, that will be 
supported by an array of contractors regardless of which configuration is 
selected. There still remain significant opportunities for NASA to move in the 
direction of commercial procurement and development to reduce cost of 
development and operation. 

5. Graceful, Incremental Evolvability: Defining the SLS as a point design which is 
scarred by requirement 25 years in the future drives high peak funding 
requirements during the development phase, and builds the SLS around 
requirements that are certain to change. Why do we need a 1 Om diameter 
fairing? No elements exist that define that requirement. An oversized vehicle 
drives a high carrying cost that may reduce what missions can be funded 
nearer term. An evolvable design with incremental development steps keeps 
the system affordable, and support a smaller design team that is potentially 
sustained active over decades. 

6. Get the Requirements Defined Early: The success stories of Atlas and Delta on 
hitting non-recurring budgets (eg Atlas Ill, EELV) have been on programs with 
well defined, stable requirements. Requirements stability has a huge impact on 
development schedule risk, and in turn on cost. SLS suffers from the extra 
challenge of large mission uncertainty. Solid definition of missions before 
embarking on full scale development of SLS may be the best investment NASA 
can make to restrain non-recurring, and recurring costs. 
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ULA's approach to the study, is shown in figure 1.3-1. Leading up to TIM 1 we 
performed the vehicle trade looking at trading the best vehicle in each of three 
performance classes with multiple figures of merit. Each performance class (7ot, 1 Dot, 
13ot) vehicles was evaluated independently. At this stage of the study vehicles were 
treated as standalone developments rather than as part of larger architectures. They 
were compared on a basis of 2 flights per year rather than having their flight rate be tied 
to a mission model. During the course of the study we increased the scope of the 
vehicle trade to go into greater depth on the vehicles including structural concepts and 
operations concepts, given great interest on the part of the NASA customer community. 
This vehicle trade culminated in a Kepner Tregoe trade analysis. 

Separately we formulated an overall mission model based on various NASA and 
industry sources looking at missions commonly discussed for Flexible Path. Though 
initially planned to be a parallel path from the Vehicle trade as shown on the flow chart, 
in reality this occurred later in the study. 

ULA performed a depot assessment. This was descoped somewhat from the original 
plan due to the greater emphasis on Vehicle definition mentioned above. ULA provided 
reviews of depot concepts with the NASA customer, and build depot scenarios into 
three of six evolution scenarios evaluated subsequently 

Six evolutions were defined, characterized by with lower capability vehicles (eg 70t) 
initially and evolving to larger performance class vehicles when the Asteroid mission 
appeared in the ULA mission model in 2025. These leveraged the same families of 
vehicles from the TIM 1 vehicle trade, though we modified some of the concepts based 
on lessons learned from earlier in the study. Also, for propellant depot scenarios, depots 
were introduced instead of larger heavy lifters to address these more strenuous 
missions. These six evolutions were evaluated against the mission model, with 
performance differences reflected in different numbers of flights, and associated cost 
differences. The evolution scenarios were evaluated in a separate Kepner Tregoe 
analysis, using architectures level figures of merit vs vehicle level figures of merit. 

The final part of the study was gap analysis to evaluate technology needs in light of 
lessons learned from the study. 
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The cost methodology is the same as that shown in later section. In general costs in the 
architecture trade received more refinement than the vehicle trade. The estimates were 
based on 201 O dollars. For all vehicles we have assumed Pad 39 as the launch site. 
A 2 flight/year flight rate has been assumed for all vehicles. 

Results from vehicle cost analysis are shown in figure 2.8-1 which summarize 
development and production cost, but do not include fixed costs such as fixed recurring 
(standing army), or launch pad and factory impacts. 

Pert Class 

~ehide 
~ption 

Costs 

~----

Perf Class 

Vehide 
Oesaipton 

Development 
Costs 
Unit PrQduot on 
Costs 

Perf Class 

Vehicle 
Description 

Costs 
unR 

____ ,on 
Costs 

Sm RP/LOX Derived Family 
Dual R0-180 Engme Family New Dual 1.25Mlb ORSCEngme Family 

70t 100t 1301 70t 100t 130t 
3 Dual RD-180 Sm_ 3 Dual RD-180 Sm ~ Dual RD-180 Sm 3 Dual 1.2S llfb SC Sm 3 Dual 1.2S Mlb SC Sm 5 Dual 1.2S Mlb SC Sm 
Boosters + 4 RL-10 A4 Booster+ 1 ~2X us + s ~oaster + 1 J-2X US - Booster + 4 RL-10 A4 - Booster+ 4 Rl-10 A4 US Booster + 4 RL· 10 A4 US 
US - No Solids Gem-60 Soi ds No Solids NoSoids + 8 GEM-60 SRBs -No Sofids 

$2,613,662,66. $4,161,000,00( $4, 176,000,00C $6,814,000,00C $6,878,000,001 $6, 948,000,00C 

$366,856,SOC $492,000,00( $537,000,-00C $443,000,00( $545,000,004 $642,000,00( 

Delta IV Derived Family 
1 J-2X US Family 

70t 100t 70t 

7 CBC + 1 J-2X - No 7CBC + 1 J- 2X+ 12 7CBC + 3J-2X - No 
Sol ds Solids Solds 

$4,S94,000,00C $4,679,000,00C $4,73S,OOO,OOO 

$637,000,00C $793,000,00C $780,000,000 

Shutte Derived Family 
70t 100t 130t 

27 ,5ft Core-, with 4 RS- 27 .Sft: Core, with 5 RS- 27 5ft Core, with 4 RS-
25s, 4 Segment SRBs, Ne 25s, S Segment SRBs~ Ne 25s, 5 Segment SRBs, 

us us New J- 2X Upper Stage 

$11.000,000,00C $11,600,000,00( TBD 

TBO TBD TBD 

3 J-2X US Family 

100t 130t 

7 CBC + 3 J-2X + 6 7 CBC + 3 J-2X + 12 
Atlas Sol ds Atlas Sol ds 

$4,792,000,000 $4,820,000,00( 

$859,000,000 $937,000,00( 

Shuttle Derived 
Costs from HEFT 

Not independently 
verified or 
normalized 

Hardware Only- No Ground Systems 
Single Unit Production Costs - No Impacts of Learning Curve 

Figure 2.8-1 Vehicle Cost Trade Results 
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To provide an independent and unbiased assessment of the costs associated with the 
concepts defined by ULA, Advatech Pacific, Inc. (Advatech) was issued a subcontract to 
develop parametric costs estimates for the concepts and architectures defined by ULA. 
This was a change for ULA since our normal process has been to develop bottoms up 
cost estimates for all of our work with the Air Force and NASA. The parametric 
approach was selected because it was more suited to study since the concepts were 
not defined in detail and this type of approach was responsive and could provide an 
apples to apples comparison at a reasonable cost. Though ULA scrutinized the results 
for internal consistency, we resisted the temptation to start inserting either known in
house estimates, or proprietary vendor quotes values, in place of the parametric values 
to keep the evaluation apples and apples, and to avoid bias from creeping into the 
results. 

Advatech and its partner MGR LLC have developed an integrated, process-based, 
systems engineering approach that combines the technical performance, cost, 
schedule, and risk factors along with other programmatic data and factors that impact 
the project. This approach had been developed for the Air Force and incorporated into 
the development of the Integrated System and Cost Modeling (ISCM) Tool Suite which 
Advatech has used to perform a comprehensive assessment of proposed concepts in a 
matter of days compared to conventional processes that can take months for various 
studies supporting the Air Force. The existing modules of the ISCM Tool Suite are 
focused on launch vehicles, strategic missiles, re-entry vehicles and spacecraft so it 
was an ideal tool for supporting ULA in its study of Heavy Lift Launch Vehicle (H LLV) 
concepts. 

Technical Discussion 

The ISCM Tool Suite examines the nominal costs for Design, Development, Test, and 
Evaluation (DDT&E) based on historical programs, thereby providing insight into non
recurring and recurring costs. ISCM can also evaluate the impacts of new technology 
insertion on the system by assessing the impact of the Technical Readiness Level of 
the new technology on the development of the entire system. Technology Readiness 
Levels (TR Ls) are a systematic metric that provides an objective assessment of the 
maturity of a particular technology and allows consistent comparison of maturity 
between different types of technology. The TRL scale developed by NASA has been 
cross referenced to a specific milestone in the acquisition process. For example, NASA 
TRL 5 is equivalent to successful Critical Design Review (CDR) and NASA TRL 6 is 
equivalent to Selection Verification Review (SVR). 

Historical data has shown that programs incur cost and schedule growth as they mature 
through the development milestones. Programs with mature technology (TRL 7 or more) 
experience significantly lower cost growth than programs with less mature technology 
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(i.e. TRL 6 or less). The cost and schedule growth that is incurred as the program 
matures is difficult to predict in the planning phases, resulting in point cost estimates 
that often significantly underestimate the true costs to mature a technology. Advatech's 
tool suite uses historical cost data, correlated with a program's technology maturity, to 
derive cost growth factors that predict realistic system development costs. The user can 
then assess the technology maturity and the related cost growth of a program and see 
the effects of cost growth on schedule, cost, and probability of success. 

Once the DDT&E costs are evaluated the Concept of Operations (Con Ops) needs to be 
evaluated to assess the operations and maintenance tasks. The ConOps describes the 
infrastructure, manpower, and launch processing functions needed to support the 
mission. The operations concept is driven by the mission requirements and technology 
selection. Certain details of the operations are specific to each application and should 
be customized by the user. In the Advatech ConOps module, the infrastructure 
(facilities, equipment, transportation vehicles, etc.), launch site crew, launch system 
support activities, and post launch operations are used to model pre and post launch 
processing, launch, and maintenance activities. The user defines high level mission 
constraints as they relate to operations. 

Once the mission setup is specified, the user builds the mission operations from a 
template or load a previously saved custom mission operations file. When loading the 
mission operations from a template, the model uses vehicle information and mission 
setup data to dynamically build the template from a knowledge database. The 
knowledge database was created by launch system subject matter experts who have 
extensive practical and theoretical experience on launch vehicle and ICBM programs. 

The launch operations are maintained in Microsoft® Project. The model maintains the 
operations tasks in the form of a work breakdown structure (WBS), with associated 
resources and schedule, labor requirements and flow time are defined for each step in 
the process flow. The WBS is intended to be used as a starting point for concept 
evaluation. In order to fairly evaluate concepts, the user must strive to represent the 
launch operations and labor requirements for each concept as closely as possible. The 
module evaluates using existing assets, modifying existing assets, or building new and 
provides insight into non-recurring and recurring costs. 

Advatech uses cyclical methodology to perform studies and analyses designed to 
efficiently meet the objectives of, and support, our customers. The process begins with 
defining the primary objectives which include designing the methodology, identifying the 
appropriate skill sets and data to support the objective, analyzing the trade space, 
and/or reviewing information from the customer's technical portfolio. In most cases, the 
ISCM tool suite can be used to support the analysis and will produce accurate and rapid 
results. However, when functionality is required outside of the scope of ISCM, 
conventional tools such as Microsoft Excel will be used to integrate data provided from 
other sources with the results from ISCM. This is done to expedite the process, 
efficiently using available resources, and provide our customers with the accurate 
results. 
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Advatech and MCR had previously built the Advanced Cost Model (ACM) with both a 
set of Cost Estimating Relationships (CERs) for a solid rocket motor (SRM) launch 
systems and for liquid rocket launch systems (LRLS). Since a HLLV may include either 
liquid or solid propulsion systems those CERs were available for application to launch 
systems to be studied here. In evaluating the HLLV alternatives, it was determined that 
the LRLS WBS and the associated CERs were most appropriate for the basic HLLV 
application which was a basic liquid rocket launch system with multiple booster cores 
and the addition of Solid Rocket Motors as strap-ans if additional thrust was required. 
The original LRLS CERs were built on 26 standard liquid rocket launch systems from 
the Atlas and Delta families making this a good starting point for this particular study 
since we were looking at evolutions of the Atlas and Delta systems (see Figure 5.2-1 ). 
For the HLLV some additional CE Rs were developed to cover an expanded WBS based 
on data provided by ULA. With additional data on the com onents of the Ii uid rocket 
launch s stems more cost drivers could be added. 
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(b) (3) 

In the CER, Average Unit Cost or AUC is the dependent variable. The weight of each 
launch system is the independent variable. 
The equation form is: 

AUC.= 
I 

b 
a~ 

Where, W = Weight of the LRLS element, a is a constant, and b = the corresponding 
exponent. 

(1) 

The DDT&E cost module in ACM is composed of eight separate spreadsheets within a 
Microsoft Excel file. The spreadsheets contain the following sets of information: 1) Input 
Mass, 2) WBS Trades, 3) CERs by WBS for both Development and Production, 4) 
Technical Maturity Schedule of Months to key milestones, 5) Risk, 6) Phasing, 7) 
Inflation Factors, and 8) Outputs. Figure 5.2-3 provides a flow chart of how the 
respective spreadsheets are linked in the cost model. The Input Mass spreadsheet 
allows the user to specify the mass in kilograms or the weight in pounds. The WBS 
Trades spreadsheet allows the user to collect weights from lower level components into 
the appropriate subsystems to align application to the CERs. A set of CERs by WBS is 
provided for both the Development effort and the Production effort that is generally 
experienced during program execution, the development effort for a system evolves 
until system verification review has been completed before production units are built. 
The key milestones tracked to measuring technical maturity are the contract award 
(CA), the preliminary design review (PDR), the critical design review (CDR), the system 
verification review (SVR), initial operational capability (IOC), and full operational 
capability (FOC). In the Risk spreadsheet, CERs are used to estimate the most likely 
level of Development or Production costs. The user then specifies a low and a high 
percentage based on his estimate of the risk associated with each element of the WBS. 
Based upon this triangular distribution, a mean and sigma are used to roll up the costs 
to higher levels of the WBS and allocate the associated risks to each of the WBS 
elements. The resulting costs estimated in base year (BY)$ are then phased across the 
period of performance and inflated to the then year dollar (TY) $ values for developing 
the S-curve shown in the Output spreadsheet. The selected total estimated value with 
risk is then spread across the period of performance to indicate how the budget for the 
program is expected to flow. 
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Figure 5.2-3 Reusable Launch Vehicle Cost & Schedule Flow Chart 
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Outputs 

For the ULA HLLV study development schedules were provided for the evolution of the 
vehicle families or a basic development period of four years was selected when 
calculating the cost estimates for the vehicles. Specific risk factors were determined 
based on the vehicle configurations so the features for Risk Allocation and the Joint 
Probability assessment were not used. 

5.3 Calibration 

To calibrate the cost models for the specific application mass data was provided by ULA 
so that the models in the JSCM Tool Suite could be calibrated specifically for this 
application. Verifying that the mass information produced by the ISCM Tool Suite was 
important since the models in ISCM would be used to determine mass inputs for the 
cost models when ULA defined the new configurations and Architecture. 

CERs were primarily calibrated to Atlas V cost data provided by ULA, as well as specific 
engine models; each a value was changed such that the entry of the weight of a given 
component into its CER would yield a theoretical first unit cost corresponding to the 
figure in the proprietary data supplied. The CER exponent values were left unchanged. 

Calibration was executed with Atlas data, as only top level data was available for the 
Delta platform. Initially, CERs were calibrated solely for the Atlas platforms, to the cost 
of the 26 elements that comprise the vehicle. These recalibrated CE Rs were then tested 
on the Delta platform, and were found to predict Delta costs within 1.5%. The fairly 
close fit suggests that the calibrated CERs are valid for both platforms. In addition, 
calibration factors were generated for each engine, using data provided by ULA as well 
as other sources. 

These CE Rs are constructed to predict theoretical first unit costs, rather than an 
average unit cost. Each CER was calibrated such that subject to a learning curve, the 
average unit cost for a 7 unit lot buy was equal to the calibration target. Each 
component has its own learning curve slope, with a slope of 1.0 - no learning - for 
propellant, and 0.90 to 0.95 for all other CERs. For instance, a component with an 
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actual cost of $1,000,000 and a learning curve slope of 0.95 would be assumed to have 
a first unit cost of $1,053,238, and an average unit cost of $969,246 for a 14 unit lot buy. 

5.4 Concept of Operations Model 

During the evaluation of launch vehicles and assessment of the total life-cycle costs the 
operations and maintenance (O&M) tasks are often not addressed even though they 
represent a significant portion of the total cost. This is true for all existing concept of 
operations (ConOps) used today including: 

• Horizontal assembly and integration, transport to the launch pad, erect, and launch, 
• Vertical assembly and integration, transport to pad and launch, or 
• Assembly and integration on the pad and launch. 

Advatech and MCR have developed a ConOps Module that is included in the ISCM 
Tool Suite and a unique approach to evaluating the O&M tasks associated with launch 
vehicle concepts, the impacts of introducing new technologies, and performing trades 
providing a comparison of various concepts. For launch vehicles the module describes 
the infrastructure, manpower, and launch processing functions needed to support the 
mission and is driven by the mission requirements and technology selection. 

The ConOps module was developed to model and analysis the process flow, facilities 
requirements, and manpower needs required to support the launch operations for 
expendable and reusable launch vehicles or combinations of the two. The level of detail 
was selected to ensure that all technical aspects of the launch operations are 
addressed and risks can be identified. This level of detail supports verification that the 
launch operations meet all mission requirements, identify associated life-cycle costs, 
and supports identification of risk mitigation plans early in the development and/or 
acquisition process. This is critical because numerous studies have identified that the 
later a change is made in the program the more significant the impact on cost, 
schedule, and potentially the ability of the system to meet the mission requirements. 

As the foundation for the ConOps Module detailed process flow diagrams for launch 
operations were created by Subject Matter Experts who have extensive practical and 
theoretical experience on launch programs. The information in these diagrams was 
assembled in a Knowledge Database that included O&M tasks, facilities, manpower 
information, and other related information. 

The ConOps Module takes as inputs specific vehicle parameters defined by the physics 
based models of the ISCM Tool Suite and user defined high level mission constraints as 
they relate to operations. This information is used by the model to setup default 
infrastructure, process flow, and resource requirements that provide the user with a 
reasonable starting point for defining their concept of operations. The user can then 
tailor these requirements to their custom scenario performing specific analyses, 
evaluating impacts of changes in technologies and process flow, and completing 
exploration of defined trade spaces. 
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The user can build the mission operations or process flow for the launch vehicle from a 
template or load a previously saved custom mission operations file . When loading the 
mission operations from a template, the model uses vehicle information and mission 
setup data to dynamically build the template from the Knowledge Database including 
predessor information and identification of hazardous operations. The launch operations 
are maintained in Microsoft Project. This framework was selected because it is a widely 
used tool for managing task WBS, resources and schedules. This supports the 
capabi lity to import existing schedules maintained within project by simply specifying the 
"Custom" selection and loading an existing file. The model maintains the operations 
tasks in the form of a WBS, with associated resources and schedule, labor 
requirements and flowtime are defined for each step in the process flow. Figure 4 
represent roll up views of the WBS for a sample vehicle. 

TUlel:I Pllase Won<Brealcdown Structure Elements Ourabon Predecessor., 
TIFis! 

1 Site - Minotaur I Operations 119.45 days? 

2 1.1 PAIF • Proc,ess Satellite 16.75days 

13 12 Tmsfr P)-1o-lnt Tran$;x>rt Satelite and Fairing to ln!egrabon 0.25days 2 ,. 1.3 HIB - Process and Assemble Upper Stack 104.95days 

15 1.3.1 HIB + Process MissOe S111ges 43.7Sdays 

39 1.3.2 HIB + Integrated Buildup of f.tissile on Transporter 61.2days 15 

79 1.4 LVPF - Process and Assemble Lower Stack 3S.Sdays 

80 1.4.1 LVPF + Process Stage 1 17.25days 

88 1.4.2 LVPF • Process Stage 2 18.25 days 80 

97 1.4.3 LVPF • Mount Stage 1 1.95days 80 

108 1.4.4 LVPF • Integrate Stage 2 4.Sdays 97 

117 1.5 Tmsf~ Pad! + Launch Vehicle Transport ! 0.5 days 14,79 

120 1.6 Ground Ops - Conduct Ground Launcti Operations 14days? 117 

121 l.6. 1 Ground Ops Plan Llission gdays 

122 1.6.2 Ground Ops • Integrate Lower and Upper Assembly Stacks 4.7days? 

128 1.6.3 Ground Ops + Exercise Range interlaces 0. 5days 127 

13& 1.6A Ground Ops Secure Ellmnrnental ProtectJoo 0.25days 

131 1.6.S 
--+-

Ground Ops Mlss.,n Simulation Test 2days 127 

132 1.6.6 Ground Ops Safe Pad 0.25 days 131 

133 1.6.7 Ground Ops Initial Dress Rehearsal 0.Sdays 132 

1~ l.6.8 Ground Ops F11al Cress Rehearsal 1 day 1~3 

Figure 5.4-1 Roll~p of Sample Vehicle 

As the process flow is created the ConOps module automatically assigns labor 
resources to top level tasks. Again this is a starting point and the user can customize 
the information to the specific application . The module includes military, civilian and 
contractor labor codes at different experience/qual ification levels. Military rates were 
derived from the Office of the Under Secretary of Defense (OUSD) Standard Composite 
Rates. Civilian Rates were taken from Salary Table 2007-GS from the US Office of 
Personnel Management. Contractor Rates were taken from skill searches on 
www.salary.com for both East coast and West coast regions. It is assumed the crew is 
dedicated to the site year around and the crew is scaled by the model as facilit ies or 
work schedules are modified. The ConOps Module provides summary level information 
for the labor and can also provide detailed information as required (See Figure 5.4-2). 
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The ConOps Module also provides information about the facilities required to support 
launch operations. Based on the mission requirements defined by the user and 
information from the physics based models, the ConOps Module defines required 
facilities and estimated sizes for the facilities. This information includes nonrecurring 
costs for building the facilities and recurring costs for maintaining the facili ties. Costs are 
based on the Department of Defense (DoD) Facilities Pricing Guide and Directorate of 
Engineering Support Historical Air Force Construction Cost Handbook. Figure 5.4-3 
shows the Facilities Graphical User Interface (GUI) in the ConOps Module. The user 
can select whether new facilities are required, existing facilities are going to be used, or 
if existing facilities require refurbishment, Depending on the selection, the module will 
calculate the associated nonrecurring and recurring costs. In the case of refurbishment, 
the costs for refurbishment are input by the user. Similar to the labor costs, the ConOps 
Module provides summary and detailed information as required. 
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As stated previously the initial information provided by the module is intended to be 
used as a starting point for concept evaluation. The user can then modify the 
information to represent the actual launch operations for the specific vehicle or vehicles. 
In order to fairly evaluate concepts, the user must strive to represent the launch 
operations and labor requirements for each concept as closely as possible. By utilizing 
the documentation features in the ConOps module the user can complete a model of 
the process flow including life-cycle costs so that details of the analysis are fully 
exposed and can be verified . This feature also allows for transition of information to new 
engineers and analysts minimizing the impact of personnel turnover. Proper 
development of the model supports evaluation of the impacts of introducing new 
technologies, proposed concept of operations, and vehicle configurations being 
proposed to support NASA HLL V mission requirements. 

5.5 Analysis Approach 

To complete the parametric study for ULA, Advatech used the configurations and 
architectures defined by ULA and modeled them in the DDT&E and ConOps Models. 
The results were then reviewed by subject matter experts at Advatech and ULA to 
identify inconsistencies that required further evaluation. 
In the case of the DDT&E Model risk factors were incorporated for each subsystem and 
modified as appropriate to provide realistic cost estimates. Any change in the default 
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risk information was supported by specific rationale such as the transition from the RS-
25E engine from the RS-25D engine assumed no risk since the RS-25E engine only 
represented the restart of production of the RS-25D engine and evolution to the 1.25 
Mlb thrust LOX/RP engine from the existing RD-180 engine assumed minimal risk since 
it was just a scaled up version of the RD-180. The companies that manufacture engines 
thoroughly understood the design. In a few cases actual cost provided by ULA were 
used. These costs were based on previous studies performed by ULA 

Since specifics of the concept of operations were not defined the existing launch 
operations for the Space Shuttle, Delta IV Heavy, and Atlas V vehicles were reviewed 
with representatives from United Space Alliance (USA) and ULA at Kennedy Space 
Center and Cape Canaveral Air Force Base. It was assumed that NASA facilities at Pad 
39 would be used for launching the HLLV. Since the facilities existed the modifications 
required were estimated as a total cost of fabricating the facility new. Labor 
requirements were developed and then compared to System Acquisition Reports 
(SA Rs) to verify the reasonableness of the estimates. 

5.6 Results Overview 

During the completion of the parametric cost study, over 30 vehicle configurations were 
evaluated and used to develop the final estimates for six (6) scenarios developed by 
ULA. During the evaluation of these concepts some basic ground rules and 
assumptions were used throughout: 

• Point estimates were done in base year 2010 dollars 
• Sand charts escalated based on projected inflation rates 
• Development costs for all RL-10 configurations are paid for by Air Force Space and 

Missile Command Center and not included here 
• Development costs for the 1 .25 Mlb booster engine assumes minimal risk 
• Development costs for RS-25E engine assumes no risk since it is conversion of 

SSME 
• No sustainment or modifications of test facilities included in estimate 
• Production for each vehicle assumed to be 5 years to support identification of long 

lead items 
• NASA facilities at the Pad 39 Complex would be used 
• Modifications and sustainment of facilities at KSC included 
• Labor costs - assumes a standing army for the full year 
• All obsolescence issues would be addressed prior to initiation of HLLV Program 
• Similar Concept of Operations (ConOps) assumed for each family 

- Horizontal processing initially 
- Erect Vertical in VAB and finish assembly on the MLP 
- Transport to pad 

• National Mission Model used to develop rate impacts and learning curve information 
for EELV and 5M RP/LOX evolutions 

• Short time on pad (3-5 days), requires significant automation 
• Cost for propellant launches included at $6M per metric ton 
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Elements not included in the life cycle cost elements include NASA/MSFC oversight and 
insight cost in both the non-recurring and recurring phases, and NASA/KSC oversight 
and insight apart from the direct launch operations costs. 

The six scenarios evaluated were grouped into three families: 

1. 5m RP/LOX Derived Evolution - This family was based on the Atlas 551 Heavy Lift 
configuration utilizing three common cores and evolved into a vehicle with five 
common cores with varying booster engines and upper stages. 

2. Delta Derived Evolution - This family was based on the Delta IV Heavy Lift Launch 
Vehicle and evolved from the standard three common core configuration to a seven 
body evolution with varying upper stages. 

3. Shuttle Derived Evolution - This was the baseline configuration being evaluated by 
NASA which was used to compare the other two families against. 

As part of the first two families a scenario was introduced using a propellant depot 
which included commercial launches to refill the depot as required to support the overall 
mission requirements. 

The results of the parametric study are discussed in the following section. 
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