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FOREWORD�

�
Lockheed�Martin�Corporation,�acting�through�its�Lockheed�Martin�Aeronautics�Company�(LM�Aero)�operating�unit,�
has� prepared� this� document� for� the�National� Aeronautics� and� Space� Administration’s� (NASA)� Langley� Research�
Center� under� contract� NNL06AA08B,� delivery� order� number:� NNL07AB06T.� � The� work� documented� herein� was�
performed�from�October,�2008�through�July,�2009.�
�
Contributors� included� Jung�Riecks,�Walter� Storm,� and�Mark�Hollingsworth.�Additional� support�was�provided�by:�
Claudia�Marshall,�Dan�Harbour,�Diane�Nixon,�and�Tom�Schech.�
�
� �
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INTRODUCTION�

This� report� documents� the� work� performed� by� Lockheed� Martin� Aeronautics� (LM� Aero)� under� NASA� contract�

NNL06AA08B,� delivery� order� NNL07AB06T.� � The� Concept� Development� for� Software� Health� Management� (CD�

SHM)�program�was�a�NASA�funded�effort�sponsored�by�the�Integrated�Vehicle�Health�Management�Project,�one�of�

the� four� pillars� of� the� NASA� Aviation� Safety� Program.� � The� CD�SHM� program� focused� on� defining� a� structured�

approach�to�software�health�management�(SHM)�through�the�development�of�a�comprehensive�failure�taxonomy�

that�is�used�to�characterize�the�fundamental�failure�modes�of�safety�critical�software.���

To� enable� the� detection� and�mitigation� of� software� errors� through� SHM,� our� approach� is� to� treat� software� as�

another� system� device� that� exhibits� failure� modes� according� to� a� canonical� failure� reference� of� legacy� and�

emerging� safety�critical� software.� �Many�SHM�concepts� stem� from� failure�modes�and�effects�analysis� (FMEA)�of�

software� in� a�manner� similar� to� that� used� for� hardware,� however� the� failure�modes� for� software� are� not�well�

known,�and�the�techniques�for�applying�a�software�FMEA�during�system�design�are�not�widely�published�[1],�[2].��

Our� goal� was� to� address� these� shortcomings� by� quantifying� the� scope,� magnitude� and� types� of� fundamental�

software�errors� that�manifest� themselves� throughout� the�development�of�advanced� flight�critical� software.� �We�

developed�our�approach�in�two�phases:�1)�the�creation�of�a�taxonomy�for�fundamental�software�anomalies�based�

on� data� from� various� advanced,� flight�critical� software� development� programs;� and� 2)� the� development� of�

integrated�risk�models,�mitigation�schemes,�design�considerations�and�patterns�based�on�fundamental�failure�data.���

The�following�sections�document�the�process�and�results�of�the�study.���

APPROACH�

PREPARING�THE�DATA�

The� source�of�our� study�was� the�development�of� flight�critical� software� systems� from�a� combination�of� several�

recent,� advanced� development� and� production� programs.� � The� background� information� required� for� the�

investigation� and� analysis� was� gathered� from� across� various� database� systems� and� normalized� to� a� common�

database.��We�used�the�resulting�database�as�the�source�for�our�error�classification�and�taxonomy�development.���

The� analysis� of� the� database� was� performed� manually,� as� several� subject� matter� experts� read� through� and�

classified�each�anomaly�report�as�a� type�of� fundamental� failure.� �The�failure�types�were�developed�after�several�

passes�through�the�data,�where�the�root�causes�were�distilled�to�basic�phrases�or�terms�that�adequately�describe�

and�classify�their�nature.��Only�those�terms�which�adequately�described�at�least�0.1%�of�all�the�cases�studied�were�

considered�an�eligible�term�for�the�fundamental�failure�type.�

�
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CLASSIFICATION�DETAILS�

As� it� turns�out,� all� of� the� raw�data� sources� for� this� analysis� are� (more�or� less)� freeform� text.� � From� this,� it�was�

quickly�evident�that�the�only�way�to�produce�a�comprehensive�taxonomy�was�to�read�each�account� individually.��

We�held�many�meetings�with�our�program�contacts�to�study�the�current�anomaly�report�structures.��In�the�current�

anomaly�report�structure,�there�is�a�multitude�of�information;�however�there�is�no�easy�way�to�outline�the�cause�

classification�or�root�cause�in�detail.��Nonetheless,�we�identified�areas�that�still�gave�us�some�advantages.�Using�the�

current�reporting�system,�we�were�able�to�identify�the�anomaly�found,�the�phase�in�which�it�was�introduced�and�its�

severity.��This�information�is�the�foundation�of�our�study�and�the�basis�for�our�recommendations.�

CREATING�THE�BASELINE�

The�first�step�in�creating�the�baseline�data�set�involved�eliminating�all�of�the�unnecessary�information�from�the�raw�

reports,� and� boiling� them�down� to� the� fundamental� symptoms,� phases,� severities,� and� root� causes.� � The� steps�

involved�in�the�data�elimination�process�were:�

1. Delete�all�the�blank�sections�

2. Delete�unimportant�sections�for�this�project.�(i.e.�User�ID,�date,…etc)�

3. Delete�‘cancelled’�or�‘analysis’�in�status�

4. Delete�‘external’,�‘duplicate’,�‘not�a�problem’,�‘suspended’�in�final�resolution�

5. Delete�‘No’�in�confirmed�problem�

6. Delete�all�the�data�which�is�not�a�software�related�problem�in�problem�product�

After�this�purging,�the�resultant�database�was�the�baseline�for�the�project.�

CREATING�THE�FAILURE�TAXONOMY��

There� are� four� different� sections� from� the� anomaly� reports� that� we� receive� from� any� given� program.� These�

sections� are� the:� Anomaly� Behavior;� Expected� Behavior;� Root� Cause� and� Corrective� Action� Task.� All� of� these�

sections�have�a�description�field�that�is�free�format�text�which�contains�a�limit�of�2,000�characters.��From�the�four�

sections�above,�we�create�sections�that�are�named:�Anomaly;�Cause�Classification�and�Root�Failure.��

1. The�“Anomaly”�contains�a�very�short�description�of�the�problem�behavior.�The�“anomaly”�comes�from�the�

“Anomaly�Behavior”�and�“Expected�Behavior”�sections�from�the�original�report.��

2. The� “Cause� Classification”� is� the� classification� and� abstraction� of� the� failure.� The� “Cause� Classification”�

information�comes�from�the�“root�cause”�and�“corrective�action�task”�section�of�the�anomaly�reports.�

3. The�“Root�Failure”�is�the�taxonomy�of�failures.�The�“Root�Failure”�information�also�comes�from�the�“Root�

Cause”�and�“Corrective�Action�Task”�section�of�the�anomaly�reports.��
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Since�we�do�not�have�an�outline�of�the�Cause�Classification�and�Root�Failure,�we�first�started�with�a�sample�group�

of� anomaly� reports� to� attempt� to� identify� a� pattern� of� Cause� Classification� and� Root� Failure.� While� we� were�

working� on� this� sample� group,� we� realized� that� the� anomaly� reports� are� not� a� large� enough� sample� group� to�

discern�a�pattern�of�cause�classification�and�root�failure.�We�decided�that�we�needed�to�review�all�of�the�anomaly�

reports�to�create�the�initial�outline�of�Cause�classification�and�Root�Failure.��The�anomaly�report�data�contains�all�

the�life�cycle�of�the�program.��After�examining�several�hundred�anomaly�reports,�we�started�to�see�some�patterns.��

The� patterns� enabled� us� to� keep� as�much� detail� as� possible� with� respect� to� the� Cause� Classification� and� Root�

Failure�while�still�allowing�enough�entries�to�be�statistically�significant.��This�analysis�was�then�refined�into�the�final�

taxonomy�described�in�the�following�section.�

ANALYSIS�RESULTS�

Our�taxonomy�consists�of�16�failure�classes�and�114�fundamental�failure�types.��In�order�to�define�a�specific�failure�

type,�the�type�must�provide�statistical�significance�for�the�term�by�adequately�defining�at�least�0.1%�of�all�anomaly�

reports�studied.��Each�class�and�the�fundamental�types�derived�from�them�are�described�in�the�following�sections.�

FAILURE�CLASSES�

ALGORITHM�

The�Algorithm� failure�class�defines�a� family�of�31�software�errors� that� represent,� in�general� terms,� fundamental�

errors�in�the�software�design.��For�example,�errors�such�as�invalid�assumptions�about�the�environment�in�which�the�

system�operates�may�be�considered�Algorithm�errors.���

Algorithm�Failure�Class� ��

Failure�Type� Definition�
compound�logic� incorrect�compound�logic�(i.e.�and,�or,�nand,�nor…)�

data�transfer/message� incorrect�algorithm�of�data�transferring�(refresh)�

dead�code� leftover�code�form�past�causes�a�problem��

decision�logic�
incorrect�decision�logic�(i.e.�if�then�else,�case�statements,�begin�end,�mode�
transition,�wrong�execution�sequence….)���

design� logic�of�algorithm�is�incorrect�

engineering�unit� incorrect��engineering�unit�is�used�in�calculation�

equation/calculation� incorrect�equation�or�calculation�

failure�detection� incorrect�failure�detection�algorithm�

failure�isolation� incorrect�failure�isolation�algorithm�

failure�management�� incorrect�failure�management�logic�(failure�reporting�)�

failure�reporting� incorrect�failure�reporting�or�trigger�logic�to�generate�failure�report�

incorrect�signal� incorrect�signal�is�used�in�calculation�

initialization�logic� incorrect�initialization�algorithm�

initialization�of�values� incorrect�initialization�values�

inverted�logic� inverted�true�or�false�logic�



�

� � P a g e �|�11�

Algorithm�Failure�Class�(Cont'd)� ��

Failure�Type� Definition�
missing�initialization� missing�initialization�function�

missing�limiter� missing�limiter�in�the�calculation�

prototype� missing�prototype�

range� incorrect�or�unnecessary�range�in�calculation�or�condition�

relational�operator� incorrect�relational�operator�(i.e.�>,�<,�>=,�<=�...)�

reset�logic� incorrect�reset�algorithm��

reset�timing� incorrect�reset�timing��

response�to�detected�failure�condition� incorrect�repose�to�detected�failure�condition�

sampling�time� incorrect�sampling�time�

setting�value/variable� incorrect�algorithm�to�setting�values�or�variables�

syntax� syntax�error�

test�modeling� incorrect�test�modeling�produce�incorrect�values�for�the�test���

threshold� incorrect�threshold��

timing� incorrect�delay�

typo� typo�in�algorithm�causes�disconnect�between�signals�

validity�check�timing� missing�or�incorrect�or�inappropriate�timing�of�validity�check�

BUS�INTERFACE�

The�Bus� Interface� class�defines�a�collection�of�error� types�that�represent�data�source�and�bus�translation�errors.��

This�is�a�relatively�focused�class�with�the�following�4�error�types.�

Bus�Interface�Failure�Class� ��

Failure�Type� Definition�
bit�position� incorrect�bit�position�

bus�initialization�failure� bus�initialization�failure��

data�source� incorrect�data�source�is�connected�to�bus�interface�

missing�signal� missing�a�signal�in�bus�interface�

CONFIGURATION�MANAGEMENT�(CM)�

Although�often�referred�to� in�the�context�of�process�and�tools,�problems�within�CM�manifest�themselves�as�real�

problems�in�flight�critical�software�systems.��Through�this�study,�we�identified�the�following�6�CM�failure�types.�

Configuration�Management�Failure�Class�

Failure�Type� Definition�
approval�delay� correct�version�of�SW�was�not�approved.�

implementation�delay� ��

incorrect�version�of�software� using�incorrect�version�of�SW�

missing�CR�implementation� missing�CR�implementation�

outdated�requirement� did�not�update�requirement�to�match�a�SW�change�

requirement�incorporation�delay� did�not�update�SW�to�match�a�requirement�change�
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COMPILER�ERROR�

The�Compiler�Error� is�a�general�class�of�error�that�is�created�by�the�tools� in�the�software�build�chain.� �That�is,�an�

error� in� any� specific� tool� used� in� the� process� of� translating� source� code� into� executable� code� is� considered� a�

Compiler�Error.��In�this�study,�the�only�type�of�compiler�error�identified�was�the�generation�of�incorrect�assembly�

code—most�likely�because�the�tools�used�to�build�the�flight�critical�systems�in�the�study�are�mature�and�have�been�

pre�qualified.��In�fact,�when�developing�flight�critical�systems�using�mature�software�development�environments,�

compiler�errors�account�for�less�than�0.5%�of�all�software�errors.�

Compiler�Error�Failure�Class� ��

Failure�Type� Definition�
Incorrect�Assembly�Code� Incorrect�Assembly�Code�

DATA�DEFINITION�

Incorrect�representation�of�data�structures�in�memory,�data�offsets�and�row�ordering�are�all�examples�of�Data�

Definition�errors.��During�this�study,�we�identified�the�following�6�distinct�data�definition�error�types:�

Data�Definition�Failure�Class� ��

Failure�Type� Definition�
data�structure� incorrect�data�structure�

data�type� incorrect�definition�of�data�type��

enumeration� incorrect�enumeration�

lookup�table�data� incorrect�lookup�table�data�

offset�� incorrect�data�offset�for�I/O�or�bus�list�or�memory�mapped�message�

size� incorrect�bit�or�byte�size��

DATA�HANDLING�

A�Data�Handling�error�is�a�class�of�software�error�that�involves�illegal,�undefined�or�incorrect�use�of�a�data�element�

or�variable.��Data�Handling�errors�differ�from�Data�Definition�errors�in�that�they�do�not�manifest�themselves�at�the�

module�interface,�and�do�not�necessarily�involve�incorrect�structure�definitions.��We�have�identified�the�following�

14�types�of�Data�Handling�errors:�

Data�Handling�Failure�Class� ��

Failure�Type� Definition�
bias� missing�or�incorrect�bias�

bit�conversion� incorrect�handling�of�16bit�and�32�bit�conversions�

breakpoint� incorrect�breakpoint�

byte/bit�order� incorrect�byte�or�bit�order(i.e.�endianness,�byte�swap,�LSB�and�MSB�reversed)�

indexing� improper�indexing�into�arrays�or�table�
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Data�Handling�Failure�Class�(Cont'd)��

Failure�Type� Definition�
input�fault�tolerance�� incorrect�tolerance�to�detect�input�fault�

logic� incorrect�data�handling�logic�

masking�data�
masking�data�with�incorrect�values�or�not�masking�data�which�we�are�expecting�
to�be�masked�

memory�address� using�incorrect�memory�address�

mnemonics� incorrect�mnemonics�in�hash�table�

scaling�factor� using�incorrect�scaling�factor��

transition�logic� incorrect�transition�logic�

variable� incorrect�variables�or�variable�type�to�access�data��

variable�scope� incorrect�variable�type�(global,�local)�

DOCUMENTATION�

The� Documentation� Error� is� a� general� class� that� defines� errors� in� the� documentation� (requirements,� design�

documents,�flowcharts,�state�charts,�architecture�diagrams,�etc.)�that�lead�to�software�anomalies�downstream�in�

the�process.��There�were�no�emergent�patterns�from�this�study�to�define�specific�documentation�error�types�with�

any� statistically� significant� basis,� even� though� 11%�of� all� errors�were� of� this� type.� � Fortunately,�Documentation�

errors—having�a�high�phase�containment�ratio—are�often�detected�during�the�development�phase�in�which�they�

are�created,�or�the�very�next�phase�in�the�process.��We�discuss�the�significance�of�this�in�more�detail�later1.�

HARDWARE�

Hardware�Errors�are�defined�as�a�class�of�error� that�elucidate�deficiencies�or� flaws� in�the�physical�systems�upon�

which�the�software�has�direct�or�indirect�influence.��This�study�defines�1�type�of�hardware�error:�

Hardware�Failure�Class�� ��

Failure�Type� Definition�
unexpected�behavior� Hardware�deficiency�mitigated�by�Software�

INPUT�OUTPUT�(I/O)�SYSTEM�

I/O�System�Errors�represent�a�class�of�errors�that�are�resident�in�modules�or�subsystems�which�are�responsible�for�

providing�data�to�(and�getting�data�from)�other�modules�or�subsystems�within�the�architecture.��Although�this�class�

of� error� is� not� the�most� prevalent,� I/O� System�errors� have� the�highest� average� severity� of� all� the� error� classes.�

Again,�the�significance�of�this�will�be�discussed�later�in�the�report2.��We�recognize�4�distinct�I/O�System�error�types.�

�

�����������������������������������������������������������������
1�See�Error�Analysis�–�Rankings�by�Occurrence.�
2�See�Error�Analysis�–�Rankings�by�Severity.�
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I/O�System�Failure�Class�� ��

Failure�Type� Definition�
data�list� incorrect�data�list��

I/O�synchronization� Coordination�of�I/O�timing,�lists,�etc.�

order�of�data�structure� incorrect�order�of�data�structure�

signal�assignment� missing�or�incorrect�signal�assignment�

IMPLEMENTATION�

An� Implementation�Error� is�defined�as�a�general�class�of�error� through�which�a�requirement�or�software�change�

request� was� implemented� incorrectly� in� the� source� code.� � This� study� did� not� reveal� any� significant� or� distinct�

implementation�error�types,�and�all�implementation�errors�account�for�less�than�1%�of�all�anomaly�reports�studied.�

INTER�PROCESS�COMMUNICATION�

We�define,�in�general,�Inter�process�Communication�Errors�as�incorrect�hand�shaking�between�processes�or�parallel�

modules.� � This� includes� coordination� of� resources,� failure� management� and� overall� timing� issues.� � This� study�

revealed�9�distinct�inter�process�communication�error�types.�

Inter�process�Communication�Failure�Class��

Failure�Type� Definition�

decision�logic�
incorrect��decision�logic�(i.e.�if�then�else,�case�statements,�begin�end,�mode�transition,��
wrong�execution�sequence….)���

engineering�unit�mismatch� engineering�unit�mismatch�

failure�management�� incorrect�failure�management�logic�

I/O�synchronization� I/O�is�not�synchronized�in�inter�channel�data�box�

initialization�logic� incorrect�initialization�logic�

logic� incorrect�logic�of�inter�process�communication�

reset�timing� incorrect�reset�timing��

sampling�time� incorrect�sampling�time�

timing� incorrect�delay�

PERFORMANCE�

The� class� of� errors� considered� under� the� term�Performance� defines� those� errors�which� violate� either� real�time�

requirements�or�processor�utilization�thresholds.��During�our�study,�we�were�able�to�statistically�substantiate�the�

following�performance�error�type:�

Performance�Failure�Class�� ��

Failure�Type� Definition�
Exceed�Processor�Utilization�Target� Exceed�Processor�Utilization�Target�
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SELF�TEST�

As� part� of� the� development� process� for� flight�critical� systems,� it� is� necessary� to� incorporate� into� the� system� a�

sufficient� suite� of� pre�flight� tests� that� verify� the� suitability� of� the� system� relative� to� the�mission� it� is� about� to�

perform.� � This� test� sequence;� often� referred� to� as� Self� Test� or� built�in� test,� is� designed� to� provide� a� go/no�go�

decision�relative�to�predetermined�fitness�conditions.��However,�errors�in�the�Self�Test�itself�may�yield�erroneous�

results.��Such�is�the�class�of�error�defined�by�this�category,�from�which�we�identify�the�following�8�distinct�types:�

Self�Test�Failure�Class�� ��

Failure�Type� Definition�
improper�test�condition� running�test�with�improper�condition�

design� incorrect�test�design�

inadequate�requirement� requirement�is�not�specific�enough�to�test�

test�timing� incorrect�test�timing�

time�management� inefficient�use�of�time�

value�of�location� location�contains�incorrect�values�in�test�pattern�

values�for�test� incorrect�values�or�reference�for�test�

missing�reset�function� missing�reset�function�in�test�procedure�(for�either�necessary�or�work�around)�

SYSTEM�INTEGRATION�

System�Integration�defines�a�class�of�errors�that�arise�when�major�system�components�come�together�or�interact�

with�moderate� dependency.� � Such� errors�may� be� obvious� right� at� system� power�up,� while� others�may� not� be�

identified� until� the� system� is� subject� to� unique� or� unforeseen� circumstances.� � Based� on� this� study,� System�

Integration�errors�have�the�most�derived�types�of�all�the�error�classes.��We�identified�24�of�them.�

System�Integration�Failure�Class�� ��

Failure�Type� Definition�
channel�synchronization� channels�are�not�synchronized�

conflicting�requirement� conflicting�requirement�

change�request�(CR)� incorrect�CR�was�written,�approved�and�incorporated.�

data�source� incorrect�data�source�is�connected�to�bus�interface�

engineering�unit�mismatch� signals�from�two�different�systems�did�not�agree�on�units�(i.e.��radian,�degree)�

ICD�and�SW�mismatch� ICD�and�SW�are�not�matching�

inconsistent�interface�order� inconsistent�index(order)�of�I/O�between�systems�

incorrect�requirement� incorrect�requirement�

interface� incorrect�interface�

manual� incorrect�manual�(flight�manual)�
�
�
�
�
�
�
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�System�Integration�Failure�Class�(Cont'd)�

Failure�Type� Definition�
memory�use� using�incorrect�kind�of�memory�(i.e.�use�CPU�check�RAM�instead�of�internal�RAM)�

missing�data� missing�data�in�a�table�of�design�document��

missing�datapump� missing�data�in�data�pump�list�

missing�header�file� missed�include�header�file�in�the�main�code�

missing�signals�in�ICD� missing�signals�in�ICD�

missing�SW�update� hardware�changed�but�SW�did�not�change�

missing�testpoint� symbol�is�missing�for�test�symbol�table�

no�requirement� there�is�no�requirement�for�an�issues�so�it�needed�to�be�created�

parameter� incorrect�parameter�

parameter�order� parameter�order�

rate�synchronization� rate�synchronization�

requirement�not�clear� not�enough�guide�lines�to�understand�requirement�

testpoint�name�� symbol�name�of�signal�and�signal�in�code�are�not�the�same�

unnecessary�requirement� unnecessary�requirement�needed�to�be�deleted�

TOOLS�

Unfortunately,�tools�also�introduce�errors�into�software�systems.��Through�our�study,�we�identified�the�following�2�

Tool�Error�types:�

Tool�Failure�Class� ��

Failure�Type� Definition�
Algorithm� tools�generates�incorrect�signal�or�values�

input�data� missing�or�incorrect�input�data�so�tool�generate�junk�code�

USER/PILOT�

Any�errors� associated�with� the�operation�of� the� system�purely� from� the�perspective�of� the�user�or�pilot,� under�

normal�operating�conditions,�fall�under�the�User/Pilot�class.��That�is,�errors�identified�through�specific�flight�tests�or�

failure�conditions—perhaps�employing�a�pilot�or�user—are�not�considered�User/Pilot�errors.� �Through�this�study,�

there�were�no� instances�where�any�action�on�behalf�of� the�user�or�pilot�caused�a�software� failure� that�was�not�

properly� matched� to� another� error� class.� � All� qualifications� considered;� we� identified� the� following� type� of�

User/Pilot�error�type:�

User/Pilot�Failure�Class��

Failure�Type� Definition�

preference�
results�that�are�not�necessarily�incorrect�or�unsafe�but�pilots�want�to�change�so�they�feel�more�
comfortable�or�low�Cooper�Harper�ratings�

�
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ERROR�ANALYSIS�

Once�we� identified� the�proper� taxonomy,�we�were�able� to�perform� some�useful� analysis�on� the� resultant�data.��

This�section�describes�our�analysis�and�the�corresponding�results.�

BACKGROUND�

Similar� to�many� risk�management� approaches3,� our� approach� considers� the� primary� drivers� of� probability� and�

severity.��We�also�add�a�third�dimension—the�likelihood�of�detection.��Although�similar�in�name�to�what�one�may�

encounter� in�a� failure�mode�and�effects�analysis�worksheet4,� this�parameter�measures�how� long�a�given�type�of�

software�error� is� likely� to� remain�present� in� the� system�before� it� is� found.� � That� is,� it� is� a�measure�of� the�delta�

between�the�phase�in�which�an�error�is�detected�and�the�phase�in�which�the�root�cause�analysis�determined�it�was�

likely�injected.���

The�primary�difference�between�our�analysis�and�other�risk�assessments�is�that�our�results�are�based�on�data�and�

events� that�already�exist� and�have� transpired� rather� than�estimating�a�probability�of�occurrence�and�a� severity.��

We� then� use� the� entire� collection�of� data� to�make�predictive� inferences� and� suggestions� for� solutions� that� can�

mitigate�high�risk�areas�through�software�health�management.�

THE�RISK�PRIORITY�NUMBER�

The� Risk� Priority� Number� (RPN)� is� a� fundamental� measure� of� risk� associated� with� each� failure� type.� � � It� is� a�

parameter,�normalized�to�a�value�between�0�and�1000,�which�clearly�indicates�the�relative�risk�priority�of�elements�

within�the�taxonomy.��It�is�calculated�as:�

��� � � � � � 	�

Where:�

� 
� ������������������������������

� 
� ������������������

	 
� ������ �! �" # ����$%&�! �"�

CALCULATING�RELATIVE�FREQUENCY�

The�relative�frequency�of�a�class�is�calculated�by�the�sum�of�all�anomalies�under�that�class�divided�by�the�number�of�

anomaly�reports�in�the�most�frequent�class.��It�is�represented�as�a�normalized�number�between�0�10.��

�����������������������������������������������������������������
3�i.e.�quantitative�or�probabilistic�risk�assessment�
4�See�http://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis�for�an�example.�
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CALCULATING�RELATIVE�SEVERITY�

The�severity�term�is�calculated�by�normalizing�the�anomaly�severity�codes�against�a�weighted�scale.��Each�anomaly�

report�we�analyzed�had�an�associated�severity�code�ranging�from�1�5,�where�severities�1&2�directly�affect�safety�of�

flight.� �To�accurately�represent�this�separation,�we�normalized�the�severity�code�as�a�number�between�1�and�10�

according�to�the�following�table:�

�

CALCULATING�THE�DETECTION�PARAMETER�

The�final�parameter�of�the�RPN�represents�how�long�a�software�error�remained�within�the�system�since�the�error�

was� first� introduced.� � That� is,� it� is� an� indicator� of� how� likely� a� certain� class� of� error�will� go� undetected� by� the�

established�verification�and�validation�(V&V)�process.�

To�create�the�parameter,�we�analyzed�each�anomaly�report�and�calculated�the�weighted�delta�phase�factor�directly�

from�the�table�below.��For�example,�if�an�anomaly�was�detected�during�Integration�and�Test,�and�the�root�cause�of�

the�error�was�found�to�be�an�error�in�the�Requirements�of�that�module,�then�the�delta�phase�value�is�8.�

�

PRESCRIPTIONS�OF�THE�RPN�MODEL�

In�general,�any�element�with�an�RPN�greater�than�100�can�

be� considered� high�risk.� � Although� this� cutoff� is� open� to�

conjecture,� the� upper� end� of� the� RPN� spectrum� surely�

deserves�attention.� �For�instance,�the�top�most�element—

algorithm�design—can�emerge�as�an�entire�field�of�study�in�

its�own�right.��The�table�to�the�right�shows�elements�from�

the�entire�taxonomy�whose�RPN�is�greater�than�100.�
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DETAILED�CLASS�ANALYSIS�

The�following�sections�present�a�detailed�analysis�of�each�error�class.��The�analysis�shows�the�RPN�for�each�specific�

error�type�of�the�taxonomy�as�well�as�the�type’s�relative�distribution�profile�within�the�class.��The�following�table�is�

a�summary�of�those�error�classes�which�have�a�limited�number�of�types.�

Error�Class� Error�Type� RPN�

Documentation� Documentation�error� 262�
Implementation� requirement�implementation�error� 46�
Tools� Algorithm� 30�
Compiler�Error� Incorrect�Assembly�Code� 29�
Pilot� Preference� 12�
Hardware� unexpected�behavior� 8�
Performance� Exceed�Processor�Utilization�Target� 7�
Tools� input�data� 1�

�

A� roll�up� the� individual� error� types� reveals� some� notable�

observations� about� the� individual� error� classes�

themselves.��Perhaps�the�most�notable�of�which�is�that�the�

top� three� error� classes—Algorithm,� Data� Handling� and�

System� Integration—account� for�over�70%�of�all� software�

errors,� as� illustrated� in� the� graph� shown� in� Figure� 10,� at�

right.���

Not�only�are�the�top�three�classes�the�most�frequent;�with�

RPN� values� between� 100� and� 1000,� they� are� also� in� the�

high�risk�category,�as�seen�in�Figure�11�below.�

�

Figure�2�–�Class�Level�Error�Profile�

Figure�1���Class�Level�Analysis�
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RPN�COMPONENT�ANALYSIS�

At� this� point,� we� discuss� the� individual� parameters� of� RPN� for� the� failure� class� analysis.� � The� most� dominant�
discriminator� for� RPN� analysis� is� the� occurrence� parameter.� � There� is� some� distinct� differentiation� between�
severity�and�detection�as�well,�but�not�nearly�as�drastic�as�occurrence.��The�following�sections�present�the�results�
of�each�RPN�parameter�individually.�

OCCURRENCE�PARAMETER�

The�occurrence�parameter� is� the�most�discriminating� factor�of�all� the� failure�classes.�Figure�3,�above,�shows�the�
breakdown� by� failure� class.� � Note� that� there� are� several� displacements� from� the� raw� RPN� breakdown.� � This� is�
because,�although�some�errors�are�more�frequent�than�others,�they�may�not�be�as�severe�or�as�hard�to�detect—
which�justifies�the�failure�analysis�across�the�three�fundamental�dimensions�of�occurrence,�severity,�and�likelihood�
of�detection.��

�

Figure�3�–�Occurrence�Dimension�
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SEVERITY�PARAMETER�

The�severity�dimension,�illustrated�in�Figure�4�above,�shows�that�the�dominant�failure�class�is�I/O�system.��That�is,�

most� errors� in� this� class� are� likely� to� affect� safety� of� flight—resulting� in� grounded� aircraft� or� specific� operating�

limits.���

DETECTION�PARAMETER�

�

Figure�4�–�Severity�Dimension�

�

Figure�5�–�Detection�Dimension�
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The� detection� parameter� also� offers� some� useful� insight� into� the� nature� of� the� errors.� � Figure� 5� shows� that�

hardware�and�user�errors�exist�longest�in�the�development�cycle,�while�implementation,�tools,�and�documentation�

error�types�are�detected�rather�quickly.���

ALGORITHM�ERROR�CLASS�PROFILE�

Considering�the�Algorithm�failure�class,�overall�algorithm�design�has�the�highest�RPN�and�also�accounts�for�22%�of�

all�algorithm�errors.� �Decision�logic�and�data�transfer/messaging�components�come�in�next;�where�the�top�three�

combined�account�for�nearly�half�of�all�the�algorithm�errors.���

Some�examples�of�an�Algorithm�error�may�be:�incorrect�power�up�or�initialization�routines�after�a�reset�that�cause�

failure�monitors�to�trip�in�another�module;�good�channel�average�selection�algorithms�that�inadvertently�include�

the�bad�signal� in�the�calculation;�or�perhaps�a�set�of� limit�values�that�are�not�used�when�different� loading�or�air�

vehicle�configurations�are�selected�from�another�subsystem.��In�hindsight,�these�types�of�errors�may�seem�obvious�

and�may�lead�one�to�believe�more�unit�testing�is�required.��The�reality�is,�however,�that�these�types�of�errors�may�

be�so�embedded�in�the�algorithm�that�unit�tests�would�not�exercise�the�unforeseen�states�properly.��Consider�the�

case�of� the� limiter� value� switching� algorithm.� �A�unit� test�may� verify� that� the� set� of� limits� is� properly� switched�

under�all�conditions�through�which�a�request�may�be�made.��But�if�the�logic�in�the�algorithm�is�designed�to�never�

make�the�proper�request,�the�limit�set�is�never�switched.���

�

Figure�6���Algorithm�Error�Profile�
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This�report�is�not�intended�to�provide�philosophical�or�anecdotal�justification�of�the�data�presented;�however�this�

particular�case�is�considered�at�length�in�[3].��Essentially,�proper�algorithm�design�requires�intimate�knowledge�of�

the�environment�in�which�the�software�is�to�operate�as�well�as�sufficient�domain�knowledge�to�consider�purposeful�

or�inadvertent�changes�to�that�environment.��This�study�reveals�the�gravity�of�this�error�class�and�recommends�that�

technologies�be�developed�to�address�it.���

BUS�INTERFACE�ERROR�CLASS�PROFILE�

The�bus�interface�errors�we�studied�all�have�an�RPN�lower�than�100,�but�greater�than�10.��Based�on�the�entire�set�

of�data�represented�in�this�study,�RPN�values�between�10�and�100�could�be�considered�medium�risk,�where�RPN�

values�lower�than�10�represent�low�risk�items.��The�distribution�of�error�reports�classified�as�interface�error�types�

are�fairly�evenly�distributed�across�the�specific�types�within�the�class,�as�identified�by�the�cumulative�percentage�

line�in�red.�

� �

�

Figure�7�–�Bus�Interface�Error�Profile�
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CONFIGURATION�MANAGEMENT�ERROR�CLASS�PROFILE�

All�CM�errors�are�in�the�medium�risk�RPN�range.��Many�of�these�errors�can�be�addressed�by�existing�processes.�

�

DATA�DEFINITION�ERROR�CLASS�PROFILE�

Data�definition�errors�are�also�medium�risk�errors�and�can�be�addressed�earlier�by�more�detailed�data�and�

interface�models.�

�

Figure�8 – Configuration�Management�Error�Profile

�

Figure�9–�Data�Definition�Error�Profile�
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DATA�HANDLING�ERROR�CLASS�PROFILE�

The�two�high�risk�error�types�for�the�data�handling�error�class�are:�scaling�factor�and�memory�address.��This�is�

essentially�the�interface�between�subsystems�and�can�be�addressed�with�more�detailed�interface�modeling�and�

design�verification�techniques.�

INTER�PROCESS�COMMUNICATION�ERROR�CLASS�PROFILE�

IPC� errors� are� generally� low�risk.� Timing� and� synchronization� errors� can� practically� be� caught� only� in� a� lab�
environment,�although�formal�analysis�and�design�verification�can�address�several�of�the�others.�

�

Figure�10�–�Data�Handling�Error�Profile�

�

Figure�11�–�IPC�Error�Profile�
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INPUT/OUTPUT�SYSTEM�ERROR�CLASS�PROFILE�

I/O�errors�are�generally�difficult�to�find�during�development�and�exist�for�a�significant�time�in�the�product�lifecycle.��

More�detailed�and�realistic�modeling�could�address�these�issues,�but�would�require�a�detailed�cost�benefit�analysis�

to�determine�break�even�points�for�mitigating�the�risk.�

�

SELF�TEST�ERROR�PROFILE�

Self�test�errors�are�of�marginal�concern�and�could�be�addressed�through�process�and�technique.�

�

Figure�12�–�I/O�System�Error�Profile�

�

Figure�13�–�Self�Test�Error�Profile�
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SYSTEM�INTEGRATION�ERROR�CLASS�PROFILE�

The�system�integration�class�contains�many�specific�failure�types.�This�observation�in�itself�shows�that�a�significant�

amount�of�errors,�in�general,�are�of�this�class.��Although�software�may�work�well�in�individual�modules�or�unit�test�

levels,�it� is�when�the�modules�are�integrated�with�a�larger�system�that�all�of�the�environmental�assumptions�and�

erroneous�invariants�begin�to�surface.��This�error�class�requires�an�entire�dedicated�study,�as�the�root�of�the�errors�

lie�in�the�original�requirements�and�specifications�that�needed�interpretation.�

ROOT�FAILURE�CAUSE�AND�EFFECT�RELATIONSHIP�ANALYSIS�

Having�calculated�the�RPN�for�the�Fundamental�failure�types,�we�moved�our�focus�from�individual�risk�assessment�

to�examining�the�relationships�between�the�fundamental�failure�types.�We�made�charts�to�show�the�relationships.�

This�section�describes�the�root�failure�cause�and�effect�relationship�charts�and�our�analysis�on�it.�

BACKGROUND�

When�we�were�working�on�the�failure�type�taxonomy,�we�realized�that�some�of�the�failure�types�have�cause�and�

effect�relationships.�For�instance,�the�failure�types�of�“algorithm:�initialization�of�values”,�“algorithm:�timing”,�and�

“algorithm:� initialization� logic”� would� all� be� related� in� the� failures� of� initializing� correctly� to� start� a� new�mode�

during�a�mode� transition.� This�has� shown�up� in� concrete�examples�where�a�process� switched� into�a�new�mode�

�

Figure�14�–�System�Integration�Error�Profile�
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before� another� process� generating� inputs� had� switched� to� the� new�mode.� � In� this� case,� the� analysis� engineers�

would�record�the�defect�in�one�of�the�three�failure�types�but�it�is�a�mistake�to�consider�that�failure�type�in�isolation�

from�the�other�two.��We�constructed�diagrams�indicating�the�failure�types�that�we�should�consider�together.��We�

connected�related�failure�types�by�arrows.��The�direction�of�the�arrows�is�from�the�broader�scoped�failure�type�to�

the�more�specific�failure�type.� � �Then�we�pulled�together�the�connected�parts� into� logical�groupings�centered�on�

the�largest�of�the�17�failure�classes.��Several�of�the�17�failure�classes�ended�up�split�between�logical�groupings.�

GROUND�RULES�

1. The� relationships� were� not� necessarily� direct� cause�effect� relationships,� but� were� rather� a� logical�
correlation�between�the�two.���

2. An�error�or�confusion�in�one�area�might�tend�to�imply�an�error�or�confusion�in�the�related�area.�
3. Each�failure�type�appears�only�once�in�the�diagrams.��We�split�the�diagrams�so�that�no�relationships�were�

lost.��Only�the�requirements�class�appears�in�multiple�diagrams�to�indicate�where�the�requirements�come�
into�those�diagrams.����

4. We�color�coded�the�114�failure�types�to�indicate�their�RPN�percentile�among�the�failure�types�by:�

���������� � ��Red�=�5%�Highest�RPN�failure�types�

��Orange�=�Next�10%�RPN�failure�types�

��Yellow�=�Next�15%�RPN�failure�types�

��Blue�=�Next�20%�RPN�failure�types�

��Green�=�Remaining�Lowest�50%�RPN�failure�types�

�In�this�report�we�call�these�the�“RPN�percentile�groups”.��The�red�and�orange�blocks�are�the�“high�RPN”�

failure�types.��The�yellow�and�blue�blocks�are�the�“medium�RPN”�failure�types.�

OVERVIEW�OF�ROOT�FAILURE�CAUSE�AND�EFFECT�RELATIONSHIP�CHART�

We�organized�the�114�failure�types�into�related�items�and�formed�seven�logical�groups.��The�seven�logical�groups�

are� Requirement,� Configuration� Management� (CM),� External� Problems,� Documentation,� Algorithm,� System�

Integration/Communication,�and�Self�Test.�
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Figure�15�shows�the�top�level�organization�of� these�seven�groups.�The�“Requirements”�category� is�at� the�center�

because�it�affects�virtually�all�of�the�other�categories.��“External�Problems”�category�does�not�consist�exclusively�of�

software�problems�but�they�are�problems�

that� require� software� modification� to�

overcome� them.� The� “Algorithm”�

category� is� the� largest� and� contains� a�

concentration� of� high�RPN� failure� types.��

“System� Integration/Communication”� is�

also�a�large�category�with�some�high�RPN�

failure� types.� � The� “Self�Test”� category�

has� no� high�RPN� failure� types.��

“Documentation”� was� a� large� category�

only� because� we� did� not� sub�divide� it.��

We�left�the�“Configuration�Management”�

category�as�a�stand�alone�item�because�it�involves�every�step�in�the�software�development�process.��We�can�look�

at� the� “Configuration�Management”� category� as� a� process� problem� that� runs� parallel� with� other� categories� of�

problems.�For�its�small�size,�it�has�a�large�number�of�medium�RPN�failure�types.�

Here�is�the�number�of�different�RPN�percentile�groups�in�each�category:�

Requirements:�2�orange,�1�yellow,�1�green�
CM:�2�yellow,�4�blue,�2�green�
External�problems:�1�blue,�3�green�
Documentation:�1�red�
Algorithm:�3�red,�9�orange,�6�yellow,�8�blue,�20�green�
System�Integration/Communication:�1�red,�1�orange,�7�yellow,�8�blue,�17�green�
Self�Test:�1�yellow,�2�blue,�13�green�

DOCUMENTATION�AND�EXTERNAL�PROBLEMS�CATEGORY�

Figure� 16� shows� the�Documentation� category.�Documentation� errors� are� in� the� top�5%�RPN�due� to� the� rate�of�

occurrence.��These�failures�accounted�for�over�11%�of�the�total�failures.��The�severity�score�was�average�and�the�

detection� score� was� low� (meaning� they� were� easy� to�

detect�and�were�removed�quickly).� �We�did�not�analyze�

or�sub�divide�this� failure�type�category.� �We�did�not�try�

to�analyze�the�relationships�between�these�failures�and�

others.� � We� did� not� try� to� determine� if� other� failures�

influenced� the� documentation� errors� or� vice�versa.��

There�might�be�some�connection�between�them.�

�

Figure�15�–�Related�Root�Failure�Categories�

�

Figure�16�–�Documentation�Category�
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Figure�17�shows�the�

External� Problems�

category.� It� is� a�

“Catch�All”�category�

for� a� small� number�

of� problems.� � The�

root�causes�of�these�

failures� are� all�

external�to�the�core�

software�

development�

process� of� the�

application�code.��They�are�primarily�are�due�to�requirements�for�the�application�software�to�mitigate�unexpected�

failures�in�other�areas.��Except�for�“Compiler�Error:�Incorrect�Assembly�Code”,�all�these�failure�types�are�in�the�low�

RPN� range� (green).� � The� “Compiler� Error:� Incorrect� Assembly� Code”� has� unremarkable� severity� and� detection�

scores.��The�“Pilot:�preference”�failure�type�is�due�to�test�pilots�not�agreeing�or�changing�their�preference.��It�has�a�

low�severity�score�but�a�relatively�high�detection�score.��None�of�these�failure�types�has�a�high�occurrence�rate,�but�

their�detection�scores�are�high.��The�“system�integration:�manual”�refers�to�errors�in�the�flight�manual.��This�failure�

type�has�an�especially�high�detection�score�although�its�severity�score�is�low.�

REQUIREMENTS�CATEGORY�

Figure� 18� shows� the�

Requirements� category.��

These� are� all� system�

integration� problems.��

Requirements� rarely�

conflict� and� are� usually�

clear� enough.� � They� are�

more� likely� to� be�

missing� or� incorrect.��

There�are� two�high�RPN�

failure� types.� � The� RPN�

differences� of� the� Requirements� category� are� mostly� due� to� the� rate� of� occurrence.� There� are� no� clear�

relationships�between�these�failure�types�or�with�any�other�failure�types.�

Figure�17�–�External�Problems�Category�

�
Figure�18�–�Requirements�Category�
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CONFIGURATION�MANAGEMENT�CATEGORY�

Figure�19�shows�the�Configuration�Management�category.�Most�of� these� failures�are�related�to�Change�Request�

(CR)�process�delays�and�their�impact�on�system�integration.��This�category�has�two�yellow�failure�blocks�and�several�

blue�blocks.��It�is�a�significant�failure�category.��The�RPN�differences�of�the�Configuration�Management�category�are�

mostly� due� to� the� rate�

of� occurrence.� � This� is�

the� first� category� with�

relationships� between�

failure� types.� � Several�

“system� integration”�

failure� types� appear� in�

this�diagram�because�of�

their� relationships� with�

the� “configuration�

management”� failure� types.� � � The� two� yellow� blocks,� “CM:� implementation� delay”� and� “CM:� missing� CR�

implementation”� are� grouped� together� with� the� green� “CM:� requirement� incorporation� delay”� to� collect� the�

problems�with�delays�in�already�approved�changes.��This�collection�relates�to�several�“system�integration”�failure�

types,� all� having� to�do�with� incompatible� software�or� interfaces.� � The� “system� integration:�missing� SW�update”�

failure�type�can�be�caused�by�the�“CM:�implementation�delay”,�or�“CM:�missing�CR�implementation”�failure�types.��

The�same�relationship� is� true� for� the�“system�integration:� inconsistent� interface�order”�and�“system�integration:�

ICD�and�SW�mismatch”�failure�types.��The�green�“CM:�approval�delay”�is�green�because�it�does�not�occur�often,�but�

its�severity�score�is�high.��It�can�contribute�to�the�“CM:�incorrect�version�of�software”�failure�type,�which�is�blue.�

ALGORITHM�CATEGORY�

Figure�20�illustrates�the�Algorithm�category.�This�is�a�significant�and�interrelated�category�of�failure�types.��It�shows�

the� relationship� between� algorithm� design,� inter�process� communication,� and� requirements� category.� � It� is� the�

most�significant�collection�of�related�failure�types.� � It� includes�the�top�two�RPN�ranked�failure�types,�“algorithm:�

design”�and�“algorithm:�decision�logic”.��The�“algorithm:�design”�failure�type�alone�accounts�for�over�10%�of�all�the�

root�failures�in�the�study.��The�next�highest�is�“algorithm:�decision�logic”,�which�accounts�for�over�5%�of�all�the�root�

failures�in�the�study.��The�final�red�root�failure�type�in�the�diagram�is�“algorithm:�failure�management”.��This�type�

involves�the�logic�of�signal�redundancy,�selection,�and�verification.��It�accounts�for�about�3%�all�the�root�failures.��

The� designs� in� that� system� should� not� require� a� great� deal� of�modification� in� the� normal� design� loop.� Another�

noticeable�part� of� the�Algorithm�diagram� is� the� three� related�orange� failures� of� “algorithm:� initialization� logic”,�

“algorithm:�timing”,�and�“algorithm:� initialization�of�values”.� �Together�these�are�over�4%�of�all�the�root�failures.��

This�failure�type�includes�problems�in�timing�of�initializations�when�modes�change�and�the�inputs�are�not�correct�

�
Figure�19�–�Configuration�Management�Category�
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for�the�new�mode.��In�addition,�state�variables�may�not�have�been�reset�correctly�when�new�mode�started�running.��

Several� of� the� failure� types� group� together.� � In� the� upper� left� of� the� diagram� is� a� set� of� three� signal� definition�

problems,� “data� definition:� lookup� table� data”,� “algorithm:� incorrect� unit”,� and� “algorithm:� incorrect� signal”.��

These�are�problems�which�are� interior� to� the�algorithm�but� they�can�be� influenced�by� the� “system� integration”�

fault�types�of�“system�integration:�missing�data”�or�“system�integration:�engineering�unit�mismatch”.� �This�set�of�

failure� types� can� cause� “algorithm:� equation/calculation”� failure� types.� � Another� significant� collection� of� failure�

types�deals�with�the�range�processing�of�signals.��It�consists�of�the�“algorithm:�range”,�“algorithm:�threshold”,�and�

“algorithm:�missing�limits”�failure�types.� �This�set�also�can�influence�the�“algorithm:�equation/calculation”�failure�

type.� � One� set� of� failures� which� is� unrelated� to� other� failures� is� the� set� of� random� “mutation”� type� failures,�

“algorithm:�syntax”,�and�“algorithm:�typo”.��Usually�the�compiler�detects�these�types�of�errors�immediately�but�the�

ones�that�slip�through�can�be�very�difficult�to�detect.��It�is�difficult�for�the�compiler�to�detect�a�variable�name�typo�

that�ends�up�matching�the�wrong,�but�otherwise�valid,�variable.��It�is�also�difficult�for�compilers�to�spot�the�“if(�A�=�

B�)”�vs.�“if(�A�==�B�)”�problem�unless�the�first�one�is�specifically�disallowed.��These�failures�can�go�undetected�for�a�

long� time.� �We�have�also� included� “algorithm:�dead� code”� in� this� set� although� it�may�have� relationships� to�CM�

failure�types�which�we�have�not�established�yet.��The�“algorithm:�reset�timing”�failure�type�is�green.��It�has�a�low�

occurrence� rate� but� a� high� severity� score.� � It� is� influenced� by� the� “algorithm:� reset� logic”� failure� type,�which� is�

orange�due�to�a�high�occurrence�rate.� �The�“algorithm:�reset�timing”�failure�type�is�secondary�to�the�“algorithm:�

reset� logic”� failure� type.� There� is� a� significant� set� of� discrete� logic� problems� consisting� of� (listed� in� order� of�

decreasing� RPN)� “algorithm:� decision� logic”,� “algorithm:� inverted� logic”,� “algorithm:� relational� operator”,� and�

algorithm:�compound�logic”.��The�“algorithm:�decision�logic”�failure�type�is�red�due�to�its�high�rate�of�occurrence.��

It�may�include�some�failures�that�belong�in�the�other�more�specific�logic�categories�if�we�examined�them�further.��

These�failures�are� largely�self�initiated�due�to�the�complexity�of�the� logic�and�do�not�have�relationships�to�other�

failure�types.��They�are�structural�/�discrete�logic�defects�that�may�be�detected�if�formal�methods�can�be�applied.��

Toward�the�right�of�the�diagram�are�several�failure�management�/�failure�reconfiguration�blocks.� �Many�of�these�

are� have� significant� RPN� values.� � The� entire� collection� is� “algorithm:� failure� detection”,� algorithm:� failure�

reporting”,� “algorithm:� failure� management”,� “algorithm:� failure� isolation”,� “algorithm:� response� to� detected�

failure�condition”,�“interprocess�communication:�failure�management”,�“data�handling:�input�fault�tolerance”,�and�

“bus� interface:� bus� initialization� failure”.� � At� the� lower� left� of� the� diagram� is� a� large� collection� of� low�RPN�

green/blue� blocks� dealing� primarily� with� interprocess� communication� timing� problems.� � The� red� “algorithm:�

design”�block�has�already�been�discussed.�

�

�

�

�
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The�high�RPN�root�failures�here�are�“algorithm:�data�transfer/message”,�“data�handling:�scaling�factor”,�and�“data�

handling:�memory� address”,�which� account� for� about� 4%,� 4%,� and� 3%� of� the� all� the� root� failures,� respectively.��

These�data�dictionary�interface�problems�can�be�dealt�with�using�system�engineering�tools�such�as�SysML�or�AADL.��

The� tools� should� be� system�wide.� � Part�task� interface� controls� do� not� have� the� same� benefits� unless� they� are�

coordinated.� �The�“data�handling:�scale� factor”� failure�type�points� to�the�difficulty�of� tracking� fixed�point�scaling�

correctly� through� all� the� engineering� units,� hardware� interfaces,� etc.� � The� engineering� disciplines� use� different�

units� when� they� address� fixed� point� scaling� and� bias.� � Electrical� diagrams� will� have� Volts,� current,� and� other�

engineering�units.��Software�engineers�want�least�significant�bit�(LSB)�values,�full�range�max/min,�etc.��And�all�are�

further�complicated�by�biases,�both�physical�and�computational,�along�the�way.��Possibly�engineers�need�a�tool�to�

help�with� fixed�point� range,�bias,� scale,�engineering�units/LSB,�etc.� �Several� system� integration�/�communication�

blocks�have�already�appeared� in�other�diagrams�where� they�had� significant� relationships�with� the�blocks� there.��

We�divided�the�diagrams�so�that�no�relationships�were�broken.��All�the�blocks�here�connect�to�the�main�diagram.��

The�red�“algorithm:�data�transfer/message”�failures�can�be�caused�by�the�set�of�“data�handling:�logic”�and�“data�

handling:�transition�logic”.��They�can,�in�turn,�cause�“algorithm:�validity�check”�failures.��In�the�upper,�center�of�the�

diagram� is� a� collection� of� missing� interface� items,� “system� integration:� missing� signals� in� ICD”,� “bus� interface:�

missing� signal”,� and� “system� integration:� missing� datapump”.� � These� are� all� green� blocks� and� are� not� very�

significant.� �They�can�be�caused�by�the�“I/O�system:�data�list”�failure�type�which�is�yellow�due�to�a�high�severity�

score.��In�their�turn,�they�can�contribute�to�the�“data�handling:�indexing”�failure�type,�which�is�yellow�due�to�a�high�

occurrence�rate.��This�reflects�problems�caused�by�shifting�data�when�a�signal�is�missing.��In�the�bottom�left�of�the�

diagram�is�a�collection�of�medium�RPN�data�definition�failure�types.� �They�are�“data�definition”�offset,�size,�data�

type,�and�data�structure.� �The�final� large�collection�of� failure�types� is�the�data�handling�collection�to�the�bottom�

right�of� the�diagram.� � These�are�data�dictionary� issues.� �The� “data�handling:� scaling� factor”�and�“data�handling:�

memory�address”�failure�types�are�the�most�significant�by�far.��They�have�been�discussed�above.�

� �
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SELF�TEST�CATEGORY�

Figure� 22� shows� the� Self�Test� Category.� � There� are�no�high�RPN� root� failures� here�and�only� three�medium�RPN�

failure�types.��The�most�serious�root�failure�is�the�yellow�“outdated�requirement”�root�failure�which�accounts�for�

slightly�over�1%�of�all� the� root� failures.� �There�are� two�blue� failure� types,� “self�test:� values� for� test”�and�“tools:�

algorithm”.��These�reflect�the�problem�of�generating�“truth�data”�from�the�tools�for�use�in�the�self�test.��All�the�rest�

of�the�blocks�are�green.��At�the�top,�center�of�the�diagram�are�a�collection�of�top�level�design�problems.��They�are�

“self�test� procedure:� missing� reset� function”,� “self�test:� test� timing”,� “self�test:� time� management”,� and�

“performance:�exceed�processor�utilization�target”.���At�the�center,�right�are�two�green�blocks�that�reflect�the�need�

to�include�testpoints�in�the�code�for�monitoring�or�test�value�insertion.��They�are�the�“system�integration:�missing�

testpoint”,�and�the�“system�integration:�testpoint�name”�failure�types.��At�the�bottom,�left�of�the�diagram�are�two�

requirements� issues:� outdated� and� unnecessary.� � At� the� bottom� right� of� the� diagram� are� several� issues� with�

modeling�and�generating�valid�truth�data.��

APPLICATION�OF�DATA�ANALYSIS�RESULTS�TO�EVALUATING�FUTURE�TECHNOLOGIES�

The�data�analysis� results� can�be�used� to�analyze� the� impact�of� the� technologies,� for� example,�possibly� applying�

formal�methods�to�the�algorithms.� �Looking�at� figure�20,� the�algorithm�related�defects�are�a�mixture�of�discrete�

logic� errors� like� “algorithm:� decision� logic”� and� floating�point� calculation� errors� like� “algorithm:� design”.� � An�

application� of� formal� methods� could� be� used� to� identify� and� remove� discrete� logic� defects� in� the� early�

development� stages.� � In� figure� 20,� formal�methods�would� reduce� the� number� of� errors� in� “algorithm:� decision�

�
Figure�22�–�Self�Test�Category�
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logic”,�“algorithm:�failure�management”,�“algorithm:�initialization�logic”.��

An�adjustment�could�be�made�in�the�Occurrence�or�Detection�numbers�

for�those�entries�in�the�RPN�calculations.��Under�the�System�Integration�

/�Communication�section,�the�collection�of�data�handling�failures�points�

to� the� possible� benefit� of� an� automated� data�dictionary� driving� the�

interface�generation�tools.��Additionally,�evidence�points�to�the�benefits�

of�having�model�based�design�tools�that�encompass�the�entire�system.�In�

particular,� requirements� failure� types�may� be� reduced� by� using� system� level� design� tools� like� SysML� or� AADL.��

Conflicting�or�imprecise�requirements�would�be�spotted�by�Formal�Methods�where�it�could�be�applied.��In�general�

figure� 20,� shows� that� the� data� dictionary� information� is� a� problem� (size,� location,� address,� bit� order,� etc).��

However,�it�is�very�hard�to�find�a�single�technology�that�covers�the�entire�problem�space.�

However,�it�is�believed�with�high�confidence�that�a�significant�number�of�software�problems�can�be�reduced�before�

entering�the�next�phase�of�the�program�by�identifying�the�correct�combination�of�technology�to�cover�the�problem�

space.�

Here�is�one�example�of�how�the�data�analysis�results�can�be�used�to�identify�possible�combinations�of�technologies�

for�software�health�management:�

1.�Create�Matrix�of�evaluation�of�technologies�with�each�root�failure.�

A. Select�technologies/�methods�that�you�want�to�examine.��
B. Prepare� a� table� that� contains� information� of� the� RPN� and� which� factor� is� the� most� and� the� least�

dominating�factor�of�the�RPN.�(Color�Code�in�example.�Orange�=�the�most�dominant�factor,�Yellow�=�2nd�
dominant�factor,�and�Green�=�the�least�dominant�factor)��

C. Evaluate�all�the�Technologies/Methods�chosen�with�respect�to�the�occurrence,�severity,�detection�of�each�
root�failure.�(Figure�23�illustrates�this�process)�

�

2.�Evaluate�each�Technology/Methods�by�affectability�with�respect�to�the�most�and�least�dominant�factor�of�the�

RPN.�(Figure�24�is�the�example�of�this�process)�

�

Figure�23�–�Related�Root�Failure�Categories�

�

Figure�24�–�Related�Root�Failure�Categories�
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3.� From�Step�2,� come�up�with�different� combination�of�Technologies/Methods� to�use�and�evaluate� them.�From�

Table�2,�we�can�draw�conclusions�that�“method�1”�is�the�most�effective�for�Software�Health�management�method.�

However,�it�does�not�cover�all�the�issues.�Figure�23�provides�some�additional�example�tables�that�show�how�many�

problems�that�can�be�covered�with�different�combinations�of�Technologies/Methods.�

Individuals� that�are�developing�methods�or� tools� for� software�health�management�and�using�currently�available�

methods�or�tools�can�benefit�from�this�kind�of�practice.�

For�the�Developer�of�methods�or�tools�for�software�health�management,�this�practice�can�be�their�assessment,�and�

it�will�help�users�identify�what�kind�of�methods�they�are�going�to�use�for�their�project.�

�

Figure�25�–�Combining�Technologies�and�Methods�



�
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Here�are�some�software�development�technologies�which�are�of�interest�in�the�literature�and�research:�

� Automated�Verification�Management�
� Formal�Requirements�Specifications��
� Requirements�and�Traceability�Analysis�
� Formal�Methods�
� Computer�Aided�System�Engineering�
� V&V�Run�Time�Design�
� Rigorous�Analysis�for�Test�Reduction�
� Requirements�and�Design�Abstraction��
� Probabilistic/Statistical�Test��
� Testing�Metrics�

It�would�be�valuable�to�examine�some�of�these�technologies�with�the�new�information�obtained�from�this�study.���

Selection� of� the� emerging� technologies� to� be� evaluated� should� be� guided� by� the� “lessons� learned”� in� research�

efforts� such� as� VVIACS� (Validation� &� Verification� of� Intelligent� and� Adaptive� Control� Systems),� CerTA� FCS� CPI�

(Certification�Techniques�for�Advanced�Flight�Critical�Systems�–�Challenge�Problem�Integration),�and�MCAR�(Mixed�

Criticality�Architecture�Requirements). Several� technologies� including�Auto�Code,�Auto�Test,� Rapid�Prototyping,�

System�Model�Based,�and�Simulation�Based�Design�are�mature�enough�to�already�be�established�with�recognized�

benefits.�

Future� research� should� include� analysis� of� some� additional� programs� to� reflect� a� larger� variety� of� software�

development�processes.��

�
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Nomenclature 

 

CD-SHM: Concept Development for Software Health Management 

CSV: Comma Separated Value 

FCSR: Flight Critical Systems Research 

FMEA: Failure Modes and Effects Analysis 

IVHM: Integrated Vehicle Health Management 

SPAR: Software Product Anomaly Report 

SWAT-V: Software Anomaly Taxonomy Validation 

SHM: Software Health Management 
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Abstract 

Under a previous NASA-sponsored effort, Lockheed Martin created taxonomy for software anomalies 

that quantified the scope, magnitude, and types of fundamental software errors. This taxonomy was 

created through a manual process whereby several subject matter experts read through and classified a 

relatively small number of individual software anomaly reports into fundamental error types. Typical 

software anomaly databases, are, however, far too large and subject matter experts are too valuable to 

inspect every record manually to develop a failure taxonomy. In an effort to streamline this process, 

Lockheed Martin investigated the application of auto-classification algorithms for deriving a failure 

taxonomy for flight critical software anomalies. Because software anomalies are generally documented in 

free form text, auto-classification tools capable of directly examining this text without significant manual 

supervision would be very helpful in understanding software health trends. Indeed, auto-classification 

tools may be the only practical method of “mining” the vast amount of available data for software 

anomaly trends and failure modes. This report documents the results of Lockheed’s investigation of 

NASA’s Mariana free form text auto-classification tool for deriving a failure taxonomy from software 

anomaly reports. The investigation included a partial validation of the previously created taxonomy by 

using patterns of software failures derived from much larger datasets.  

 

 

 

 

 

 

 

 

 

 

 

 

Foreword 

Lockheed Martin Corporation, acting through its Lockheed Martin Aeronautics Company (LM Aero) 

operating unit, has prepared this document for the National Aeronautics and Space Administration’s 

(NASA) Langley Research Center under contract NNL06AA08B, delivery order number: NNL09AD66T. 

The work documented herein was performed from September, 2009 through July, 2010. 
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1.0 Introduction 

Integrated Vehicle Health Management (IVHM) is one of the four pillars of the NASA Aviation 

Safety Program. The Integrated Vehicle Health Management project is pursuing foundational research in 

the development of technologies for automated detection, diagnostics, and mitigation of adverse events 

due to aircraft software. IVHM includes a Software Health Management (SHM) effort to explore software 

health in the context of system level dependability cases (a central recommendation of a recent National 

Academies report). 

The Software Anomaly Taxonomy Validation (SWAT-V) program was a NASA-funded effort 

sponsored by IVHM. This current report documents the work performed by Lockheed Martin Aeronautics 

(LM Aero) under NASA contract NNL06AA08B, delivery order NNL09AD66T. SWAT-V is a follow-on 

to a previous Flight Critical Systems Research (FCSR) project “Concept Development for Software 

Health Management” (CD-SHM), also sponsored by IVHM (task NNL07AB06T). CD-SHM focused on 

defining a structured approach to software health management through the development of a 

comprehensive failure taxonomy used to characterize the fundamental failure modes of safety-critical 

software. For readers who are not familiar with the CD-SHM project, that report is included (as Appendix 

A) to provide more context for SWAT-V results. 

Under this new effort, Lockheed investigated the use of auto-classification algorithms to replicate and 

validate the software failure taxonomy developed under CD-SHM. The investigation included application 

of the classification parameters and toolset to large datasets that would otherwise be unsuitable for 

inspection by subject matter experts. The resulting taxonomy of anomalies will serve as a candidate for 

software health management frameworks. For this effort Lockheed developed the classification 

algorithms using NASA’s Mariana free form text tool.  
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2.0 Background 

 To enable the detection and mitigation of software errors through SHM, our approach is to treat 

software as another system device that exhibits failure modes according to a canonical failure reference of 

legacy and emerging safety-critical software. Many SHM concepts stem from failure modes and effects 

analysis (FMEA) of software in a manner similar to that used for hardware, however the failure modes for 

software are not well known, and the techniques for applying a software FMEA during system design are 

not widely published.  

CD-SHM cataloged historical aircraft software anomalies using text-based problem report archives 

from selected advanced flight-critical software development programs. Anomalies were uncovered during 

verification and validation activities throughout the software development lifecycle. Subject experts 

derived a failure taxonomy for aircraft system software by inspecting the data records. CD-SHM 

quantified the scope, magnitude and types of fundamental software errors that manifest themselves 

throughout the development of advanced flight-critical software. It employed a two phase approach: 1) 

the creation of a taxonomy for fundamental software anomalies based on data from various advanced, 

flight-critical software development programs; and 2) the development of integrated risk models, 

mitigation schemes, design considerations and patterns based on fundamental failure data.  CD-SHM 

mined data from the development of flight-critical software systems for several recent, advanced 

development and production programs. The background information required for the investigation and 

analysis was gathered from across various database systems and normalized to a common database. The 

resulting database served as the source for error classification and comprehensive taxonomy development. 

The analysis of the CD-SHM database was performed manually; enlisting several subject matter experts 

to read through and classify each anomaly report as a type of fundamental failure. The failure types were 

developed after several passes through the data, where the root causes were distilled to basic phrases or 

terms that adequately describe and classify their nature. Only those terms which adequately described at 

least 0.1% of all the cases studied were considered an eligible term for the fundamental failure type. 

The raw data sources for the CD-SHM common database are (more or less) freeform text. From this, it 

was quickly evident that the only way to produce a comprehensive taxonomy was to read each account 

individually. Analysis required many meetings with program experts to study the current anomaly report 

structures. In the current anomaly report structure, there is a multitude of information; however there is no 

easy way to outline the cause classification or root cause in detail. It took considerable effort to identify 

the anomaly found, the phase in which it was introduced and its severity. This information is the 

foundation of the CD-SHM study and the basis for recommendations. 

The process used in CD-SHM is not practical for analyzing typical databases, as the databases of 

software anomalies are far too large and subject matter experts are too valuable to inspect every record 

manually. Auto-classification tools may be the only practical method of “mining” the vast amount of 

available data for software anomaly trends and failure modes. This new tasking applied the Mariana auto-

classification tool which was originally developed to assist NASA in categorizing aircraft accident 

reports. Under this new tasking, Lockheed sought to apply Mariana to the problem of deriving a software 

anomaly taxonomy from problem reports for purposes of demonstrating that free-form problem reports 
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could be efficiently classified and also to validate the taxonomy developed under the previous CD-SHM 

effort.  
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3.0 Methods, Assumptions, and Procedures 

3.1 Mariana Auto-Classification Tool 

NASA Ames provided the MARIANA auto-classification software toolset. MARIANA was 

developed to help categorize aircraft accident reports, which are also more or less free form text records. 

MARIANA is available from NASA’s DASHLINK web site at the following address: 

https://c3.ndc.nasa.gov/dl/algorithm/mariana/ 

Mariana_v0.8c_par.zip updated 6/22/2010 is the file archive used for SWAT-V. 

MARIANA works by inspecting a text file and a category file and automatically developing the 

algorithms which map between them. The development of the algorithms is referred to as “training”. The 

algorithms form the basis of models which MARIANA can use to automatically categorize new records. 

MARIANA consists of three specific tools: MarianaPrep, MarianaExec, and MarianaPredict which are 

described in turn. 

MarianaPrep 

MarianaPrep allows three input files: a text file, a category file in Comma Separated Value (CSV) 

format, and a thesaurus file (optional). The text file is just a string of words separated by spaces with 

individual records separated by line breaks. The category file is a matrix with a column of fields for each 

possible category and a row of fields for each record. The value in the field is “1” if the record is in a 

category, “-1” if the record is not in the category, and “0” if it is not known if the record is in a category. 

The number of records (lines) must be the same for both the text and category files. 

 

 

 

 

 

 

 

Example CSV Category File (Partial) 

 

Record #1 

Member of Category 1 Not Member of Category 5 
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The optional thesaurus is a simple text file which the user may edit. It allows specifying synonyms. 

While MARIANA is smart enough to know that plurals are equivalent (i.e. “user” has the same meaning 

as “users”), it does not know that “busses” is plural for “buss”. By default, it also considers “invent” as 

distinct from “invented”. Another feature in thesaurus called “Stop words” is a list of words to be ignored 

(such as “a” or “the”). Thesaurus allows the user a means to modify MARIANA’s behavior for a 

particular context. 

MarianaPrep combines the input files to compute statistics. MarianaPrep counts the occurrences of 

each unique word in each record for each category. It also considers words which are not found in a 

category. It produces a separate Zip archive file for each category containing the computed statistics.  

MarianaExec 

MarianaExec is the tool which “trains” the models. It examines each Zip archive created by 

MarianaPrep in turn and creates a mathematical model for each category. It does this by randomly 

dividing the records into two groups; the group used to create a hypothetical model and the group used to 

test this model. It carries out this process 5 times (each time using a different random group of records) 

and chooses the model which performs the best. It even provides statistics on how well it performed 

(between 0.5 = 50% ; a coin toss and 1.0 = 100%; perfect). 

MarianaPredict 

MarianaPredict allows automatic classification of new data against the models created for each 

category. A text file (similar to the one used for MarianaPrep) contains a string of words separated by 

spaces with individual records separated by line breaks. This can be evaluated against each of the model 

files produced by MarianaExec. If the record is determined to be in the category of that model, 

MarianaPredict returns a positive number. If the record is not in the category, it returns a negative 

number. 

3.2 Configure Mariana On Computer Asset 

MARIANA is written mainly in Java in a LINUX environment (there are a few system-specific 

modules written in C). For this effort the software was ported to a Windows® Vista® environment 

comprised of an HP® desktop computer with an Intel Core™ 2 Duo CPU running at 2.83 GHz with 3.48 

GB of RAM.. 

Only a few lines of C-code required changes to compile in Windows®. They mostly referred to the 

system time used to generate random numbers. In “helperRoutines.cpp” “getpid” was revised to “_getpid” 

and the following was inserted at about line 104:  

void gettimeofday(struct timeval* t,void* timezone) 

{ struct _timeb timebuffer; 

_ftime( &timebuffer ); 
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t->tv_sec=timebuffer.time; 

t->tv_usec=1000*timebuffer.millitm; 

}  

In “helperRoutines.h” some additional include statements were needed in place of sys/time: 

//#include <sys/time.h> 

#include <winsock.h>  

#include <sys/timeb.h>  

#include <sys/types.h>  

#include <process.h> 

 

After compiling, the new library must be renamed “MarianaFunctions.dll” and moved to the “bin” 

directory. 

3.3 Prototype Classification Tool using Small Data Set 

The 8 category Software Product Anomaly Report (SPAR) data developed to de-bug MARIANA was 

used to experiment with various “tuning” techniques. To improve the confidence of the classifications, the 

thesaurus was expanded from 2 lines to 575 lines.  

A PERL script was developed to pre-process the SPAR data. This provided an expedited method of 

changing the data from standard spreadsheet format into the CSV and text files required by MarianaPrep. 

Three fields were combined to produce the richest possible text file describing the software anomalies. 

The script also scrubbed the data by deleting proper names, pronouns, etc. which are not relevant to the 

cause or effect of software anomalies. Since some SPAR authors used negative descriptions, the script file 

deleted the space following the word “not” so the phrase “not a timing problem” becomes “nottiming 

problem”.  

The actual pre-processing PERL script file is included below: 
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$file = 'spar_data.csv'; 

 

@delete_words = split(" ", <<END); 

 

a about again also although an and any anything anytime anyway apparent apparently appear appears are around as 

assume assumed assumes assumption at be became because become becomes becoming been being believe believed 

beleiving besides bring bringing but by came can cannot can't cant cause causes causing come comes coming 

comma could do does doing done during follow followed following follows for from furthermore get gets getting go 

going had happened has have having him however if in into is it its just kind leave leaves leaving like likely look 

looked looking looks make maked makes making may mr much must nonetheless note of only other others 

otherwise or our overall per please possible possibly possibility pretty quick quicker quickly quite required saw says 

see seeing seem seemed seems seen sees shall shortly should significant significantly similarly simply since slight 

slightly so some somehow something sometime sometimes somewhat soon sooner specific specifically still such 

suggest suggestion suggestions supposed than that their them the then there thereby therefore these they this though 

thus to upon use uses was we went were what whatever when whenever where whereas whether which while why 

will with would you your = 

 

richard larry dave bruce ted 

 

END 

 

$delete_words = join('|', @delete_words); 

 

open( CSV, $file); 

binmode CSV; 

while( (read CSV, $more_text, 10000) ){$text .= $more_text}; 

close CSV; 

$text =~ s/""/ /sg; 

while( $text =~ /("[^"]*")/s ){ 

  $before=$`; 

  $field=$1; 

  $after=$'; 

#print "field=$field\n"; 

  $field =~ s/,/ /g; 

  $field =~ s/\x0d/ /g; 

  $field =~ s/\n/ /g; 

  $field =~ s/"//g; 

  $text = $before . $field . $after; 

#print "field=$field\n"; 

#exit 0; 

} 

#$text_new .= $after; 

#$text = $text_new; 

 

@spars=split(/\x0d/, $text); 

$num=$#spars-1; #not counting header line 

print "Spars found=$num\n"; 

foreach $spar (@spars){ 

  $spar =~ s/\x0d//g; 

  $spar =~ s/\n//g; 
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  $text2 .= "$spar\n"; 

} 

$text = lc $text2; 

# GET HEADER LINE 

$text =~ s/(.*)\n//; # get all of first line (and remove it) 

$header = uc $1; 

$header =~ s/(.*),/$1/; 

#print "header=$header\n"; 

# GET COLUMN LABELS 

@labels = split(/,/, $header); 

$num_cols=$#labels +1; 

#print "num_cols=$num_cols\n"; 

$col=1; 

foreach $label (@labels){ 

#  print "$col => $label\n"; 

  $col_index{$label} = $col-1; 

  $col++; 

} 

 

# SCAN DATA FOR CAUSE_CLASSIFICATION CATEGORIES 

$cat_col=0; 

while( $text =~ /(.+)/g ){ 

  $spar=$1; 

#print "spar=$spar\n"; 

  @columns = split( /,/, $spar); 

  $cause= lc $columns[$col_index{CAUSE_CLASSIFICATION}]; 

  if( ! $found{$cause} ){ 

   $found{$cause} = 'y'; 

   $cat_col{$cause} = $cat_col; 

   $cat_col++; 

   push(@cat_columns, $cause); 

  } 

} 

$num_cats=$cat_col; 

$cat_header = join(',', @cat_columns); 

# READ EACH SPAR LINE 

$line_num=0; 

open(OUT_ALL, ">all_categories.csv"); 

print OUT_ALL "LINE_NUMBER,SPAR_ID,CAUSE_CLASSIFICATION,$cat_header,ROOT_CAUSE\n"; 

open(OUT_TRAIN_CATS, ">categories.csv"); 

open(OUT_TRAIN_SPARS, ">root_cause.txt"); 

while( $text =~ /(.+)/g ){ 

  $spar=$1; 

#print "spar=$spar\n"; 

  $line_num++; 

  @columns = split( /,/, $spar); 

  $cause= lc $columns[$col_index{CAUSE_CLASSIFICATION}]; 

  $anom=$columns[$col_index{ROOT_CAUSE}]; 

  $combined_cause = $columns[$col_index{ANOMALY_BEHAVIOR}] . ' ' .$anom . ' ' . 

$columns[$col_index{TITLE}]; 
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# remove underscore and non asci characters 

  $combined_cause =~ s/_/ /g; 

  $combined_cause =~ s/[^\x0a\x20-\x7f]/ /g; 

# remove non-informative words 

  $combined_cause =~ s/\b($delete_words)\b/ /gi; 

# remove spaces after the word "not" 

  $combined_cause =~ s/\bnot\s+/not/ig; 

#$combined_cause =~ s/\d+/ /g; 

  $combined_cause =~ s/ +/ /g; 

  $spar_num=$columns[$col_index{CH_DOC_ID}]; 

#print "cause=$cause cat_col=$cat_col{$cause}\n"; 

  foreach $cat_num (0..$num_cats-1){ 

   if( $cat_num eq $cat_col{$cause} ){ 

     $cat_flag[$cat_num] = 1; 

   }else{ 

     $cat_flag[$cat_num] = -1; 

   } 

  } 

  $cats= join(',' , @cat_flag); 

#  print "Spar num=$num cause=$cause anom=$combined_cause\n"; 

  print OUT_TRAIN_CATS "$cats\n"; 

  print OUT_TRAIN_SPARS "$combined_cause\n"; 

  print OUT_ALL "$line_num,$spar_num,$cause, $cats, $combined_cause\n"; 

} 

close OUT_ALL; 

close OUT_TRAIN_CATS; 

close OUT_TRAIN_SPARS; 

exit 0; 

 

Pre-processing PERL Script 

 

These tuning efforts appeared very successful in providing MARIANA the best possible chance of 

making correct classifications. The classifications reported better than 90% confidence on average when 

run through MarianaExec. 

To demonstrate how this PERL script massages data, the following example shows SPAR data before 

and after it is pre-processed for MARIANA (note the fields in the spread sheet contain more data than can 

be displayed in the fixed cell size shown): 
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Example Of Data Before Pre-Processing 

 

 

Record #1 Text After Pre-Processing 

 

Obviously repeating this procedure for every record would be very labor intensive manual effort. This 

is the reason we use a software script to automate the task. 

Three Fields Combined To Produce Text 

File 

Record #1 

unexpected egi failures (mfl fcs056 pfl fcs egi unav) occurred aircraft ground tests ofp fm02c. part 1 

test: unexpected mfl fcs056 occurred steps 5 28 52. unexpected mfl egi035 failure occurred steps 28 52. 

part 2 egi monitors activated prematurely after powerup before egi powered began communicating flcc. 

monitors activated mlg tach sensors indicating wheel speed ~23 knots duration 1 second. tach inputs 

unexpected test procedure states aircraft stationary no time test aircraft moved. further investigation test 

procedure revealed brake control unit bit initiated pilot mlg tach inputs stimmed ~23 knots maximum 1 

second. initiating bcu bit before egi powered nuisance egi failures. unexpected egi failure (mfl fcs056) 

aircraft ground test (ofp fm02) 
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4.0 Results and Discussions 

4.1 Apply Tool to Original Data Set  

CD-SHM partitioned 726 SPARs into 16 “classes” and 114 “fundamental types”. While one 

fundamental type (Documentation Error) had 83 members, 37 fundamental types had only a single 

example. Since it takes several examples to “train” the MARIANA tool, it was not feasible to use the CD-

SHM fundamental types as the taxonomy categories. In addition, categories with a single example are not 

very useful for Software Health Management (no trends). For these reasons, the CD-SHM classification 

scheme was revisited. 

The data was subsequently revised to a relaxed granularity of classification. Fundamental types (for 

example “Memory Address”) with many members were retained as categories. Other fundamental types 

were mapped to unique categories such that each category would contain at least 11 members. Remaining 

unique SPARs (for example the “Hardware” class with a single member) were grouped together as 

“Other”. After several iterations, a data set of 22 categories seemed to provide the best balance between 

functionality and usability: 

CAT # CATEGORY INSTANCES 

1 Algorithm 78 

2 Configuration Management 40 

3 Data Definition 33 

4 Data Handling 45 

5 Documentation 83 

6 Equation / Calculation 19 

7 Failure Detection 11 

8 Failure Isolation 14 

9 Failure Management  36 

10 Incorrect Signal / Data 47 

11 Initialization 42 

12 Logic 54 

13 Memory Address 20 

14 No Requirement 15 

15 Other 17 

16 Range 11 

17 Requirements 45 

18 Reset Logic 24 

19 Scaling Factor 27 

20 Self-Test  11 

21 Synchronization / Timing 37 

22 System Integration 17 

TOTAL   726 

SPAR Categories 
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The CD-SHM fundamental types are mapped to SWAT-V categories as follows: 

 

CAT 

# 

CATEGORY CD-SHM FUNDAMENTAL TYPES INSTANCES TOTAL 

1 Algorithm Algorithm - Design 74 78 

Algorithm - Syntax 3 

Algorithm - Test Modeling 1 

2 Configuration 

Management 

Configuration Management (all) 28 40 

System Integration - ICD And SW Mismatch 4 

System Integration - Change Release 1 

System Integration - Interface 1 

System Integration - Manual 1 

System Integration - Missing SW Update 5 

3 Data Definition Data Definition (all) 33 33 

4 Data Handling Data Handling - Bias 1 45 

Data Handling - Bit Conversion 1 

Data Handling - Breakpoint 2 

Data Handling - Byte / Bit Order 2 

Data Handling - Indexing 11 

Data Handling - Logic 5 

Data Handling - Masking Data 2 

Data Handling - Input Fault Tolerance 4 

Data Handling - Transition Logic 3 

Data Handling - Variable 6 

Data Handling - Variable Scope 1 

I / O System - Data List 4 

I / O System - Order Of Data Structure 3 

5 Documentation Documentation (all) 83 83 

6 Equation / 

Calculation 

Algorithm - Equation / Calculation 10 19 

Algorithm - Engineering Unit 2 

Algorithm - Missing Limiter 2 

Interprocess Communication - Engineering Unit 

Mismatch 

1 

System Integration - Engineering Unit Mismatch 4 

7 Failure Detection Algorithm - Failure Detection 10 11 

Algorithm - Threshold 1 

8 Failure Isolation Algorithm - Failure Isolation 14 14 

9 Failure 

Management  

Algorithm - Failure Isolation 20 36 

Algorithm - Failure Reporting 7 

Algorithm - Response To Detected Failure 

Condition 

8 

Interprocess Communication - Failure 

Management  

1 
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10 Incorrect Signal / 

Data 

Algorithm - Data Transfer / Message 31 47 

Algorithm - Incorrect Signal 4 

Algorithm - Typo 1 

Bus Interface - Bit Position 1 

Bus Interface - Data Source 5 

Bus Interface - Missing Signal 2 

I / O System - Signal Assignment 3 

11 Initialization Algorithm - Initialization Logic 10 42 

Algorithm - Initialization Of Values 14 

Algorithm - Missing Initialization 2 

Algorithm - Setting Value / Variable 13 

Bus Interface - Bus Initialization Failure 1 

Data Handling - Mnemonics 1 

Interprocess Communication - Initialization 

Logic 

1 

12 Logic Algorithm - Decision Logic 38 54 

Algorithm - Inverted Logic 9 

Algorithm - Compound Logic 1 

Algorithm - Relational Operator 4 

Interprocess Communication - Decision Logic 1 

Interprocess Communication - Logic 1 

13 Memory Address Data Handling - Memory Address 20 20 

14 No Requirement System Integration - No Requirement 15 15 

15 Other Algorithm - Dead Code 1 17 

Algorithm - Prototype 2   

Compiler Error - Incorrect Assembly Code 3   

Hardware - Unexpected Behavior 1   

Performance - Exceed Processor Utilization 

Target 

1   

Pilot - Preference 2   

Self Test - Time Management 2   

Tools - Input Data 1   

Tools - Algorithm 4   

16 Range Algorithm - Range 10 11 

Algorithm - Threshold 1 

17 Requirements Implementation - Requirement Implementation 

Error 

7 45 

System Integration - Conflicting Requirement 5 

System Integration - Incorrect Requirement 19 

System Integration - Requirement Not Clear 12 

System Integration - Requirement 1 

Self Test - Inadequate Requirement 1 

18 Reset Logic Algorithm - Reset Logic 24 24 

19 Scaling Factor Data Handling - Scaling Factor 27 27 
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20 Self-Test  Algorithm - Threshold 2 11 

Self Test - Design 1 

Self Test - Values For Test 3 

Self Test - Value Of Location 1 

Self Test Procedure - Improper Test Condition 1 

Self Test Procedure - Missing Reset Function 3 

21 Synchronization 

/ Timing 

Algorithm - Timing 9 37 

Algorithm - Reset Timing 1 

Algorithm - Sampling Time 2 

Algorithm - Threshold 1 

Algorithm - Validity Check Timing 2 

I / O System - I / O Synchronization 2 

Interprocess Communication - Timing 3 

Interprocess Communication - I / O 

Synchronization 

2 

Interprocess Communication - Reset Timing 1 

Interprocess Communication - Sampling Time 1 

System Integration - Channel Synchronization 9 

System Integration - Rate Synchronization 3 

Self Test - Test Timing 1 

22 System 

Integration 

System Integration - Inconsistent Interface Order 3 17 

System Integration - Data Source 2 

System Integration - Memory Use 2 

System Integration - Incorrect Parameter 1 

System Integration - Missing Data 2 

System Integration - Missing Datapump 2 

System Integration - Missing Header File 1 

System Integration - Missing Signals In ICD 1 

System Integration - Missing Testpoint 1 

System Integration - Parameter Order 1 

System Integration - Testpoint Name 1 

TOTAL     726 726 

 

Mapping of Categories to CD-SHM Fundamental Types 
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The data was pre-processed with the previously described PERL script. Another, simple PERL script 

was developed to call MarianaPrep successively for each category:  

 

$num_runs=22; 

 

 

print "num_runs=$num_runs\n\n"; 

 

foreach $i (1..$num_runs){ 

  $run_printout = `java -Xmx512M -Djava.library.path=.\\ MarianaPrep -h ..\\data\\thesaurus.test -c 

..\\data\\categories.csv -o test\\spar_$i.zip -cl $i -t ..\\data\\root_cause.txt`; 

  print "Run $i output:\n$run_printout\n"; 

} 

 

MarianaPrep Script 

 

 This resulted in the creation of 22 Zip archives each containing 12 files. The archives each look 

similar to the following: 

 

Typical Zip Archive 
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MarianaExec was called on each of the Zip archives produced by MarianaPrep. The result is a separate 

model file for each of the 22 categories. A custom PERL script automated the successive calls for each 

category: 

 

$num_runs=22; 

 

 

print "num_runs=$num_runs\n\n"; 

 

foreach $i (1..$num_runs){ 

  $run_printout = `java -Xmx512M -Djava.library.path=.\\ Mariana -p test\\spar_$i.zip -c $i -o test\\cat_$i.model`; 

  print "Run $i output:\n$run_printout\n"; 

} 

 

MarianaExec Script 

 

 When MarianaExec runs, it provides statistics on the model’s ability to correctly classify. The 

confidence statistics are computed for both a default MARIANA algorithm and an optimized algorithm. 

Since a record is either IN or NOT IN a category, a confidence of 50% represents random chance. The 

resulting average confidence of 93.6% (92.4% when using optimized algorithms) indicates MARIANA 

has high confidence in its classifications. The confidence statistics for each category are presented in the 

following table: 
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      CONFIDENCE 

CAT # CATEGORY INSTANCES DEFAULT OPTIMIZED 

1 Algorithm 78 0.908425 0.907509 

2 Configuration Management 40 0.990956 0.986434 

3 Data Definition 33 0.931358 0.915462 

4 Data Handling 45 0.822997 0.817829 

5 Documentation 83 0.893231 0.913043 

6 Equation / Calculation 19 0.974286 0.973333 

7 Failure Detection 11 0.994413 0.955307 

8 Failure Isolation 14 0.796610 0.806497 

9 Failure Management 36 0.877193 0.843275 

10 Incorrect Signal / Data 47 0.910750 0.910256 

11 Initialization 42 0.859649 0.763158 

12 Logic 54 0.944763 0.944046 

13 Memory Address 20 0.997207 0.997207 

14 No Requirement 15 0.966292 0.966292 

15 Other 17 0.980226 0.905367 

16 Range 11 0.983146 0.983146 

17 Requirements 45 0.991429 0.991429 

18 Reset Logic 24 0.918095 0.899048 

19 Scaling Factor 27 0.983580 0.983580 

20 Self-Test 11 1.000000 1.000000 

21 Synchronization / Timing 37 0.905848 0.905848 

22 System Integration 17 0.952514 0.952514 

TOTAL   726     

AVERAGE     0.935589 0.923663 

 

Original SPAR Statistics 

 

It is interesting the “Other” category has 98% (91% optimized) confidence even though the SPARs in 

this category only share the fact that they are not in any other class. The “Other” SPARs could have been 

eliminated from the set if they had low confidence of classification (leaving 21categories). The relative 

high confidence seems to validate the decision to leave “Other” in the data. The existence of “Other” also 

insures any SPAR will have a valid available classification. 
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4.2 Validate Terminology and Results 

The models produced by MarianaExec were then tested with MarianaPredict on the same data. With 

the high confidence reported by MarianaExec, it was expected that about 93% of the SPARs would be 

correctly classified. The results were rather different: 

 

      CONFIDENCE 

HITS, AB, 

ERRORS 

BATTING 

AVERAG

E CAT # CATEGORY 

INSTANCE

S 

DEFAUL

T 

OPTIMIZE

D 

1 Algorithm 78 0.908425 0.907509 0/78/1 0.0000 

2 Configuration Management 40 0.990956 0.986434 13/40/0 0.3250 

3 Data Definition 33 0.931358 0.915462 0/33/0 0.0000 

4 Data Handling 45 0.822997 0.817829 12/45/0 0.2667 

5 Documentation 83 0.893231 0.913043 44/83/0 0.5301 

6 Equation / Calculation 19 0.974286 0.973333 0/19/0 0.0000 

7 Failure Detection 11 0.994413 0.955307 0/11/0 0.0000 

8 Failure Isolation 14 0.796610 0.806497 0/14/0 0.0000 

9 Failure Management 36 0.877193 0.843275 6/36/1 0.1667 

10 Incorrect Signal / Data 47 0.910750 0.910256 19/47/0 0.4043 

11 Initialization 42 0.859649 0.763158 9/42/0 0.2143 

12 Logic 54 0.944763 0.944046 1/54/0 0.0185 

13 Memory Address 20 0.997207 0.997207 2/20/0 0.1000 

14 No Requirement 15 0.966292 0.966292 0/15/0 0.0000 

15 Other 17 0.980226 0.905367 0/17/0 0.0000 

16 Range 11 0.983146 0.983146 0/11/0 0.0000 

17 Requirements 45 0.991429 0.991429 0/45/0 0.0000 

18 Reset Logic 24 0.918095 0.899048 0/24/0 0.0000 

19 Scaling Factor 27 0.983580 0.983580 0/27/0 0.0000 

20 Self-Test 11 1.000000 1.000000 1/11/0 0.0909 

21 Synchronization / Timing 37 0.905848 0.905848 7/37/0 0.1892 

22 System Integration 17 0.952514 0.952514 0/17/0 0.0000 

TOTAL   726         

AVERAG

E     0.935589 0.923663 114/726/2 0.1570 

 

“Batting Average” Of MarianaPredict 
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Of the 726 SPARs, only 114 were categorized correctly. The majority (610) were not assigned to any 

category. The good news is only two SPARs were categorized into the wrong class. The results varied 

considerably by category and apparently independently of the number of training examples. 

These results lead us to hypothesize the possibility of potential improvements in the MARIANA tool 

for increased productivity. There may also be more optimum numbers of categories or choices of 

categories. Any such efforts would require coordination with NASA Ames to better understand the 

interdependencies and are beyond the scope of the current effort. 

 Even though the productivity is low, the MARIANA tool is still useful for classifying software 

anomalies. It takes very little effort to run MARIANA (after set up) and it quickly classified 16% of 

anomalies correctly. The error rate is a very low 0.3% (points to a possibility of adjusting the algorithms 

to make MARIANA more likely to make category calls, albeit with a higher risk of incorrect calls). 

4.3 Expand Data Set to Other Databases 

With the MARIANA tool configured and validated against the previous data, it was time to see how it 

performed with different data. We collected an additional 2896 SPARs from flight-critical software on 

other aircraft programs. This data followed the same general format, but was compiled by different 

engineers on different programs over a different time frame. It should therefore represent how generally 

the developed models might apply to any flight critical software.  

The new data was prepared with the pre-processing script. MarianaPredict was called on this data 

against each of the 22 models produced from training with the previous 726 SPARs. Yet another PERL 

script was used to make the successive calls. 

 

$num_runs=22; 

 

print "num_runs=$num_runs\n\n"; 

 

foreach $i (1..$num_runs){ 

  $run_printout = `java -Xmx512M -Djava.library.path=.\\ MarianaPredict -m test\\Cat_$i.model -t 

..\\data\\root_cause.txt -o test\\SparCat${i}test.csv`; 

  print "Run $i output:\n$run_printout\n"; 

} 

 

 

MarianaPredict Script 
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This created a file for each of the 22 categories with a determination on whether each of the 2896 

records was in that file. These files were merged together. Positive numbers indicate a record is in that 

category. Negative numbers indicate the record is not in the category. The actual Raw Data is a 22 x 2896 

matrix which is too large to provide here. MarianaPredict performance on the expanded data is 

summarized below: 

 

 

 

 

 

 

 

 

 

Expanded Data Statistics 

 

318 of 2896 SPARs were categorized which represents 11% of the records. Of these, 54 SPARs were 

placed in multiple categories. The remaining 264 SPARs placed in a single category represent 9% of the 

total. It should be noted that the categories are not mutually exclusive, so placing a SPAR in multiple 

categories may not be incorrect. Indeed, that may be a benefit from an automated taxonomy; it should 

place SPARs in ALL relevant categories, while human experts tend to place them in only the most 

appropriate category. A quick check of the SPARs placed in 3 or 4 categories shows that some of those 

placements were in error. Many of the placements in 2 categories seem reasonable. 

This placement performance is reasonably consistent with MarianaPredict on the original data (16% 

placed). A similar 0.3% error rate would equal 9 SPARs incorrectly assigned. While we did not submit 

the results to a detailed review by subject matter experts, a top level estimate is this is approximately the 

number of errors MarianaPredict produced on the expanded data. 

As noted previously, it may be possible to tweak the MARIANA algorithms to force more record 

classifications if we accept a higher error rate. For the purposes of software anomaly taxonomy, this holds 

some promise. Taxonomy errors may be less important than failures to classify. 

  

Number 

of 

SPARs 

Different 

Categories 

Number of 

Placements 

  0 >4 0 

  3 4 12 

  4 3 12 

  47 2 94 

  264 1 264 

  2578 0 0 

TOTAL 2896     

# Placed 318 >0 382 

% Placed 11%     
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The results on the expanded data correlate well with the original data: 

 

CAT # CATEGORY INSTANCES 

PREVIOUS 

BATTING 

AVERAGE 

1 Algorithm 0 0 

2 Configuration Management 86 0.325 

3 Data Definition 0 0 

4 Data Handling 97 0.2667 

5 Documentation 153 0.5301 

6 Equation / Calculation 0 0 

7 Failure Detection 0 0 

8 Failure Isolation 0 0 

9 Failure Management 0 0.1667 

10 Incorrect Signal / Data 11 0.4043 

11 Initialization 0 0.2143 

12 Logic 0 0.0185 

13 Memory Address 0 0.1 

14 No Requirement 0 0 

15 Other 0 0 

16 Range 0 0 

17 Requirements 0 0 

18 Reset Logic 0 0 

19 Scaling Factor 0 0 

20 Self-Test 0 0.0909 

21 Synchronization / Timing 35 0.1892 

22 System Integration 0 0 

TOTAL   382   

 

Mariana Predict Performance On Expanded Data 

Compared To Original Data 

 

The categories with the most placements match the training data. Notice the number called in a 

category is highest for those categories which were previously correct the most often. This implies the 
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models for those categories are useful on a larger data set. Conversely, the models associated with Scaling 

Factor (for example) do not appear to be effective on either data set. 

The implication is some of the categories are not modeled well. This could be due to the MARIANA 

algorithms or the category choices themselves. A reasonable effort was already expended on choosing the 

categories and any further improvements really require coordination with the MARIANA experts. 



 

 

27 

 

 

 

 

 

 

5.0 Conclusions 

The potential for auto-classification algorithms to generate a failure taxonomy from software problem 

reports appears promising. Because software anomalies are generally documented in free form text, auto-

classification tools capable of directly examining this text without significant manual supervision would 

be very helpful in understanding software health trends as the databases of software anomalies are far too 

large and subject matter experts are too valuable to inspect every record manually to develop a failure 

taxonomy. Auto-classification tools may be the only practical method of “mining” the vast amount of 

available data for software anomaly trends and failure modes 

The software failure taxonomy developed under CD-SHM was partially validated by the reproduction 

of the identified patterns of software failures over a much larger dataset. This provides evidence that at 

least some of the indentified failure types are fundamental to flight critical software development. Overall 

results showed potential for auto-classification algorithms to derive a failure taxonomy, and the Mariana 

tool was moderately successful in classifying the anomalies identified under previous tasking. The use of 

auto-classification algorithms may facilitate development of an even stronger software failure taxonomy 

incorporating the concept of software failures belonging to more than one category. Findings also suggest 

that the taxonomy developed under CD-SHM may benefit from additional tuning to reduce ambiguity and 

offer less subjective boundaries.  
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7.0 Appendix A 

The full text of the Concept Development for Software Health Management (CD-SHM) final report 

from August 4th, 2009 is included in its entirety as an appendix to this report. It has been re-formatted to 

be more compatible with this document. 
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Introduction 

This report documents the work performed by Lockheed Martin Aeronautics (LM Aero) under NASA 

contract NNL06AA08B, delivery order NNL07AB06T. The Concept Development for Software Health 

Management (CD-SHM) program was a NASA-funded effort sponsored by the Integrated Vehicle Health 

Management Project, one of the four pillars of the NASA Aviation Safety Program. The CD-SHM 

program focused on defining a structured approach to software health management (SHM) through the 

development of a comprehensive failure taxonomy that is used to characterize the fundamental failure 

modes of safety-critical software.  

To enable the detection and mitigation of software errors through SHM, our approach is to treat 

software as another system device that exhibits failure modes according to a canonical failure reference of 

legacy and emerging safety-critical software. Many SHM concepts stem from failure modes and effects 

analysis (FMEA) of software in a manner similar to that used for hardware, however the failure modes for 

software are not well known, and the techniques for applying a software FMEA during system design are 

not widely published [1], [2]. Our goal was to address these shortcomings by quantifying the scope, 

magnitude and types of fundamental software errors that manifest themselves throughout the development 

of advanced flight-critical software. We developed our approach in two phases: 1) the creation of a 

taxonomy for fundamental software anomalies based on data from various advanced, flight-critical 

software development programs; and 2) the development of integrated risk models, mitigation schemes, 

design considerations and patterns based on fundamental failure data.  

The following sections document the process and results of the study.  

Approach 

Preparing the Data 

The source of our study was the development of flight-critical software systems from a combination of 

several recent, advanced development and production programs. The background information required for 

the investigation and analysis was gathered from across various database systems and normalized to a 

common database. We used the resulting database as the source for our error classification and taxonomy 

development.  

The analysis of the database was performed manually, as several subject matter experts read through 

and classified each anomaly report as a type of fundamental failure. The failure types were developed 

after several passes through the data, where the root causes were distilled to basic phrases or terms that 

adequately describe and classify their nature. Only those terms which adequately described at least 0.1% 

of all the cases studied were considered an eligible term for the fundamental failure type. 

 

Classification Details 

As it turns out, all of the raw data sources for this analysis are (more or less) freeform text. From this, 

it was quickly evident that the only way to produce a comprehensive taxonomy was to read each account 
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individually. We held many meetings with our program contacts to study the current anomaly report 

structures. In the current anomaly report structure, there is a multitude of information; however there is no 

easy way to outline the cause classification or root cause in detail. Nonetheless, we identified areas that 

still gave us some advantages. Using the current reporting system, we were able to identify the anomaly 

found, the phase in which it was introduced and its severity. This information is the foundation of our 

study and the basis for our recommendations. 

Creating the Baseline 

The first step in creating the baseline data set involved eliminating all of the unnecessary information 

from the raw reports, and boiling them down to the fundamental symptoms, phases, severities, and root 

causes. The steps involved in the data elimination process were: 

Delete all the blank sections 

Delete unimportant sections for this project. (i.e. User ID, date,…etc) 

Delete ‘cancelled’ or ‘analysis’ in status 

Delete ‘external’, ‘duplicate’, ‘not a problem’, ‘suspended’ in final resolution 

Delete ‘No’ in confirmed problem 

Delete all the data which is not a software related problem in problem product 

After this purging, the resultant database was the baseline for the project. 

Creating the Failure Taxonomy  

There are four different sections from the anomaly reports that we receive from any given program. 

These sections are the: Anomaly Behavior; Expected Behavior; Root Cause and Corrective Action Task. 

All of these sections have a description field that is free format text which contains a limit of 2,000 

characters. From the four sections above, we create sections that are named: Anomaly; Cause 

Classification and Root Failure.  

The “Anomaly” contains a very short description of the problem behavior. The “anomaly” comes from the 

“Anomaly Behavior” and “Expected Behavior” sections from the original report.  

The “Cause Classification” is the classification and abstraction of the failure. The “Cause Classification” 

information comes from the “root cause” and “corrective action task” section of the anomaly reports. 

The “Root Failure” is the taxonomy of failures. The “Root Failure” information also comes from the “Root 

Cause” and “Corrective Action Task” section of the anomaly reports.  

Since we do not have an outline of the Cause Classification and Root Failure, we first started with a 

sample group of anomaly reports to attempt to identify a pattern of Cause Classification and Root Failure. 

While we were working on this sample group, we realized that the anomaly reports are not a large enough 

sample group to discern a pattern of cause classification and root failure. We decided that we needed to 
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review all of the anomaly reports to create the initial outline of Cause classification and Root Failure. The 

anomaly report data contains all the life cycle of the program. After examining several hundred anomaly 

reports, we started to see some patterns. The patterns enabled us to keep as much detail as possible with 

respect to the Cause Classification and Root Failure while still allowing enough entries to be statistically 

significant. This analysis was then refined into the final taxonomy described in the following section. 

Analysis Results 

Our taxonomy consists of 16 failure classes and 114 fundamental failure types. In order to define a 

specific failure type, the type must provide statistical significance for the term by adequately defining at 

least 0.1% of all anomaly reports studied. Each class and the fundamental types derived from them are 

described in the following sections. 

Failure Classes 

Algorithm 

The Algorithm failure class defines a family of 31 software errors that represent, in general terms, 

fundamental errors in the software design. For example, errors such as invalid assumptions about the 

environment in which the system operates may be considered Algorithm errors.  

Algorithm Failure Class   

Failure Type Definition 

compound logic incorrect compound logic (i.e. and, or, nand, nor…) 

data transfer/message incorrect algorithm of data transferring (refresh) 

dead code leftover code form past causes a problem  

decision logic 
incorrect decision logic (i.e. if-then-else, case statements, begin-end, 

mode transition, wrong execution sequence….)  

design logic of algorithm is incorrect 

engineering unit incorrect engineering unit is used in calculation 

equation/calculation incorrect equation or calculation 

failure detection incorrect failure detection algorithm 

failure isolation incorrect failure isolation algorithm 

failure management  incorrect failure management logic (failure reporting ) 

failure reporting incorrect failure reporting or trigger logic to generate failure report 

incorrect signal incorrect signal is used in calculation 

initialization logic incorrect initialization algorithm 

initialization of values incorrect initialization values 

inverted logic inverted true or false logic 

missing initialization missing initialization function 

missing limiter missing limiter in the calculation 

prototype missing prototype 

range incorrect or unnecessary range in calculation or condition 

relational operator incorrect relational operator (i.e. >, <, >=, <= ...) 
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reset logic incorrect reset algorithm  

reset timing incorrect reset timing  

response to detected failure condition incorrect repose to detected failure condition 

sampling time incorrect sampling time 

setting value/variable incorrect algorithm to setting values or variables 

syntax syntax error 

 

 

 
Algorithm Failure Class (Cont'd)   

Failure Type Definition 

test modeling incorrect test modeling produce incorrect values for the test  

threshold incorrect threshold  

timing incorrect delay 

typo typo in algorithm causes disconnect between signals 

validity check timing missing or incorrect or inappropriate timing of validity check 

 

Bus Interface 

The Bus Interface class defines a collection of error types that represent data source and bus 

translation errors. This is a relatively focused class with the following 4 error types. 

Bus Interface Failure Class   

Failure Type Definition 

bit position incorrect bit position 

bus initialization failure bus initialization failure  

data source incorrect data source is connected to bus interface 

missing signal missing a signal in bus interface 

 

Configuration Management (CM) 

Although often referred to in the context of process and tools, problems within CM manifest 

themselves as real problems in flight-critical software systems. Through this study, we identified the 

following 6 CM failure types. 

Configuration Management Failure Class 

Failure Type Definition 

approval delay correct version of SW was not approved. 

implementation delay   

incorrect version of software using incorrect version of SW 

missing CR implementation missing CR implementation 
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outdated requirement did not update requirement to match a SW change 

requirement incorporation delay did not update SW to match a requirement change 

 

Compiler Error 

The Compiler Error is a general class of error that is created by the tools in the software build chain. 

That is, an error in any specific tool used in the process of translating source code into executable code is 

considered a Compiler Error. In this study, the only type of compiler error identified was the generation 

of incorrect assembly code—most likely because the tools used to build the flight-critical systems in the 

study are mature and have been pre-qualified. In fact, when developing flight-critical systems using 

mature software development environments, compiler errors account for less than 0.5% of all software 

errors. 

Compiler Error Failure Class   

Failure Type Definition 

Incorrect Assembly Code Incorrect Assembly Code 

 

Data Definition 

Incorrect representation of data structures in memory, data offsets and row ordering are all examples 

of Data Definition errors. During this study, we identified the following 6 distinct data definition error 

types: 

Data Definition Failure Class   

Failure Type Definition 

data structure incorrect data structure 

data type incorrect definition of data type  

enumeration incorrect enumeration 

lookup table data incorrect lookup table data 

offset  incorrect data offset for I/O or bus list or memory-mapped message 

size incorrect bit or byte size  

 

Data Handling 

A Data Handling error is a class of software error that involves illegal, undefined or incorrect use of a 

data element or variable. Data Handling errors differ from Data Definition errors in that they do not 

manifest themselves at the module interface, and do not necessarily involve incorrect structure 

definitions. We have identified the following 14 types of Data Handling errors: 

Data Handling Failure Class 
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Failure Type Definition 

bias missing or incorrect bias 

bit conversion incorrect handling of 16bit and 32 bit conversions 

breakpoint incorrect breakpoint 

byte/bit order 
incorrect byte or bit order(i.e. endianness, byte swap, LSB and MSB 

reversed) 

indexing improper indexing into arrays or table 

input fault tolerance  incorrect tolerance to detect input fault 

logic incorrect data handling logic 

masking data 
masking data with incorrect values or not masking data which we are 

expecting to be masked 

memory address using incorrect memory address 

mnemonics incorrect mnemonics in hash table 

Data Handling Failure Class(Cont'd) 

Failure Type Definition 

scaling factor using incorrect scaling factor  

transition logic incorrect transition logic 

variable incorrect variables or variable type to access data  

variable scope incorrect variable type (global, local) 

 

Documentation 

The Documentation Error is a general class that defines errors in the documentation (requirements, 

design documents, flowcharts, state-charts, architecture diagrams, etc.) that lead to software anomalies 

downstream in the process. There were no emergent patterns from this study to define specific 

documentation error types with any statistically significant basis, even though 11% of all errors were of 

this type. Fortunately, Documentation errors—having a high phase-containment ratio—are often detected 

during the development phase in which they are created, or the very next phase in the process. We discuss 

the significance of this in more detail later1. 

                                                           

 

 

 

 

 

 

 

 

 
1 See Error Analysis – Rankings by Occurrence. 
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Hardware 

Hardware Errors are defined as a class of error that elucidate deficiencies or flaws in the physical 

systems upon which the software has direct or indirect influence. This study defines 1 type of hardware 

error: 

Hardware Failure Class    

Failure Type Definition 

unexpected behavior Hardware deficiency mitigated by Software 

 

Input-Output (I/O) System 

I/O System Errors represent a class of errors that are resident in modules or subsystems which are 

responsible for providing data to (and getting data from) other modules or subsystems within the 

architecture. Although this class of error is not the most prevalent, I/O System errors have the highest 

average severity of all the error classes. Again, the significance of this will be discussed later in the 

report2. We recognize 4 distinct I/O System error types. 

 

I/O System Failure Class    

Failure Type Definition 

data list incorrect data list  

I/O synchronization Coordination of I/O timing, lists, etc. 

order of data structure incorrect order of data structure 

signal assignment missing or incorrect signal assignment 

 

Implementation 

An Implementation Error is defined as a general class of error through which a requirement or 

software change request was implemented incorrectly in the source code. This study did not reveal any 

significant or distinct implementation error types, and all implementation errors account for less than 1% 

of all anomaly reports studied. 

                                                           

 

 

 

 

 

 

 

 

 
2 See Error Analysis – Rankings by Severity. 
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Inter-process Communication 

We define, in general, Inter-process Communication Errors as incorrect hand-shaking between 

processes or parallel modules. This includes coordination of resources, failure management and overall 

timing issues. This study revealed 9 distinct inter-process communication error types. 

Inter-process Communication Failure Class  

Failure Type Definition 

decision logic 
incorrect decision logic (i.e. if-then-else, case statements, begin-end, mode transition,  

wrong execution sequence….)  

engineering unit mismatch engineering unit mismatch 

failure management  incorrect failure management logic 

I/O synchronization I/O is not synchronized in inter-channel data box 

initialization logic incorrect initialization logic 

logic incorrect logic of inter-process communication 

reset timing incorrect reset timing  

sampling time incorrect sampling time 

timing incorrect delay 

 

Performance 

The class of errors considered under the term Performance defines those errors which violate either 

real-time requirements or processor utilization thresholds. During our study, we were able to statistically 

substantiate the following performance error type: 

Performance Failure Class    

Failure Type Definition 

Exceed Processor Utilization Target Exceed Processor Utilization Target 

 

Self-Test 

As part of the development process for flight-critical systems, it is necessary to incorporate into the 

system a sufficient suite of pre-flight tests that verify the suitability of the system relative to the mission it 

is about to perform. This test sequence; often referred to as Self Test or built-in test, is designed to provide 

a go/no-go decision relative to predetermined fitness conditions. However, errors in the Self Test itself 

may yield erroneous results. Such is the class of error defined by this category, from which we identify 

the following 8 distinct types: 

Self-Test Failure Class    

Failure Type Definition 

improper test condition running test with improper condition 
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design incorrect test design 

inadequate requirement requirement is not specific enough to test 

test timing incorrect test timing 

time management inefficient use of time 

value of location location contains incorrect values in test pattern 

values for test incorrect values or reference for test 

missing reset function missing reset function in test procedure (for either necessary or work around) 

 

System Integration 

System Integration defines a class of errors that arise when major system components come together 

or interact with moderate dependency. Such errors may be obvious right at system power-up, while others 

may not be identified until the system is subject to unique or unforeseen circumstances. Based on this 

study, System Integration errors have the most derived types of all the error classes. We identified 24 of 

them. 

System Integration Failure Class  

Failure Type Definition 

channel synchronization channels are not synchronized 

conflicting requirement conflicting requirement 

change request (CR) incorrect CR was written, approved and incorporated. 

data source incorrect data source is connected to bus interface 

engineering unit mismatch 

signals from two different systems did not agree on units (i.e. radian, 

degree) 

ICD and SW mismatch ICD and SW are not matching 

inconsistent interface order inconsistent index(order) of I/O between systems 

incorrect requirement incorrect requirement 

interface incorrect interface 

manual incorrect manual (flight manual) 

memory use 
using incorrect kind of memory (i.e. use CPU check RAM instead of 

internal RAM) 

missing data missing data in a table of design document  

missing datapump missing data in data pump list 

System Integration Failure Class (Cont'd) 

Failure Type Definition 

missing header file missed include header file in the main code 

missing signals in ICD missing signals in ICD 

missing SW update hardware changed but SW did not change 

missing testpoint symbol is missing for test symbol table 

no requirement there is no requirement for an issues so it needed to be created 

parameter incorrect parameter 

parameter order parameter order 
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rate synchronization rate synchronization 

requirement not clear not enough guide lines to understand requirement 

testpoint name  symbol name of signal and signal in code are not the same 

unnecessary requirement unnecessary requirement needed to be deleted 

 

Tools 

Unfortunately, tools also introduce errors into software systems. Through our study, we identified the 

following 2 Tool Error types: 

Tool Failure Class   

Failure Type Definition 

Algorithm tools generates incorrect signal or values 

input data missing or incorrect input data so tool generate junk code 

 

User/Pilot 

Any errors associated with the operation of the system purely from the perspective of the user or pilot, 

under normal operating conditions, fall under the User/Pilot class. That is, errors identified through 

specific flight tests or failure conditions—perhaps employing a pilot or user—are not considered 

User/Pilot errors. Through this study, there were no instances where any action on behalf of the user or 

pilot caused a software failure that was not properly matched to another error class. All qualifications 

considered; we identified the following type of User/Pilot error type: 

User/Pilot Failure Class  

Failure Type Definition 

preference 
results that are not necessarily incorrect or unsafe but pilots want to change so they feel 

more comfortable or low Cooper-Harper ratings 

 

Error Analysis 

Once we identified the proper taxonomy, we were able to perform some useful analysis on the 

resultant data. This section describes our analysis and the corresponding results. 
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Background 

Similar to many risk management approaches3, our approach considers the primary drivers of 

probability and severity. We also add a third dimension—the likelihood of detection. Although similar 

in name to what one may encounter in a failure mode and effects analysis worksheet4, this parameter 

measures how long a given type of software error is likely to remain present in the system before it is 

found. That is, it is a measure of the delta between the phase in which an error is detected and the phase in 

which the root cause analysis determined it was likely injected.  

The primary difference between our analysis and other risk assessments is that our results are based on 

data and events that already exist and have transpired rather than estimating a probability of occurrence 

and a severity. We then use the entire collection of data to make predictive inferences and suggestions for 

solutions that can mitigate high-risk areas through software health management. 

The Risk Priority Number 

The Risk Priority Number (RPN) is a fundamental measure of risk associated with each failure type.  

It is a parameter, normalized to a value between 0 and 1000, which clearly indicates the relative risk 

priority of elements within the taxonomy. It is calculated as: 

𝑅𝑃𝑁 = 𝑂 × 𝑆 × 𝐷 

Where: 

𝑂 ∶= 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑂𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑒 

𝑆 ∶= 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝐸𝑟𝑟𝑜𝑟 

𝐷 ∶= 𝑃ℎ𝑎𝑠𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 − 𝑃ℎ𝑎𝑠𝑒𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑 

Calculating Relative Frequency 

The relative frequency of a class is calculated by the sum of all anomalies under that class divided by 

the number of anomaly reports in the most frequent class. It is represented as a normalized number 

between 0-10.  

                                                           

 

 

 

 

 

 

 

 

 
3 i.e. quantitative or probabilistic risk assessment 
4 See http://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis for an example. 

http://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis
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Calculating Relative Severity 

The severity term is calculated by normalizing the anomaly severity codes against a weighted scale. 

Each anomaly report we analyzed had an associated severity code ranging from 1-5, where severities 1&2 

directly affect safety of flight. To accurately represent this separation, we normalized the severity code as 

a number between 1 and 10 according to the following table: 

 
 

Calculating The Detection Parameter 

The final parameter of the RPN represents how long a software error remained within the system since 

the error was first introduced. That is, it is an indicator of how likely a certain class of error will go 

undetected by the established verification and validation (V&V) process. 

To create the parameter, we analyzed each anomaly report and calculated the weighted delta-phase 

factor directly from the table below. For example, if an anomaly was detected during Integration and Test, 

and the root cause of the error was found to be an error in the Requirements of that module, then the 

delta-phase value is 8. 

 
 

Prescriptions of the RPN Model 

In general, any element with an RPN greater 

than 100 can be considered high-risk. Although 

this cutoff is open to conjecture, the upper end of 

the RPN spectrum surely deserves attention. For 

instance, the top-most element—algorithm 

design—can emerge as an entire field of study in 

its own right. The table to the right shows 
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elements from the entire taxonomy whose RPN is greater than 100. 

 

 

 

 

Detailed Class Analysis 

The following sections present a detailed analysis of each error class. The analysis shows the RPN for 

each specific error type of the taxonomy as well as the type’s relative distribution profile within the class. 

The following table is a summary of those error classes which have a limited number of types. 

Error Class Error Type RPN 

Documentation Documentation error 262 

Implementation requirement implementation error 46 

Tools Algorithm 30 

Compiler Error Incorrect Assembly Code 29 

Pilot Preference 12 

Hardware unexpected behavior 8 

Performance Exceed Processor Utilization Target 7 

Tools input data 1 

 

 

 

 

 

 

A roll-up the individual error types reveals some 

notable observations about the individual error classes 

themselves. Perhaps the most notable of which is that 

the top three error classes—Algorithm, Data Handling 

and System Integration—account for over 70% of all 

software errors, as illustrated in the graph shown in 

Figure 1, at right.  

 
 
Figure 1 - Class-Level Analysis 
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Figure 2 – Class-Level Error Profile 

Not only are the top three classes the most frequent; with RPN values between 100 and 1000, they are 

also in the high-risk category, as seen in Figure 2 below. 

 

 

RPN Component Analysis 

At this point, we discuss the individual parameters of RPN for the failure class analysis. The most 

dominant discriminator for RPN analysis is the occurrence parameter. There is some distinct 

differentiation between severity and detection as well, but not nearly as drastic as occurrence. The 

following sections present the results of each RPN parameter individually. 
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Occurrence Parameter 

 
 
Figure 3 – Occurrence Dimension 

The occurrence parameter is the most discriminating factor of all the failure classes. Figure 3, above, 

shows the breakdown by failure class. Note that there are several displacements from the raw RPN 

breakdown. This is because, although some errors are more frequent than others, they may not be as 

severe or as hard to detect—which justifies the failure analysis across the three fundamental dimensions 

of occurrence, severity, and likelihood of detection.  
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Figure 4 – Severity Dimension 

Severity Parameter 

 
 
Figure 5 – Detection Dimension 

The severity dimension, illustrated in Figure 4 above, shows that the dominant failure class is I/O 

system. That is, most errors in this class are likely to affect safety of flight—resulting in grounded aircraft 

or specific operating limits.  
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Detection Parameter 

The detection parameter also offers some useful insight into the nature of the errors. Figure 5 shows 

that hardware and user errors exist longest in the development cycle, while implementation, tools, and 

documentation error types are detected rather quickly.  

Algorithm Error Class Profile 

 
Figure 6 - Algorithm Error Profile 

Considering the Algorithm failure class, overall algorithm design has the highest RPN and also 

accounts for 22% of all algorithm errors. Decision logic and data transfer/messaging components come in 

next; where the top three combined account for nearly half of all the algorithm errors.  

Some examples of an Algorithm error may be: incorrect power-up or initialization routines after a reset 

that cause failure monitors to trip in another module; good-channel average selection algorithms that 

inadvertently include the bad signal in the calculation; or perhaps a set of limit values that are not used 

when different loading or air vehicle configurations are selected from another subsystem. In hindsight, 

these types of errors may seem obvious and may lead one to believe more unit-testing is required. The 

reality is, however, that these types of errors may be so embedded in the algorithm that unit tests would 

not exercise the unforeseen states properly. Consider the case of the limiter value switching algorithm. A 

unit test may verify that the set of limits is properly switched under all conditions through which a request 

may be made. But if the logic in the algorithm is designed to never make the proper request, the limit set 

is never switched.  
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This report is not intended to provide philosophical or anecdotal justification of the data presented; 

however this particular case is considered at length in [3]. Essentially, proper algorithm design requires 

intimate knowledge of the environment in which the software is to operate as well as sufficient domain 

knowledge to consider purposeful or inadvertent changes to that environment. This study reveals the 

gravity of this error class and recommends that technologies be developed to address it.  

Bus Interface Error Class Profile 

 
Figure 7 – Bus Interface Error Profile 

The bus interface errors we studied all have an RPN lower than 100, but greater than 10. Based on the 

entire set of data represented in this study, RPN values between 10 and 100 could be considered medium-

risk, where RPN values lower than 10 represent low-risk items. The distribution of error reports classified 

as interface error types are fairly evenly distributed across the specific types within the class, as identified 

by the cumulative percentage line in red. 



FZM-9673-06   

 

 

 

 

  P a g e  | 24 

SWAT-V Appendix A 

 

 

 

 

Configuration Management Error Class Profile 

All CM errors are in the medium-risk RPN range. Many of these errors can be addressed by existing 

processes. 

 
Figure 8 – Configuration Management Error Profile 

 

Data Definition Error Class Profile 

 
Figure 9– Data Definition Error Profile 

Data definition errors are also medium-risk errors and can be addressed earlier by more detailed data 

and interface models. 
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Data Handling Error Class Profile 

 
Figure 10 – Data Handling Error Profile 

The two high-risk error types for the data handling error class are: scaling factor and memory address. 

This is essentially the interface between subsystems and can be addressed with more detailed interface 

modeling and design verification techniques. 

Inter-Process Communication Error Class Profile 

 
Figure 11 – IPC Error Profile 

IPC errors are generally low-risk. Timing and synchronization errors can practically be caught only in 

a lab environment, although formal analysis and design verification can address several of the others. 
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Input/Output System Error Class Profile 

I/O errors are generally difficult to find during development and exist for a significant time in the 

product lifecycle. More detailed and realistic modeling could address these issues, but would require a 

detailed cost-benefit analysis to determine break-even points for mitigating the risk. 

 
Figure 12 – I/O System Error Profile 

 

Self-Test Error Profile 

 
Figure 13 – Self-Test Error Profile 

Self-test errors are of marginal concern and could be addressed through process and technique. 
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System Integration Error Class Profile 

The system integration class contains many specific failure types. This observation in itself shows that 

a significant amount of errors, in general, are of this class. Although software may work well in individual 

modules or unit-test levels, it is when the modules are integrated with a larger system that all of the 

environmental assumptions and erroneous invariants begin to surface. This error class requires an entire 

dedicated study, as the root of the errors lie in the original requirements and specifications that needed 

interpretation. 

 
Figure 14 – System Integration Error Profile 

Root Failure Cause and Effect Relationship Analysis 

Having calculated the RPN for the Fundamental failure types, we moved our focus from individual 

risk assessment to examining the relationships between the fundamental failure types. We made charts to 

show the relationships. This section describes the root failure cause and effect relationship charts and our 

analysis on it. 

Background 

When we were working on the failure type taxonomy, we realized that some of the failure types have 

cause and effect relationships. For instance, the failure types of “algorithm: initialization of values”, 

“algorithm: timing”, and “algorithm: initialization logic” would all be related in the failures of initializing 

correctly to start a new mode during a mode transition. This has shown up in concrete examples where a 

process switched into a new mode before another process generating inputs had switched to the new 

mode. In this case, the analysis engineers would record the defect in one of the three failure types but it is 
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a mistake to consider that failure type in isolation from the other two. We constructed diagrams indicating 

the failure types that we should consider together. We connected related failure types by arrows. The 

direction of the arrows is from the broader scoped failure type to the more specific failure type.  Then we 

pulled together the connected parts into logical groupings centered on the largest of the 17 failure classes. 

Several of the 17 failure classes ended up split between logical groupings. 

Ground Rules 

The relationships were not necessarily direct cause-effect relationships, but were rather a logical 

correlation between the two.  

An error or confusion in one area might tend to imply an error or confusion in the related area. 

Each failure type appears only once in the diagrams. We split the diagrams so that no relationships were 

lost. Only the requirements class appears in multiple diagrams to indicate where the requirements come 

into those diagrams.   

We color coded the 114 failure types to indicate their RPN percentile among the failure types by: 

       - Red = 5% Highest RPN failure types 

- Orange = Next 10% RPN failure types 

- Yellow = Next 15% RPN failure types 

- Blue = Next 20% RPN failure types 

- Green = Remaining Lowest 50% RPN failure types 

 In this report we call these the “RPN percentile groups”. The red and orange blocks are the “high-

RPN” failure types. The yellow and blue blocks are the “medium-RPN” failure types. 

Overview of Root Failure Cause and Effect Relationship Chart 

We organized the 114 failure types into related items and formed seven logical groups. The seven 

logical groups are Requirement, Configuration Management (CM), External Problems, Documentation, 

Algorithm, System Integration/Communication, and Self-Test. 

 
 
Figure 15 – Related Root Failure Categories 
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Figure 15 shows the top-level organization of these seven groups. The “Requirements” category is at 

the center because it affects virtually all of the other categories. “External Problems” category does not 

consist exclusively of software problems but they are problems that require software modification to 

overcome them. The “Algorithm” category is the largest and contains a concentration of high-RPN failure 

types. “System Integration/Communication” is also a large category with some high-RPN failure types. 

The “Self-Test” category has no high-RPN failure types. “Documentation” was a large category only 

because we did not sub-divide it. We left the “Configuration Management” category as a stand-alone item 

because it involves every step in the software development process. We can look at the “Configuration 

Management” category as a process problem that runs parallel with other categories of problems. For its 

small size, it has a large number of medium-RPN failure types. 

Here is the number of different RPN percentile groups in each category: 

Requirements: 2 orange, 1 yellow, 1 green 

CM: 2 yellow, 4 blue, 2 green 

External problems: 1 blue, 3 green 

Documentation: 1 red 

Algorithm: 3 red, 9 orange, 6 yellow, 8 blue, 20 green 

System Integration/Communication: 1 red, 1 orange, 7 yellow, 8 blue, 17 green 

Self-Test: 1 yellow, 2 blue, 13 green 

 

Documentation and External Problems Category 

 
 
Figure 16 – Documentation Category 

Figure 16 shows the Documentation category. Documentation errors are in the top 5% RPN due to the 

rate of occurrence. These failures accounted for over 11% of the total failures. The severity score was 

average and the detection score was low (meaning they were easy to detect and were removed quickly). 

We did not analyze or sub-divide this failure type category. We did not try to analyze the relationships 

between these failures and others. We did not try to determine if other failures influenced the 

documentation errors or vice-versa. There might be some connection between them. 
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Figure 17 – External Problems Category 

Figure 17 shows the External Problems category. It is a “Catch-All” category for a small number of 

problems. The root causes of these failures are all external to the core software development process of 

the application code. They are primarily are due to requirements for the application software to mitigate 

unexpected failures in other areas. Except for “Compiler Error: Incorrect Assembly Code”, all these 

failure types are in the low-RPN range (green). The “Compiler Error: Incorrect Assembly Code” has 

unremarkable severity and detection scores. The “Pilot: preference” failure type is due to test pilots not 

agreeing or changing their preference. It has a low severity score but a relatively high detection score. 

None of these failure types has a high occurrence rate, but their detection scores are high. The “system 

integration: manual” refers to errors in the flight manual. This failure type has an especially high 

detection score although its severity score is low. 

Requirements Category 

Requirements

system integration 

conflicting requirement

system integration 

incorrect requirement

system integration 

no requirement

system integration 

requirement not clear

 
 
Figure 18 – Requirements Category 

Figure 18 shows the Requirements category. These are all system integration problems. Requirements 

rarely conflict and are usually clear enough. They are more likely to be missing or incorrect. There are 
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two high-RPN failure types. The RPN differences of the Requirements category are mostly due to the rate 

of occurrence. There are no clear relationships between these failure types or with any other failure types. 

 

Configuration Management Category 
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incorrect version of 

software

system integration 

ICD and SW mismatch

system integration 

inconsistent interface 

order

system integration 

missing SW update

CM 

implementation delay

CM 

missing CR 

implementation

CM 

requirement 

incorporation delay

CM

 
 
Figure 19 – Configuration Management Category 

Figure 19 shows the Configuration Management category. Most of these failures are related to Change 

Request (CR) process delays and their impact on system integration. This category has two yellow failure 

blocks and several blue blocks. It is a significant failure category. The RPN differences of the 

Configuration Management category are mostly due to the rate of occurrence. This is the first category 

with relationships between failure types. Several “system integration” failure types appear in this  

diagram because of their relationships with the “configuration management” failure types.  The two 

yellow blocks, “CM: implementation delay” and “CM: missing CR implementation” are grouped together 

with the green “CM: requirement incorporation delay” to collect the problems with delays in 

already approved changes. This collection relates to several “system integration” failure types, all 

having to do with incompatible software or interfaces. The “system integration: missing SW update” 

failure type can be caused by the “CM: implementation delay”, or “CM: missing CR implementation” 

failure types. The same relationship is true for the “system integration: inconsistent interface order” and 

“system integration: ICD and SW mismatch” failure types. The green “CM: approval delay” is green 

because it does not occur often, but its severity score is high. It can contribute to the “CM: incorrect 

version of software” failure type, which is blue. 

Algorithm Category 

Figure 20 illustrates the Algorithm category. This is a significant and interrelated category of failure 

types. It shows the relationship between algorithm design, inter-process communication, and requirements 

category. It is the most significant collection of related failure types. It includes the top two RPN-ranked 

failure types, “algorithm: design” and “algorithm: decision logic”. The “algorithm: design” failure type 
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alone accounts for over 10% of all the root failures in the study. The next highest is “algorithm: decision 

logic”, which accounts for over 5% of all the root failures in the study. The final red root failure type in 

the diagram is “algorithm: failure management”. This type involves the logic of signal redundancy, 

selection, and verification. It accounts for about 3% all the root failures. The designs in that system should 

not require a great deal of modification in the normal design loop. Another noticeable part of the 

Algorithm diagram is the three related orange failures of “algorithm: initialization logic”, “algorithm: 

timing”, and “algorithm: initialization of values”. Together these are over 4% of all the root failures. This 

failure type includes problems in timing of initializations when modes change and the inputs are not 

correct for the new mode. In addition, state variables may not have been reset correctly when new mode 

started running. Several of the failure types group together. In the upper left of the diagram is a set of 

three signal definition problems, “data definition: lookup table data”, “algorithm: incorrect unit”, and 

“algorithm: incorrect signal”. These are problems which are interior to the algorithm but they can be 

influenced by the “system integration” fault types of “system integration: missing data” or “system 

integration: engineering unit mismatch”. This set of failure types can cause “algorithm: 

equation/calculation” failure types. Another significant collection of failure types deals with the range 

processing of signals. It consists of the “algorithm: range”, “algorithm: threshold”, and “algorithm: 

missing limits” failure types. This set also can influence the “algorithm: equation/calculation” failure 

type. One set of failures which is unrelated to other failures is the set of random “mutation” type failures, 

“algorithm: syntax”, and “algorithm: typo”. Usually the compiler detects these types of errors 

immediately but the ones that slip through can be very difficult to detect. It is difficult for the compiler to 

detect a variable name typo that ends up matching the wrong, but otherwise valid, variable. It is also 

difficult for compilers to spot the “if( A = B )” vs. “if( A == B )” problem unless the first one is 

specifically disallowed. These failures can go undetected for a long time. We have also included 

“algorithm: dead code” in this set although it may have relationships to CM failure types which we have 

not established yet. The “algorithm: reset timing” failure type is green. It has a low occurrence rate but a 

high severity score. It is influenced by the “algorithm: reset logic” failure type, which is orange due to a 

high occurrence rate. The “algorithm: reset timing” failure type is secondary to the “algorithm: reset 

logic” failure type. There is a significant set of discrete logic problems consisting of (listed in order of 

decreasing RPN) “algorithm: decision logic”, “algorithm: inverted logic”, “algorithm: relational 

operator”, and algorithm: compound logic”. The “algorithm: decision logic” failure type is red due to its 

high rate of occurrence. It may include some failures that belong in the other more specific logic 

categories if we examined them further. These failures are largely self-initiated due to the complexity of 

the logic and do not have relationships to other failure types. They are structural / discrete logic defects 

that may be detected if formal methods can be applied. Toward the right of the diagram are several failure 

management / failure reconfiguration blocks. Many of these are have significant RPN values. The entire 

collection is “algorithm: failure detection”, algorithm: failure reporting”, “algorithm: failure 

management”, “algorithm: failure isolation”, “algorithm: response to detected failure condition”, 

“interprocess communication: failure management”, “data handling: input fault tolerance”, and “bus 

interface: bus initialization failure”. At the lower left of the diagram is a large collection of low-RPN 

green/blue blocks dealing primarily with interprocess communication timing problems. The red 

“algorithm: design” block has already been discussed. 
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Figure 20 – Algorithm Category 
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System Integration / Communication Category 
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Figure 21 shows the System Integration / Communication Category. It includes a significant number 

of high/medium RPN failure types and includes many relationships. 
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The high-RPN root failures here are “algorithm: data transfer/message”, “data handling: scaling 

factor”, and “data handling: memory address”, which account for about 4%, 4%, and 3% of the all the 

root failures, respectively. These data dictionary interface problems can be dealt with using system 

engineering tools such as SysML or AADL. The tools should be system-wide. Part-task interface controls 

do not have the same benefits unless they are coordinated. The “data handling: scale factor” failure type 

points to the difficulty of tracking fixed-point scaling correctly through all the engineering units, 

hardware interfaces, etc. The engineering disciplines use different units when they address fixed point 

scaling and bias. Electrical diagrams will have Volts, current, and other engineering units. Software 

engineers want least significant bit (LSB) values, full range max/min, etc. And all are further complicated 

by biases, both physical and computational, along the way. Possibly engineers need a tool to help with 

fixed-point range, bias, scale, engineering units/LSB, etc. Several system integration / communication 

blocks have already appeared in other diagrams where they had significant relationships with the blocks 

there. We divided the diagrams so that no relationships were broken. All the blocks here connect to the 

main diagram. The red “algorithm: data transfer/message” failures can be caused by the set of “data 

handling: logic” and “data handling: transition logic”. They can, in turn, cause “algorithm: validity check” 

failures. In the upper, center of the diagram is a collection of missing interface items, “system integration: 

missing signals in ICD”, “bus interface: missing signal”, and “system integration: missing datapump”. 

These are all green blocks and are not very significant. They can be caused by the “I/O system: data list” 

failure type which is yellow due to a high severity score. In their turn, they can contribute to the “data 

handling: indexing” failure type, which is yellow due to a high occurrence rate. This reflects problems 

caused by shifting data when a signal is missing. In the bottom left of the diagram is a collection of 

medium-RPN data definition failure types. They are “data definition” offset, size, data type, and data 

structure. The final large collection of failure types is the data handling collection to the bottom right of 

the diagram. These are data dictionary issues. The “data handling: scaling factor” and “data handling: 

memory address” failure types are the most significant by far. They have been discussed above. 
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Self-Test Category 

 
Figure 22 – Self-Test Category 

Figure 22 shows the Self-Test Category. There are no high-RPN root failures here and only three 

medium-RPN failure types. The most serious root failure is the yellow “outdated requirement” root 

failure which accounts for slightly over 1% of all the root failures. There are two blue failure types, “self-

test: values for test” and “tools: algorithm”. These reflect the problem of generating “truth data” from the 

tools for use in the self-test. All the rest of the blocks are green. At the top, center of the diagram are a 

collection of top-level design problems. They are “self-test procedure: missing reset function”, “self-test: 

test timing”, “self-test: time management”, and “performance: exceed processor utilization target”.  At the 

center, right are two green blocks that reflect the need to include testpoints in the code for monitoring or 

test value insertion. They are the “system integration: missing testpoint”, and the “system integration: 

testpoint name” failure types. At the bottom, left of the diagram are two requirements issues: outdated and 

unnecessary. At the bottom right of the diagram are several issues with modeling and generating valid 

truth data.  

Application of Data Analysis Results to Evaluating Future Technologies 

 
 
Figure 23 – Related Root Failure Categories 
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The data analysis results can be used to analyze the impact of the technologies, for example, possibly 

applying formal methods to the algorithms. Looking at figure 20, the algorithm-related defects are a 

mixture of discrete logic errors like “algorithm: decision logic” and floating-point calculation errors like 

“algorithm: design”. An application of formal methods could be used to identify and remove discrete 

logic defects in the early development stages. In figure 20, formal methods would reduce the number of 

errors in “algorithm: decision logic”, “algorithm: failure management”, “algorithm: initialization logic”. 

An adjustment could be made in the Occurrence or Detection numbers for those entries in the RPN 

calculations. Under the System Integration / Communication section, the collection of data handling 

failures points to the possible benefit of an automated data-dictionary driving the interface generation 

tools. Additionally, evidence points to the benefits of having model based design tools that encompass the 

entire system. In particular, requirements failure types may be reduced by using system level design tools 

like SysML or AADL. Conflicting or imprecise requirements would be spotted by Formal Methods where 

it could be applied. In general figure 20, shows that the data dictionary information is a problem (size, 

location, address, bit order, etc). However, it is very hard to find a single technology that covers the entire 

problem space. 

However, it is believed with high confidence that a significant number of software problems can be 

reduced before entering the next phase of the program by identifying the correct combination of 

technology to cover the problem space. 

Here is one example of how the data analysis results can be used to identify possible combinations of 

technologies for software health management: 

1. Create Matrix of evaluation of technologies with each root failure. 

Select technologies/ methods that you want to examine.  

Prepare a table that contains information of the RPN and which factor is the most and the least 

dominating factor of the RPN. (Color Code in example. Orange = the most dominant factor, Yellow = 

2nd dominant factor, and Green = the least dominant factor)  

Evaluate all the Technologies/Methods chosen with respect to the occurrence, severity, detection of 

each root failure. (Figure 23 illustrates this process) 

 

2. Evaluate each Technology/Methods by affectability with respect to the most and least dominant 

factor of the RPN. (Figure 24 is the example of this process) 
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Figure 24 – Related Root Failure Categories 

 

 

3. From Step 2, come up with different combination of Technologies/Methods to use and evaluate 

them. From Table 2, we can draw conclusions that “method 1” is the most effective for Software Health 

management method. However, it does not cover all the issues. Figure 23 provides some additional 

example tables that show how many problems that can be covered with different combinations of 

Technologies/Methods. 

Individuals that are developing methods or tools for software health management and using currently 

available methods or tools can benefit from this kind of practice. 
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Figure 25 – Combining Technologies and Methods 

For the Developer of methods or tools for software health management, this practice can be their 

assessment, and it will help users identify what kind of methods they are going to use for their project. 

 

 

Here are some software development technologies which are of interest in the literature and research: 

Automated Verification Management 

Formal Requirements Specifications  
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Requirements and Traceability Analysis 

Formal Methods 

Computer-Aided System Engineering 

V&V Run-Time Design 

Rigorous Analysis for Test Reduction 

Requirements and Design Abstraction  

Probabilistic/Statistical Test  

Testing Metrics 

It would be valuable to examine some of these technologies with the new information obtained from 

this study.  Selection of the emerging technologies to be evaluated should be guided by the “lessons 

learned” in research efforts such as VVIACS (Validation & Verification of Intelligent and Adaptive 

Control Systems), CerTA FCS CPI (Certification Techniques for Advanced Flight Critical Systems – 

Challenge Problem Integration), and MCAR (Mixed Criticality Architecture Requirements). Several 

technologies including Auto-Code, Auto-Test, Rapid Prototyping, System Model-Based, and Simulation-

Based Design are mature enough to already be established with recognized benefits. 

Future research should include analysis of some additional programs to reflect a larger variety of 

software development processes.  
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