

Description of document: Two National Aeronautics and Space Administration
(NASA) Studies on Software Anomalies, 2010-2011

Requested date: 24-October-2020

Release date: 18-December-2020

Posted date: 04-January-2021

Source of document: FOIA request

LaRC FOIA Public Liaison
NASA Langley Research Center
MS 151
Hampton, VA 23681
Email: larc-dl-foia@mail.nasa.gov

The governmentattic.org web site (“the site”) is a First Amendment free speech web site and is noncommercial
and free to the public. The site and materials made available on the site, such as this file, are for reference only.
The governmentattic.org web site and its principals have made every effort to make this information as
complete and as accurate as possible, however, there may be mistakes and omissions, both typographical and in
content. The governmentattic.org web site and its principals shall have neither liability nor responsibility to any
person or entity with respect to any loss or damage caused, or alleged to have been caused, directly or
indirectly, by the information provided on the governmentattic.org web site or in this file. The public records
published on the site were obtained from government agencies using proper legal channels. Each document is
identified as to the source. Any concerns about the contents of the site should be directed to the agency
originating the document in question. GovernmentAttic.org is not responsible for the contents of documents
published on the website.

mailto:larc-dl-foia@mail.nasa.gov

National Aeronautics and Space Administration

Langley Research Center
100 NASA Road
Hampton, VA 23681-2199

Reply to Attn. of: Office of Communications
December 18, 2020

REF: NASA's FOIA Case Number 21-LaRC-F-00064

This is in response to your Freedom oflnformation Act (FOIA) request to the National
Aeronautics and Space Administration (NASA) dated October 24, 2020, and received in our
office on October 26, 2020. Your request was assigned FOIA Case Number 21-LaRC-F-
00064 and was for:

A copy of a deliverable report from Lockheed Martin provided to NASA Langley
Research Center in Delivery Order NNL09AD66T and Delivery Order NNL07 AB06T
of parent contract NNL06AA08B, which were awarded in approximately 2014-2015.

Specifically, I would like to receive the deliverable report(s) on this topic: TASK 1:
ABSTRACTION OF CLASSES OF SOFTWARE ANOMALIES. A CATALOG
HISTORICAL AIRCRAFT SOFTWARE ANOMALIES TO INCLUDE
REPRESENTATIVE ANOMALIES UNCOVERED DURING PRE-DEPLOYMENT
VERIFICATION AND VALIDATION ACTIVITIES AS WELL AS THOSE
DISCOVERED POST-DEPLOYMENT. B. DEVELOP ABSTRACTIONS OF THE
CATALOGED ANOMALIES ALONG WITH A TAXONOMY OF SOFTWARE
FAILURES IN AIRCRAFT SYSTEMS. NASA'S AVIATION SAFETY (AVSAFE)
PROGRAM'S INTEGRATED VEHICLE HEAL TH MANAGEMENT (IVHM)
PROJECT IS PURSUING FOUNDATIONAL RESEARCH IN THE
DEVELOPMENT OF TECHNOLOGIES FOR AUTOMATED DETECTION,
DIAGNOSIS, PROGNOSTICS, AND MITIGATION OF ADVERSE EVENTS DUE
TO AIRCRAFT SOFTWARE. THIS EFFORT IS BEING CONDUCTED UNDER
THE SUB-ELEMENT ENTITLED SOFTWARE HEAL TH MANAGEMENT IN
VERSION 2.0 OF THE IVHM TECHNICAL PLAN.

The NASA's Langley Office of Procurement conducted a search within their database for a
copy of a deliverable report from Lockheed Martin using the search terms Delivery Order
NNL09AD66T and Delivery Order NNL07 AB06T of parent contract NNL06AA08B, that was

2

awarded in approximately 2014-2015. That search identified 2 reports consisting of 113 pages
in response to your request. We have reviewed these responsive records under the FOIA to
determine whether they may be accessed under the FOIA's provisions.

Based on that review, this office is providing the following:

113 pages are being released in full (RIF).

You may contact the NASA's ChiefFOIA Public Liaison, Stephanie Fox, via telephone at
202-358-1553 or via e-mail at stephanie.k.fox@NASA.gov to obtain further assistance or seek
dispute resolution services for any aspect of your request. You may also send correspondence
to Ms. Fox at the following address:

National Aeronautics and Space Administration (NASA)
Freedom of Information Act Unit
NASA Headquarters
Attn: Stephanie K. Fox
ChiefFOIA Public Liaison
300 E Street, S.W., 5P32
Washington D.C. 20546
Fax: 202-358-4332

Additionally, you may contact the Office of Government Information Services (OGIS) at the
National Archives and Records Administration to inquire about the FOIA dispute resolution
services it offers. The contact information for OGIS is:

Office of Government Information Services
National Archives and Records Administration
8601 Adelphi Road-OGIS
College Park, Maryland 20740-6001
Email: ogis@nara.gov
Telephone: 202-741-5770
Toll free : 1-877-684-6448
Fax: 202-741-5769

If you have any questions, please contact me electronically at carissa.s.wheeler@nasa.gov and
provide the above-referenced tracking number. Fees for processing your request were less than
$50 and are not being charged in accordance with 14 CFR §1206.503.

Sincerely,

Carissa S. Wheeler
FOIA Public Liaison Officer

Enclosures

May 2011

NASA/CR–2011-217150

Concept Development for Software Health
Management

Jung Riecks, Walter Storm, and Mark Hollingsworth
Lockheed Martin Aeronautics Company, Fort Worth, Texas

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space science.
The NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

 The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

� TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

� TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

� CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

� CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

� SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

� TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

 Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

 For more information about the NASA STI
program, see the following:

� Access the NASA STI program home page at
http://www.sti.nasa.gov

� E-mail your question via the Internet to
help@sti.nasa.gov

� Fax your question to the NASA STI Help Desk
at 443-757-5803

� Phone the NASA STI Help Desk at
443-757-5802

� Write to:
 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contract NNL06AA08B

May 2011

NASA/CR–2011-217150

Concept Development for Software Health
Management

Jung Riecks, Walter Storm, and Mark Hollingsworth
Lockheed Martin Aeronautics Company, Forth Worth, Texas

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

�

�

�

CONTENTS�

Foreword�...�7�

Introduction�...�8�

Approach�...�8�

Preparing�the�Data�...�8�

Classification�Details�..�9�

Creating�the�Baseline�...�9�

Creating�the�Failure�Taxonomy�..�9�

Analysis�Results�...�10�

Failure�Classes..�10�

Algorithm�...�10�

Bus�Interface�..�11�

Configuration�Management�(CM)�..�11�

Compiler�Error�...�12�

Data�Definition�...�12�

Data�Handling�..�12�

Documentation�..�13�

Hardware�...�13�

Input�Output�(I/O)�System�...�13�

Implementation�...�14�

Inter�process�Communication�...�14�

Performance�..�14�

Self�Test�...�15�

System�Integration...�15�

Tools�..�16�

User/Pilot�...�16�

Error�Analysis�...�17�

Background�..�17�

�

� � P a g e �|�6�

The�Risk�Priority�Number�...�17�

Detailed�Class�Analysis�...�19�

RPN�Component�Analysis�..�20�

Bus�Interface�Error�Class�Profile�..�23�

Configuration�Management�Error�Class�Profile�...�24�

Data�Definition�Error�Class�Profile�...�24�

Data�Handling�Error�Class�Profile�...�25�

Inter�Process�Communication�Error�Class�Profile�..�25�

Input/Output�System�Error�Class�Profile�...�26�

Self�Test�Error�Profile�...�26�

System�Integration�Error�Class�Profile�...�27�

Root�Failure�Cause�and�Effect�Relationship�Analysis�...�27�

Background�..�27�

Ground�Rules�...�28�

Overview�of�Root�Failure�Cause�and�Effect�Relationship�Chart�...�28�

Documentation�and�External�Problems�Category�...�29�

Requirements�Category�...�30�

Configuration�Management�Category�...�31�

Algorithm�Category�..�31�

System�Integration�/�Communication�Category�..�34�

Self�Test�Category�..�36�

Application�of�Data�Analysis�Results�to�Evaluating�Future�Technologies�..�36�

References�...�39�

�

� �

�

� � P a g e �|�7�

FOREWORD�

�
Lockheed�Martin�Corporation,�acting�through�its�Lockheed�Martin�Aeronautics�Company�(LM�Aero)�operating�unit,�
has� prepared� this� document� for� the�National� Aeronautics� and� Space� Administration’s� (NASA)� Langley� Research�
Center� under� contract� NNL06AA08B,� delivery� order� number:� NNL07AB06T.� � The� work� documented� herein� was�
performed�from�October,�2008�through�July,�2009.�
�
Contributors� included� Jung�Riecks,�Walter� Storm,� and�Mark�Hollingsworth.�Additional� support�was�provided�by:�
Claudia�Marshall,�Dan�Harbour,�Diane�Nixon,�and�Tom�Schech.�
�
� �

�

� � P a g e �|�8�

INTRODUCTION�

This� report� documents� the� work� performed� by� Lockheed� Martin� Aeronautics� (LM� Aero)� under� NASA� contract�

NNL06AA08B,� delivery� order� NNL07AB06T.� � The� Concept� Development� for� Software� Health� Management� (CD�

SHM)�program�was�a�NASA�funded�effort�sponsored�by�the�Integrated�Vehicle�Health�Management�Project,�one�of�

the� four� pillars� of� the� NASA� Aviation� Safety� Program.� � The� CD�SHM� program� focused� on� defining� a� structured�

approach�to�software�health�management�(SHM)�through�the�development�of�a�comprehensive�failure�taxonomy�

that�is�used�to�characterize�the�fundamental�failure�modes�of�safety�critical�software.���

To� enable� the� detection� and�mitigation� of� software� errors� through� SHM,� our� approach� is� to� treat� software� as�

another� system� device� that� exhibits� failure� modes� according� to� a� canonical� failure� reference� of� legacy� and�

emerging� safety�critical� software.� �Many�SHM�concepts� stem� from� failure�modes�and�effects�analysis� (FMEA)�of�

software� in� a�manner� similar� to� that� used� for� hardware,� however� the� failure�modes� for� software� are� not�well�

known,�and�the�techniques�for�applying�a�software�FMEA�during�system�design�are�not�widely�published�[1],�[2].��

Our� goal� was� to� address� these� shortcomings� by� quantifying� the� scope,� magnitude� and� types� of� fundamental�

software�errors� that�manifest� themselves� throughout� the�development�of�advanced� flight�critical� software.� �We�

developed�our�approach�in�two�phases:�1)�the�creation�of�a�taxonomy�for�fundamental�software�anomalies�based�

on� data� from� various� advanced,� flight�critical� software� development� programs;� and� 2)� the� development� of�

integrated�risk�models,�mitigation�schemes,�design�considerations�and�patterns�based�on�fundamental�failure�data.���

The�following�sections�document�the�process�and�results�of�the�study.���

APPROACH�

PREPARING�THE�DATA�

The� source�of�our� study�was� the�development�of� flight�critical� software� systems� from�a� combination�of� several�

recent,� advanced� development� and� production� programs.� � The� background� information� required� for� the�

investigation� and� analysis� was� gathered� from� across� various� database� systems� and� normalized� to� a� common�

database.��We�used�the�resulting�database�as�the�source�for�our�error�classification�and�taxonomy�development.���

The� analysis� of� the� database� was� performed� manually,� as� several� subject� matter� experts� read� through� and�

classified�each�anomaly�report�as�a� type�of� fundamental� failure.� �The�failure�types�were�developed�after�several�

passes�through�the�data,�where�the�root�causes�were�distilled�to�basic�phrases�or�terms�that�adequately�describe�

and�classify�their�nature.��Only�those�terms�which�adequately�described�at�least�0.1%�of�all�the�cases�studied�were�

considered�an�eligible�term�for�the�fundamental�failure�type.�

�

�

� � P a g e �|�9�

CLASSIFICATION�DETAILS�

As� it� turns�out,� all� of� the� raw�data� sources� for� this� analysis� are� (more�or� less)� freeform� text.� � From� this,� it�was�

quickly�evident�that�the�only�way�to�produce�a�comprehensive�taxonomy�was�to�read�each�account� individually.��

We�held�many�meetings�with�our�program�contacts�to�study�the�current�anomaly�report�structures.��In�the�current�

anomaly�report�structure,�there�is�a�multitude�of�information;�however�there�is�no�easy�way�to�outline�the�cause�

classification�or�root�cause�in�detail.��Nonetheless,�we�identified�areas�that�still�gave�us�some�advantages.�Using�the�

current�reporting�system,�we�were�able�to�identify�the�anomaly�found,�the�phase�in�which�it�was�introduced�and�its�

severity.��This�information�is�the�foundation�of�our�study�and�the�basis�for�our�recommendations.�

CREATING�THE�BASELINE�

The�first�step�in�creating�the�baseline�data�set�involved�eliminating�all�of�the�unnecessary�information�from�the�raw�

reports,� and� boiling� them�down� to� the� fundamental� symptoms,� phases,� severities,� and� root� causes.� � The� steps�

involved�in�the�data�elimination�process�were:�

1. Delete�all�the�blank�sections�

2. Delete�unimportant�sections�for�this�project.�(i.e.�User�ID,�date,…etc)�

3. Delete�‘cancelled’�or�‘analysis’�in�status�

4. Delete�‘external’,�‘duplicate’,�‘not�a�problem’,�‘suspended’�in�final�resolution�

5. Delete�‘No’�in�confirmed�problem�

6. Delete�all�the�data�which�is�not�a�software�related�problem�in�problem�product�

After�this�purging,�the�resultant�database�was�the�baseline�for�the�project.�

CREATING�THE�FAILURE�TAXONOMY��

There� are� four� different� sections� from� the� anomaly� reports� that� we� receive� from� any� given� program.� These�

sections� are� the:� Anomaly� Behavior;� Expected� Behavior;� Root� Cause� and� Corrective� Action� Task.� All� of� these�

sections�have�a�description�field�that�is�free�format�text�which�contains�a�limit�of�2,000�characters.��From�the�four�

sections�above,�we�create�sections�that�are�named:�Anomaly;�Cause�Classification�and�Root�Failure.��

1. The�“Anomaly”�contains�a�very�short�description�of�the�problem�behavior.�The�“anomaly”�comes�from�the�

“Anomaly�Behavior”�and�“Expected�Behavior”�sections�from�the�original�report.��

2. The� “Cause� Classification”� is� the� classification� and� abstraction� of� the� failure.� The� “Cause� Classification”�

information�comes�from�the�“root�cause”�and�“corrective�action�task”�section�of�the�anomaly�reports.�

3. The�“Root�Failure”�is�the�taxonomy�of�failures.�The�“Root�Failure”�information�also�comes�from�the�“Root�

Cause”�and�“Corrective�Action�Task”�section�of�the�anomaly�reports.��

�

� � P a g e �|�10�

Since�we�do�not�have�an�outline�of�the�Cause�Classification�and�Root�Failure,�we�first�started�with�a�sample�group�

of� anomaly� reports� to� attempt� to� identify� a� pattern� of� Cause� Classification� and� Root� Failure.� While� we� were�

working� on� this� sample� group,� we� realized� that� the� anomaly� reports� are� not� a� large� enough� sample� group� to�

discern�a�pattern�of�cause�classification�and�root�failure.�We�decided�that�we�needed�to�review�all�of�the�anomaly�

reports�to�create�the�initial�outline�of�Cause�classification�and�Root�Failure.��The�anomaly�report�data�contains�all�

the�life�cycle�of�the�program.��After�examining�several�hundred�anomaly�reports,�we�started�to�see�some�patterns.��

The� patterns� enabled� us� to� keep� as�much� detail� as� possible� with� respect� to� the� Cause� Classification� and� Root�

Failure�while�still�allowing�enough�entries�to�be�statistically�significant.��This�analysis�was�then�refined�into�the�final�

taxonomy�described�in�the�following�section.�

ANALYSIS�RESULTS�

Our�taxonomy�consists�of�16�failure�classes�and�114�fundamental�failure�types.��In�order�to�define�a�specific�failure�

type,�the�type�must�provide�statistical�significance�for�the�term�by�adequately�defining�at�least�0.1%�of�all�anomaly�

reports�studied.��Each�class�and�the�fundamental�types�derived�from�them�are�described�in�the�following�sections.�

FAILURE�CLASSES�

ALGORITHM�

The�Algorithm� failure�class�defines�a� family�of�31�software�errors� that� represent,� in�general� terms,� fundamental�

errors�in�the�software�design.��For�example,�errors�such�as�invalid�assumptions�about�the�environment�in�which�the�

system�operates�may�be�considered�Algorithm�errors.���

Algorithm�Failure�Class� ��

Failure�Type� Definition�
compound�logic� incorrect�compound�logic�(i.e.�and,�or,�nand,�nor…)�

data�transfer/message� incorrect�algorithm�of�data�transferring�(refresh)�

dead�code� leftover�code�form�past�causes�a�problem��

decision�logic�
incorrect�decision�logic�(i.e.�if�then�else,�case�statements,�begin�end,�mode�
transition,�wrong�execution�sequence….)���

design� logic�of�algorithm�is�incorrect�

engineering�unit� incorrect��engineering�unit�is�used�in�calculation�

equation/calculation� incorrect�equation�or�calculation�

failure�detection� incorrect�failure�detection�algorithm�

failure�isolation� incorrect�failure�isolation�algorithm�

failure�management�� incorrect�failure�management�logic�(failure�reporting�)�

failure�reporting� incorrect�failure�reporting�or�trigger�logic�to�generate�failure�report�

incorrect�signal� incorrect�signal�is�used�in�calculation�

initialization�logic� incorrect�initialization�algorithm�

initialization�of�values� incorrect�initialization�values�

inverted�logic� inverted�true�or�false�logic�

�

� � P a g e �|�11�

Algorithm�Failure�Class�(Cont'd)� ��

Failure�Type� Definition�
missing�initialization� missing�initialization�function�

missing�limiter� missing�limiter�in�the�calculation�

prototype� missing�prototype�

range� incorrect�or�unnecessary�range�in�calculation�or�condition�

relational�operator� incorrect�relational�operator�(i.e.�>,�<,�>=,�<=�...)�

reset�logic� incorrect�reset�algorithm��

reset�timing� incorrect�reset�timing��

response�to�detected�failure�condition� incorrect�repose�to�detected�failure�condition�

sampling�time� incorrect�sampling�time�

setting�value/variable� incorrect�algorithm�to�setting�values�or�variables�

syntax� syntax�error�

test�modeling� incorrect�test�modeling�produce�incorrect�values�for�the�test���

threshold� incorrect�threshold��

timing� incorrect�delay�

typo� typo�in�algorithm�causes�disconnect�between�signals�

validity�check�timing� missing�or�incorrect�or�inappropriate�timing�of�validity�check�

BUS�INTERFACE�

The�Bus� Interface� class�defines�a�collection�of�error� types�that�represent�data�source�and�bus�translation�errors.��

This�is�a�relatively�focused�class�with�the�following�4�error�types.�

Bus�Interface�Failure�Class� ��

Failure�Type� Definition�
bit�position� incorrect�bit�position�

bus�initialization�failure� bus�initialization�failure��

data�source� incorrect�data�source�is�connected�to�bus�interface�

missing�signal� missing�a�signal�in�bus�interface�

CONFIGURATION�MANAGEMENT�(CM)�

Although�often�referred�to� in�the�context�of�process�and�tools,�problems�within�CM�manifest�themselves�as�real�

problems�in�flight�critical�software�systems.��Through�this�study,�we�identified�the�following�6�CM�failure�types.�

Configuration�Management�Failure�Class�

Failure�Type� Definition�
approval�delay� correct�version�of�SW�was�not�approved.�

implementation�delay� ��

incorrect�version�of�software� using�incorrect�version�of�SW�

missing�CR�implementation� missing�CR�implementation�

outdated�requirement� did�not�update�requirement�to�match�a�SW�change�

requirement�incorporation�delay� did�not�update�SW�to�match�a�requirement�change�

�

� � P a g e �|�12�

COMPILER�ERROR�

The�Compiler�Error� is�a�general�class�of�error�that�is�created�by�the�tools� in�the�software�build�chain.� �That�is,�an�

error� in� any� specific� tool� used� in� the� process� of� translating� source� code� into� executable� code� is� considered� a�

Compiler�Error.��In�this�study,�the�only�type�of�compiler�error�identified�was�the�generation�of�incorrect�assembly�

code—most�likely�because�the�tools�used�to�build�the�flight�critical�systems�in�the�study�are�mature�and�have�been�

pre�qualified.��In�fact,�when�developing�flight�critical�systems�using�mature�software�development�environments,�

compiler�errors�account�for�less�than�0.5%�of�all�software�errors.�

Compiler�Error�Failure�Class� ��

Failure�Type� Definition�
Incorrect�Assembly�Code� Incorrect�Assembly�Code�

DATA�DEFINITION�

Incorrect�representation�of�data�structures�in�memory,�data�offsets�and�row�ordering�are�all�examples�of�Data�

Definition�errors.��During�this�study,�we�identified�the�following�6�distinct�data�definition�error�types:�

Data�Definition�Failure�Class� ��

Failure�Type� Definition�
data�structure� incorrect�data�structure�

data�type� incorrect�definition�of�data�type��

enumeration� incorrect�enumeration�

lookup�table�data� incorrect�lookup�table�data�

offset�� incorrect�data�offset�for�I/O�or�bus�list�or�memory�mapped�message�

size� incorrect�bit�or�byte�size��

DATA�HANDLING�

A�Data�Handling�error�is�a�class�of�software�error�that�involves�illegal,�undefined�or�incorrect�use�of�a�data�element�

or�variable.��Data�Handling�errors�differ�from�Data�Definition�errors�in�that�they�do�not�manifest�themselves�at�the�

module�interface,�and�do�not�necessarily�involve�incorrect�structure�definitions.��We�have�identified�the�following�

14�types�of�Data�Handling�errors:�

Data�Handling�Failure�Class� ��

Failure�Type� Definition�
bias� missing�or�incorrect�bias�

bit�conversion� incorrect�handling�of�16bit�and�32�bit�conversions�

breakpoint� incorrect�breakpoint�

byte/bit�order� incorrect�byte�or�bit�order(i.e.�endianness,�byte�swap,�LSB�and�MSB�reversed)�

indexing� improper�indexing�into�arrays�or�table�

�

� � P a g e �|�13�

Data�Handling�Failure�Class�(Cont'd)��

Failure�Type� Definition�
input�fault�tolerance�� incorrect�tolerance�to�detect�input�fault�

logic� incorrect�data�handling�logic�

masking�data�
masking�data�with�incorrect�values�or�not�masking�data�which�we�are�expecting�
to�be�masked�

memory�address� using�incorrect�memory�address�

mnemonics� incorrect�mnemonics�in�hash�table�

scaling�factor� using�incorrect�scaling�factor��

transition�logic� incorrect�transition�logic�

variable� incorrect�variables�or�variable�type�to�access�data��

variable�scope� incorrect�variable�type�(global,�local)�

DOCUMENTATION�

The� Documentation� Error� is� a� general� class� that� defines� errors� in� the� documentation� (requirements,� design�

documents,�flowcharts,�state�charts,�architecture�diagrams,�etc.)�that�lead�to�software�anomalies�downstream�in�

the�process.��There�were�no�emergent�patterns�from�this�study�to�define�specific�documentation�error�types�with�

any� statistically� significant� basis,� even� though� 11%�of� all� errors�were� of� this� type.� � Fortunately,�Documentation�

errors—having�a�high�phase�containment�ratio—are�often�detected�during�the�development�phase�in�which�they�

are�created,�or�the�very�next�phase�in�the�process.��We�discuss�the�significance�of�this�in�more�detail�later1.�

HARDWARE�

Hardware�Errors�are�defined�as�a�class�of�error� that�elucidate�deficiencies�or� flaws� in�the�physical�systems�upon�

which�the�software�has�direct�or�indirect�influence.��This�study�defines�1�type�of�hardware�error:�

Hardware�Failure�Class�� ��

Failure�Type� Definition�
unexpected�behavior� Hardware�deficiency�mitigated�by�Software�

INPUT�OUTPUT�(I/O)�SYSTEM�

I/O�System�Errors�represent�a�class�of�errors�that�are�resident�in�modules�or�subsystems�which�are�responsible�for�

providing�data�to�(and�getting�data�from)�other�modules�or�subsystems�within�the�architecture.��Although�this�class�

of� error� is� not� the�most� prevalent,� I/O� System�errors� have� the�highest� average� severity� of� all� the� error� classes.�

Again,�the�significance�of�this�will�be�discussed�later�in�the�report2.��We�recognize�4�distinct�I/O�System�error�types.�

�

���
1�See�Error�Analysis�–�Rankings�by�Occurrence.�
2�See�Error�Analysis�–�Rankings�by�Severity.�

�

� � P a g e �|�14�

I/O�System�Failure�Class�� ��

Failure�Type� Definition�
data�list� incorrect�data�list��

I/O�synchronization� Coordination�of�I/O�timing,�lists,�etc.�

order�of�data�structure� incorrect�order�of�data�structure�

signal�assignment� missing�or�incorrect�signal�assignment�

IMPLEMENTATION�

An� Implementation�Error� is�defined�as�a�general�class�of�error� through�which�a�requirement�or�software�change�

request� was� implemented� incorrectly� in� the� source� code.� � This� study� did� not� reveal� any� significant� or� distinct�

implementation�error�types,�and�all�implementation�errors�account�for�less�than�1%�of�all�anomaly�reports�studied.�

INTER�PROCESS�COMMUNICATION�

We�define,�in�general,�Inter�process�Communication�Errors�as�incorrect�hand�shaking�between�processes�or�parallel�

modules.� � This� includes� coordination� of� resources,� failure� management� and� overall� timing� issues.� � This� study�

revealed�9�distinct�inter�process�communication�error�types.�

Inter�process�Communication�Failure�Class��

Failure�Type� Definition�

decision�logic�
incorrect��decision�logic�(i.e.�if�then�else,�case�statements,�begin�end,�mode�transition,��
wrong�execution�sequence….)���

engineering�unit�mismatch� engineering�unit�mismatch�

failure�management�� incorrect�failure�management�logic�

I/O�synchronization� I/O�is�not�synchronized�in�inter�channel�data�box�

initialization�logic� incorrect�initialization�logic�

logic� incorrect�logic�of�inter�process�communication�

reset�timing� incorrect�reset�timing��

sampling�time� incorrect�sampling�time�

timing� incorrect�delay�

PERFORMANCE�

The� class� of� errors� considered� under� the� term�Performance� defines� those� errors�which� violate� either� real�time�

requirements�or�processor�utilization�thresholds.��During�our�study,�we�were�able�to�statistically�substantiate�the�

following�performance�error�type:�

Performance�Failure�Class�� ��

Failure�Type� Definition�
Exceed�Processor�Utilization�Target� Exceed�Processor�Utilization�Target�

�

� � P a g e �|�15�

SELF�TEST�

As� part� of� the� development� process� for� flight�critical� systems,� it� is� necessary� to� incorporate� into� the� system� a�

sufficient� suite� of� pre�flight� tests� that� verify� the� suitability� of� the� system� relative� to� the�mission� it� is� about� to�

perform.� � This� test� sequence;� often� referred� to� as� Self� Test� or� built�in� test,� is� designed� to� provide� a� go/no�go�

decision�relative�to�predetermined�fitness�conditions.��However,�errors�in�the�Self�Test�itself�may�yield�erroneous�

results.��Such�is�the�class�of�error�defined�by�this�category,�from�which�we�identify�the�following�8�distinct�types:�

Self�Test�Failure�Class�� ��

Failure�Type� Definition�
improper�test�condition� running�test�with�improper�condition�

design� incorrect�test�design�

inadequate�requirement� requirement�is�not�specific�enough�to�test�

test�timing� incorrect�test�timing�

time�management� inefficient�use�of�time�

value�of�location� location�contains�incorrect�values�in�test�pattern�

values�for�test� incorrect�values�or�reference�for�test�

missing�reset�function� missing�reset�function�in�test�procedure�(for�either�necessary�or�work�around)�

SYSTEM�INTEGRATION�

System�Integration�defines�a�class�of�errors�that�arise�when�major�system�components�come�together�or�interact�

with�moderate� dependency.� � Such� errors�may� be� obvious� right� at� system� power�up,� while� others�may� not� be�

identified� until� the� system� is� subject� to� unique� or� unforeseen� circumstances.� � Based� on� this� study,� System�

Integration�errors�have�the�most�derived�types�of�all�the�error�classes.��We�identified�24�of�them.�

System�Integration�Failure�Class�� ��

Failure�Type� Definition�
channel�synchronization� channels�are�not�synchronized�

conflicting�requirement� conflicting�requirement�

change�request�(CR)� incorrect�CR�was�written,�approved�and�incorporated.�

data�source� incorrect�data�source�is�connected�to�bus�interface�

engineering�unit�mismatch� signals�from�two�different�systems�did�not�agree�on�units�(i.e.��radian,�degree)�

ICD�and�SW�mismatch� ICD�and�SW�are�not�matching�

inconsistent�interface�order� inconsistent�index(order)�of�I/O�between�systems�

incorrect�requirement� incorrect�requirement�

interface� incorrect�interface�

manual� incorrect�manual�(flight�manual)�
�
�
�
�
�
�

�

� � P a g e �|�16�

�System�Integration�Failure�Class�(Cont'd)�

Failure�Type� Definition�
memory�use� using�incorrect�kind�of�memory�(i.e.�use�CPU�check�RAM�instead�of�internal�RAM)�

missing�data� missing�data�in�a�table�of�design�document��

missing�datapump� missing�data�in�data�pump�list�

missing�header�file� missed�include�header�file�in�the�main�code�

missing�signals�in�ICD� missing�signals�in�ICD�

missing�SW�update� hardware�changed�but�SW�did�not�change�

missing�testpoint� symbol�is�missing�for�test�symbol�table�

no�requirement� there�is�no�requirement�for�an�issues�so�it�needed�to�be�created�

parameter� incorrect�parameter�

parameter�order� parameter�order�

rate�synchronization� rate�synchronization�

requirement�not�clear� not�enough�guide�lines�to�understand�requirement�

testpoint�name�� symbol�name�of�signal�and�signal�in�code�are�not�the�same�

unnecessary�requirement� unnecessary�requirement�needed�to�be�deleted�

TOOLS�

Unfortunately,�tools�also�introduce�errors�into�software�systems.��Through�our�study,�we�identified�the�following�2�

Tool�Error�types:�

Tool�Failure�Class� ��

Failure�Type� Definition�
Algorithm� tools�generates�incorrect�signal�or�values�

input�data� missing�or�incorrect�input�data�so�tool�generate�junk�code�

USER/PILOT�

Any�errors� associated�with� the�operation�of� the� system�purely� from� the�perspective�of� the�user�or�pilot,� under�

normal�operating�conditions,�fall�under�the�User/Pilot�class.��That�is,�errors�identified�through�specific�flight�tests�or�

failure�conditions—perhaps�employing�a�pilot�or�user—are�not�considered�User/Pilot�errors.� �Through�this�study,�

there�were�no� instances�where�any�action�on�behalf�of� the�user�or�pilot�caused�a�software� failure� that�was�not�

properly� matched� to� another� error� class.� � All� qualifications� considered;� we� identified� the� following� type� of�

User/Pilot�error�type:�

User/Pilot�Failure�Class��

Failure�Type� Definition�

preference�
results�that�are�not�necessarily�incorrect�or�unsafe�but�pilots�want�to�change�so�they�feel�more�
comfortable�or�low�Cooper�Harper�ratings�

�

�

� � P a g e �|�17�

ERROR�ANALYSIS�

Once�we� identified� the�proper� taxonomy,�we�were�able� to�perform� some�useful� analysis�on� the� resultant�data.��

This�section�describes�our�analysis�and�the�corresponding�results.�

BACKGROUND�

Similar� to�many� risk�management� approaches3,� our� approach� considers� the� primary� drivers� of� probability� and�

severity.��We�also�add�a�third�dimension—the�likelihood�of�detection.��Although�similar�in�name�to�what�one�may�

encounter� in�a� failure�mode�and�effects�analysis�worksheet4,� this�parameter�measures�how� long�a�given�type�of�

software�error� is� likely� to� remain�present� in� the� system�before� it� is� found.� � That� is,� it� is� a�measure�of� the�delta�

between�the�phase�in�which�an�error�is�detected�and�the�phase�in�which�the�root�cause�analysis�determined�it�was�

likely�injected.���

The�primary�difference�between�our�analysis�and�other�risk�assessments�is�that�our�results�are�based�on�data�and�

events� that�already�exist� and�have� transpired� rather� than�estimating�a�probability�of�occurrence�and�a� severity.��

We� then� use� the� entire� collection�of� data� to�make�predictive� inferences� and� suggestions� for� solutions� that� can�

mitigate�high�risk�areas�through�software�health�management.�

THE�RISK�PRIORITY�NUMBER�

The� Risk� Priority� Number� (RPN)� is� a� fundamental� measure� of� risk� associated� with� each� failure� type.� � � It� is� a�

parameter,�normalized�to�a�value�between�0�and�1000,�which�clearly�indicates�the�relative�risk�priority�of�elements�

within�the�taxonomy.��It�is�calculated�as:�

��� � � � � � 	�

Where:�

�
� ������������������������������

�
� ������������������

	
� ������ �! �" # ����$%&�! �"�

CALCULATING�RELATIVE�FREQUENCY�

The�relative�frequency�of�a�class�is�calculated�by�the�sum�of�all�anomalies�under�that�class�divided�by�the�number�of�

anomaly�reports�in�the�most�frequent�class.��It�is�represented�as�a�normalized�number�between�0�10.��

���
3�i.e.�quantitative�or�probabilistic�risk�assessment�
4�See�http://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis�for�an�example.�

�

� � P a g e �|�18�

CALCULATING�RELATIVE�SEVERITY�

The�severity�term�is�calculated�by�normalizing�the�anomaly�severity�codes�against�a�weighted�scale.��Each�anomaly�

report�we�analyzed�had�an�associated�severity�code�ranging�from�1�5,�where�severities�1&2�directly�affect�safety�of�

flight.� �To�accurately�represent�this�separation,�we�normalized�the�severity�code�as�a�number�between�1�and�10�

according�to�the�following�table:�

�

CALCULATING�THE�DETECTION�PARAMETER�

The�final�parameter�of�the�RPN�represents�how�long�a�software�error�remained�within�the�system�since�the�error�

was� first� introduced.� � That� is,� it� is� an� indicator� of� how� likely� a� certain� class� of� error�will� go� undetected� by� the�

established�verification�and�validation�(V&V)�process.�

To�create�the�parameter,�we�analyzed�each�anomaly�report�and�calculated�the�weighted�delta�phase�factor�directly�

from�the�table�below.��For�example,�if�an�anomaly�was�detected�during�Integration�and�Test,�and�the�root�cause�of�

the�error�was�found�to�be�an�error�in�the�Requirements�of�that�module,�then�the�delta�phase�value�is�8.�

�

PRESCRIPTIONS�OF�THE�RPN�MODEL�

In�general,�any�element�with�an�RPN�greater�than�100�can�

be� considered� high�risk.� � Although� this� cutoff� is� open� to�

conjecture,� the� upper� end� of� the� RPN� spectrum� surely�

deserves�attention.� �For�instance,�the�top�most�element—

algorithm�design—can�emerge�as�an�entire�field�of�study�in�

its�own�right.��The�table�to�the�right�shows�elements�from�

the�entire�taxonomy�whose�RPN�is�greater�than�100.�

�

� � P a g e �|�19�

DETAILED�CLASS�ANALYSIS�

The�following�sections�present�a�detailed�analysis�of�each�error�class.��The�analysis�shows�the�RPN�for�each�specific�

error�type�of�the�taxonomy�as�well�as�the�type’s�relative�distribution�profile�within�the�class.��The�following�table�is�

a�summary�of�those�error�classes�which�have�a�limited�number�of�types.�

Error�Class� Error�Type� RPN�

Documentation� Documentation�error� 262�
Implementation� requirement�implementation�error� 46�
Tools� Algorithm� 30�
Compiler�Error� Incorrect�Assembly�Code� 29�
Pilot� Preference� 12�
Hardware� unexpected�behavior� 8�
Performance� Exceed�Processor�Utilization�Target� 7�
Tools� input�data� 1�

�

A� roll�up� the� individual� error� types� reveals� some� notable�

observations� about� the� individual� error� classes�

themselves.��Perhaps�the�most�notable�of�which�is�that�the�

top� three� error� classes—Algorithm,� Data� Handling� and�

System� Integration—account� for�over�70%�of�all� software�

errors,� as� illustrated� in� the� graph� shown� in� Figure� 10,� at�

right.���

Not�only�are�the�top�three�classes�the�most�frequent;�with�

RPN� values� between� 100� and� 1000,� they� are� also� in� the�

high�risk�category,�as�seen�in�Figure�11�below.�

�

Figure�2�–�Class�Level�Error�Profile�

Figure�1���Class�Level�Analysis�

�

� � P a g e �|�20�

RPN�COMPONENT�ANALYSIS�

At� this� point,� we� discuss� the� individual� parameters� of� RPN� for� the� failure� class� analysis.� � The� most� dominant�
discriminator� for� RPN� analysis� is� the� occurrence� parameter.� � There� is� some� distinct� differentiation� between�
severity�and�detection�as�well,�but�not�nearly�as�drastic�as�occurrence.��The�following�sections�present�the�results�
of�each�RPN�parameter�individually.�

OCCURRENCE�PARAMETER�

The�occurrence�parameter� is� the�most�discriminating� factor�of�all� the� failure�classes.�Figure�3,�above,�shows�the�
breakdown� by� failure� class.� � Note� that� there� are� several� displacements� from� the� raw� RPN� breakdown.� � This� is�
because,�although�some�errors�are�more�frequent�than�others,�they�may�not�be�as�severe�or�as�hard�to�detect—
which�justifies�the�failure�analysis�across�the�three�fundamental�dimensions�of�occurrence,�severity,�and�likelihood�
of�detection.��

�

Figure�3�–�Occurrence�Dimension�

�

� � P a g e �|�21�

SEVERITY�PARAMETER�

The�severity�dimension,�illustrated�in�Figure�4�above,�shows�that�the�dominant�failure�class�is�I/O�system.��That�is,�

most� errors� in� this� class� are� likely� to� affect� safety� of� flight—resulting� in� grounded� aircraft� or� specific� operating�

limits.���

DETECTION�PARAMETER�

�

Figure�4�–�Severity�Dimension�

�

Figure�5�–�Detection�Dimension�

�

� � P a g e �|�22�

The� detection� parameter� also� offers� some� useful� insight� into� the� nature� of� the� errors.� � Figure� 5� shows� that�

hardware�and�user�errors�exist�longest�in�the�development�cycle,�while�implementation,�tools,�and�documentation�

error�types�are�detected�rather�quickly.���

ALGORITHM�ERROR�CLASS�PROFILE�

Considering�the�Algorithm�failure�class,�overall�algorithm�design�has�the�highest�RPN�and�also�accounts�for�22%�of�

all�algorithm�errors.� �Decision�logic�and�data�transfer/messaging�components�come�in�next;�where�the�top�three�

combined�account�for�nearly�half�of�all�the�algorithm�errors.���

Some�examples�of�an�Algorithm�error�may�be:�incorrect�power�up�or�initialization�routines�after�a�reset�that�cause�

failure�monitors�to�trip�in�another�module;�good�channel�average�selection�algorithms�that�inadvertently�include�

the�bad�signal� in�the�calculation;�or�perhaps�a�set�of� limit�values�that�are�not�used�when�different� loading�or�air�

vehicle�configurations�are�selected�from�another�subsystem.��In�hindsight,�these�types�of�errors�may�seem�obvious�

and�may�lead�one�to�believe�more�unit�testing�is�required.��The�reality�is,�however,�that�these�types�of�errors�may�

be�so�embedded�in�the�algorithm�that�unit�tests�would�not�exercise�the�unforeseen�states�properly.��Consider�the�

case�of� the� limiter� value� switching� algorithm.� �A�unit� test�may� verify� that� the� set� of� limits� is� properly� switched�

under�all�conditions�through�which�a�request�may�be�made.��But�if�the�logic�in�the�algorithm�is�designed�to�never�

make�the�proper�request,�the�limit�set�is�never�switched.���

�

Figure�6���Algorithm�Error�Profile�

�

� � P a g e �|�23�

This�report�is�not�intended�to�provide�philosophical�or�anecdotal�justification�of�the�data�presented;�however�this�

particular�case�is�considered�at�length�in�[3].��Essentially,�proper�algorithm�design�requires�intimate�knowledge�of�

the�environment�in�which�the�software�is�to�operate�as�well�as�sufficient�domain�knowledge�to�consider�purposeful�

or�inadvertent�changes�to�that�environment.��This�study�reveals�the�gravity�of�this�error�class�and�recommends�that�

technologies�be�developed�to�address�it.���

BUS�INTERFACE�ERROR�CLASS�PROFILE�

The�bus�interface�errors�we�studied�all�have�an�RPN�lower�than�100,�but�greater�than�10.��Based�on�the�entire�set�

of�data�represented�in�this�study,�RPN�values�between�10�and�100�could�be�considered�medium�risk,�where�RPN�

values�lower�than�10�represent�low�risk�items.��The�distribution�of�error�reports�classified�as�interface�error�types�

are�fairly�evenly�distributed�across�the�specific�types�within�the�class,�as�identified�by�the�cumulative�percentage�

line�in�red.�

� �

�

Figure�7�–�Bus�Interface�Error�Profile�

�

� � P a g e �|�24�

CONFIGURATION�MANAGEMENT�ERROR�CLASS�PROFILE�

All�CM�errors�are�in�the�medium�risk�RPN�range.��Many�of�these�errors�can�be�addressed�by�existing�processes.�

�

DATA�DEFINITION�ERROR�CLASS�PROFILE�

Data�definition�errors�are�also�medium�risk�errors�and�can�be�addressed�earlier�by�more�detailed�data�and�

interface�models.�

�

Figure�8 – Configuration�Management�Error�Profile

�

Figure�9–�Data�Definition�Error�Profile�

�

� � P a g e �|�25�

DATA�HANDLING�ERROR�CLASS�PROFILE�

The�two�high�risk�error�types�for�the�data�handling�error�class�are:�scaling�factor�and�memory�address.��This�is�

essentially�the�interface�between�subsystems�and�can�be�addressed�with�more�detailed�interface�modeling�and�

design�verification�techniques.�

INTER�PROCESS�COMMUNICATION�ERROR�CLASS�PROFILE�

IPC� errors� are� generally� low�risk.� Timing� and� synchronization� errors� can� practically� be� caught� only� in� a� lab�
environment,�although�formal�analysis�and�design�verification�can�address�several�of�the�others.�

�

Figure�10�–�Data�Handling�Error�Profile�

�

Figure�11�–�IPC�Error�Profile�

�

� � P a g e �|�26�

INPUT/OUTPUT�SYSTEM�ERROR�CLASS�PROFILE�

I/O�errors�are�generally�difficult�to�find�during�development�and�exist�for�a�significant�time�in�the�product�lifecycle.��

More�detailed�and�realistic�modeling�could�address�these�issues,�but�would�require�a�detailed�cost�benefit�analysis�

to�determine�break�even�points�for�mitigating�the�risk.�

�

SELF�TEST�ERROR�PROFILE�

Self�test�errors�are�of�marginal�concern�and�could�be�addressed�through�process�and�technique.�

�

Figure�12�–�I/O�System�Error�Profile�

�

Figure�13�–�Self�Test�Error�Profile�

�

� � P a g e �|�27�

SYSTEM�INTEGRATION�ERROR�CLASS�PROFILE�

The�system�integration�class�contains�many�specific�failure�types.�This�observation�in�itself�shows�that�a�significant�

amount�of�errors,�in�general,�are�of�this�class.��Although�software�may�work�well�in�individual�modules�or�unit�test�

levels,�it� is�when�the�modules�are�integrated�with�a�larger�system�that�all�of�the�environmental�assumptions�and�

erroneous�invariants�begin�to�surface.��This�error�class�requires�an�entire�dedicated�study,�as�the�root�of�the�errors�

lie�in�the�original�requirements�and�specifications�that�needed�interpretation.�

ROOT�FAILURE�CAUSE�AND�EFFECT�RELATIONSHIP�ANALYSIS�

Having�calculated�the�RPN�for�the�Fundamental�failure�types,�we�moved�our�focus�from�individual�risk�assessment�

to�examining�the�relationships�between�the�fundamental�failure�types.�We�made�charts�to�show�the�relationships.�

This�section�describes�the�root�failure�cause�and�effect�relationship�charts�and�our�analysis�on�it.�

BACKGROUND�

When�we�were�working�on�the�failure�type�taxonomy,�we�realized�that�some�of�the�failure�types�have�cause�and�

effect�relationships.�For�instance,�the�failure�types�of�“algorithm:�initialization�of�values”,�“algorithm:�timing”,�and�

“algorithm:� initialization� logic”� would� all� be� related� in� the� failures� of� initializing� correctly� to� start� a� new�mode�

during�a�mode� transition.� This�has� shown�up� in� concrete�examples�where�a�process� switched� into�a�new�mode�

�

Figure�14�–�System�Integration�Error�Profile�

�

� � P a g e �|�28�

before� another� process� generating� inputs� had� switched� to� the� new�mode.� � In� this� case,� the� analysis� engineers�

would�record�the�defect�in�one�of�the�three�failure�types�but�it�is�a�mistake�to�consider�that�failure�type�in�isolation�

from�the�other�two.��We�constructed�diagrams�indicating�the�failure�types�that�we�should�consider�together.��We�

connected�related�failure�types�by�arrows.��The�direction�of�the�arrows�is�from�the�broader�scoped�failure�type�to�

the�more�specific�failure�type.� � �Then�we�pulled�together�the�connected�parts� into� logical�groupings�centered�on�

the�largest�of�the�17�failure�classes.��Several�of�the�17�failure�classes�ended�up�split�between�logical�groupings.�

GROUND�RULES�

1. The� relationships� were� not� necessarily� direct� cause�effect� relationships,� but� were� rather� a� logical�
correlation�between�the�two.���

2. An�error�or�confusion�in�one�area�might�tend�to�imply�an�error�or�confusion�in�the�related�area.�
3. Each�failure�type�appears�only�once�in�the�diagrams.��We�split�the�diagrams�so�that�no�relationships�were�

lost.��Only�the�requirements�class�appears�in�multiple�diagrams�to�indicate�where�the�requirements�come�
into�those�diagrams.����

4. We�color�coded�the�114�failure�types�to�indicate�their�RPN�percentile�among�the�failure�types�by:�

���������� � ��Red�=�5%�Highest�RPN�failure�types�

��Orange�=�Next�10%�RPN�failure�types�

��Yellow�=�Next�15%�RPN�failure�types�

��Blue�=�Next�20%�RPN�failure�types�

��Green�=�Remaining�Lowest�50%�RPN�failure�types�

�In�this�report�we�call�these�the�“RPN�percentile�groups”.��The�red�and�orange�blocks�are�the�“high�RPN”�

failure�types.��The�yellow�and�blue�blocks�are�the�“medium�RPN”�failure�types.�

OVERVIEW�OF�ROOT�FAILURE�CAUSE�AND�EFFECT�RELATIONSHIP�CHART�

We�organized�the�114�failure�types�into�related�items�and�formed�seven�logical�groups.��The�seven�logical�groups�

are� Requirement,� Configuration� Management� (CM),� External� Problems,� Documentation,� Algorithm,� System�

Integration/Communication,�and�Self�Test.�

�

� � P a g e �|�29�

Figure�15�shows�the�top�level�organization�of� these�seven�groups.�The�“Requirements”�category� is�at� the�center�

because�it�affects�virtually�all�of�the�other�categories.��“External�Problems”�category�does�not�consist�exclusively�of�

software�problems�but�they�are�problems�

that� require� software� modification� to�

overcome� them.� The� “Algorithm”�

category� is� the� largest� and� contains� a�

concentration� of� high�RPN� failure� types.��

“System� Integration/Communication”� is�

also�a�large�category�with�some�high�RPN�

failure� types.� � The� “Self�Test”� category�

has� no� high�RPN� failure� types.��

“Documentation”� was� a� large� category�

only� because� we� did� not� sub�divide� it.��

We�left�the�“Configuration�Management”�

category�as�a�stand�alone�item�because�it�involves�every�step�in�the�software�development�process.��We�can�look�

at� the� “Configuration�Management”� category� as� a� process� problem� that� runs� parallel� with� other� categories� of�

problems.�For�its�small�size,�it�has�a�large�number�of�medium�RPN�failure�types.�

Here�is�the�number�of�different�RPN�percentile�groups�in�each�category:�

Requirements:�2�orange,�1�yellow,�1�green�
CM:�2�yellow,�4�blue,�2�green�
External�problems:�1�blue,�3�green�
Documentation:�1�red�
Algorithm:�3�red,�9�orange,�6�yellow,�8�blue,�20�green�
System�Integration/Communication:�1�red,�1�orange,�7�yellow,�8�blue,�17�green�
Self�Test:�1�yellow,�2�blue,�13�green�

DOCUMENTATION�AND�EXTERNAL�PROBLEMS�CATEGORY�

Figure� 16� shows� the�Documentation� category.�Documentation� errors� are� in� the� top�5%�RPN�due� to� the� rate�of�

occurrence.��These�failures�accounted�for�over�11%�of�the�total�failures.��The�severity�score�was�average�and�the�

detection� score� was� low� (meaning� they� were� easy� to�

detect�and�were�removed�quickly).� �We�did�not�analyze�

or�sub�divide�this� failure�type�category.� �We�did�not�try�

to�analyze�the�relationships�between�these�failures�and�

others.� � We� did� not� try� to� determine� if� other� failures�

influenced� the� documentation� errors� or� vice�versa.��

There�might�be�some�connection�between�them.�

�

Figure�15�–�Related�Root�Failure�Categories�

�

Figure�16�–�Documentation�Category�

�

� � P a g e �|�30�

Figure�17�shows�the�

External� Problems�

category.� It� is� a�

“Catch�All”�category�

for� a� small� number�

of� problems.� � The�

root�causes�of�these�

failures� are� all�

external�to�the�core�

software�

development�

process� of� the�

application�code.��They�are�primarily�are�due�to�requirements�for�the�application�software�to�mitigate�unexpected�

failures�in�other�areas.��Except�for�“Compiler�Error:�Incorrect�Assembly�Code”,�all�these�failure�types�are�in�the�low�

RPN� range� (green).� � The� “Compiler� Error:� Incorrect� Assembly� Code”� has� unremarkable� severity� and� detection�

scores.��The�“Pilot:�preference”�failure�type�is�due�to�test�pilots�not�agreeing�or�changing�their�preference.��It�has�a�

low�severity�score�but�a�relatively�high�detection�score.��None�of�these�failure�types�has�a�high�occurrence�rate,�but�

their�detection�scores�are�high.��The�“system�integration:�manual”�refers�to�errors�in�the�flight�manual.��This�failure�

type�has�an�especially�high�detection�score�although�its�severity�score�is�low.�

REQUIREMENTS�CATEGORY�

Figure� 18� shows� the�

Requirements� category.��

These� are� all� system�

integration� problems.��

Requirements� rarely�

conflict� and� are� usually�

clear� enough.� � They� are�

more� likely� to� be�

missing� or� incorrect.��

There�are� two�high�RPN�

failure� types.� � The� RPN�

differences� of� the� Requirements� category� are� mostly� due� to� the� rate� of� occurrence.� There� are� no� clear�

relationships�between�these�failure�types�or�with�any�other�failure�types.�

Figure�17�–�External�Problems�Category�

�
Figure�18�–�Requirements�Category�

�

� � P a g e �|�31�

CONFIGURATION�MANAGEMENT�CATEGORY�

Figure�19�shows�the�Configuration�Management�category.�Most�of� these� failures�are�related�to�Change�Request�

(CR)�process�delays�and�their�impact�on�system�integration.��This�category�has�two�yellow�failure�blocks�and�several�

blue�blocks.��It�is�a�significant�failure�category.��The�RPN�differences�of�the�Configuration�Management�category�are�

mostly� due� to� the� rate�

of� occurrence.� � This� is�

the� first� category� with�

relationships� between�

failure� types.� � Several�

“system� integration”�

failure� types� appear� in�

this�diagram�because�of�

their� relationships� with�

the� “configuration�

management”� failure� types.� � � The� two� yellow� blocks,� “CM:� implementation� delay”� and� “CM:� missing� CR�

implementation”� are� grouped� together� with� the� green� “CM:� requirement� incorporation� delay”� to� collect� the�

problems�with�delays�in�already�approved�changes.��This�collection�relates�to�several�“system�integration”�failure�

types,� all� having� to�do�with� incompatible� software�or� interfaces.� � The� “system� integration:�missing� SW�update”�

failure�type�can�be�caused�by�the�“CM:�implementation�delay”,�or�“CM:�missing�CR�implementation”�failure�types.��

The�same�relationship� is� true� for� the�“system�integration:� inconsistent� interface�order”�and�“system�integration:�

ICD�and�SW�mismatch”�failure�types.��The�green�“CM:�approval�delay”�is�green�because�it�does�not�occur�often,�but�

its�severity�score�is�high.��It�can�contribute�to�the�“CM:�incorrect�version�of�software”�failure�type,�which�is�blue.�

ALGORITHM�CATEGORY�

Figure�20�illustrates�the�Algorithm�category.�This�is�a�significant�and�interrelated�category�of�failure�types.��It�shows�

the� relationship� between� algorithm� design,� inter�process� communication,� and� requirements� category.� � It� is� the�

most�significant�collection�of�related�failure�types.� � It� includes�the�top�two�RPN�ranked�failure�types,�“algorithm:�

design”�and�“algorithm:�decision�logic”.��The�“algorithm:�design”�failure�type�alone�accounts�for�over�10%�of�all�the�

root�failures�in�the�study.��The�next�highest�is�“algorithm:�decision�logic”,�which�accounts�for�over�5%�of�all�the�root�

failures�in�the�study.��The�final�red�root�failure�type�in�the�diagram�is�“algorithm:�failure�management”.��This�type�

involves�the�logic�of�signal�redundancy,�selection,�and�verification.��It�accounts�for�about�3%�all�the�root�failures.��

The� designs� in� that� system� should� not� require� a� great� deal� of�modification� in� the� normal� design� loop.� Another�

noticeable�part� of� the�Algorithm�diagram� is� the� three� related�orange� failures� of� “algorithm:� initialization� logic”,�

“algorithm:�timing”,�and�“algorithm:� initialization�of�values”.� �Together�these�are�over�4%�of�all�the�root�failures.��

This�failure�type�includes�problems�in�timing�of�initializations�when�modes�change�and�the�inputs�are�not�correct�

�
Figure�19�–�Configuration�Management�Category�

�

� � P a g e �|�32�

for�the�new�mode.��In�addition,�state�variables�may�not�have�been�reset�correctly�when�new�mode�started�running.��

Several� of� the� failure� types� group� together.� � In� the� upper� left� of� the� diagram� is� a� set� of� three� signal� definition�

problems,� “data� definition:� lookup� table� data”,� “algorithm:� incorrect� unit”,� and� “algorithm:� incorrect� signal”.��

These�are�problems�which�are� interior� to� the�algorithm�but� they�can�be� influenced�by� the� “system� integration”�

fault�types�of�“system�integration:�missing�data”�or�“system�integration:�engineering�unit�mismatch”.� �This�set�of�

failure� types� can� cause� “algorithm:� equation/calculation”� failure� types.� � Another� significant� collection� of� failure�

types�deals�with�the�range�processing�of�signals.��It�consists�of�the�“algorithm:�range”,�“algorithm:�threshold”,�and�

“algorithm:�missing�limits”�failure�types.� �This�set�also�can�influence�the�“algorithm:�equation/calculation”�failure�

type.� � One� set� of� failures� which� is� unrelated� to� other� failures� is� the� set� of� random� “mutation”� type� failures,�

“algorithm:�syntax”,�and�“algorithm:�typo”.��Usually�the�compiler�detects�these�types�of�errors�immediately�but�the�

ones�that�slip�through�can�be�very�difficult�to�detect.��It�is�difficult�for�the�compiler�to�detect�a�variable�name�typo�

that�ends�up�matching�the�wrong,�but�otherwise�valid,�variable.��It�is�also�difficult�for�compilers�to�spot�the�“if(�A�=�

B�)”�vs.�“if(�A�==�B�)”�problem�unless�the�first�one�is�specifically�disallowed.��These�failures�can�go�undetected�for�a�

long� time.� �We�have�also� included� “algorithm:�dead� code”� in� this� set� although� it�may�have� relationships� to�CM�

failure�types�which�we�have�not�established�yet.��The�“algorithm:�reset�timing”�failure�type�is�green.��It�has�a�low�

occurrence� rate� but� a� high� severity� score.� � It� is� influenced� by� the� “algorithm:� reset� logic”� failure� type,�which� is�

orange�due�to�a�high�occurrence�rate.� �The�“algorithm:�reset�timing”�failure�type�is�secondary�to�the�“algorithm:�

reset� logic”� failure� type.� There� is� a� significant� set� of� discrete� logic� problems� consisting� of� (listed� in� order� of�

decreasing� RPN)� “algorithm:� decision� logic”,� “algorithm:� inverted� logic”,� “algorithm:� relational� operator”,� and�

algorithm:�compound�logic”.��The�“algorithm:�decision�logic”�failure�type�is�red�due�to�its�high�rate�of�occurrence.��

It�may�include�some�failures�that�belong�in�the�other�more�specific�logic�categories�if�we�examined�them�further.��

These�failures�are� largely�self�initiated�due�to�the�complexity�of�the� logic�and�do�not�have�relationships�to�other�

failure�types.��They�are�structural�/�discrete�logic�defects�that�may�be�detected�if�formal�methods�can�be�applied.��

Toward�the�right�of�the�diagram�are�several�failure�management�/�failure�reconfiguration�blocks.� �Many�of�these�

are� have� significant� RPN� values.� � The� entire� collection� is� “algorithm:� failure� detection”,� algorithm:� failure�

reporting”,� “algorithm:� failure� management”,� “algorithm:� failure� isolation”,� “algorithm:� response� to� detected�

failure�condition”,�“interprocess�communication:�failure�management”,�“data�handling:�input�fault�tolerance”,�and�

“bus� interface:� bus� initialization� failure”.� � At� the� lower� left� of� the� diagram� is� a� large� collection� of� low�RPN�

green/blue� blocks� dealing� primarily� with� interprocess� communication� timing� problems.� � The� red� “algorithm:�

design”�block�has�already�been�discussed.�

�

�

�

�

��
�

P
a
g
e
�|�33�

�
Figure�20�–�A

lgorithm
�Category�

��
�

P
a
g
e
�|�34�

SYSTEM
�IN

TEG
R
A
TIO

N
�/�C

O
M
M
U
N
IC
A
TIO

N
�C
A
TEG

O
R
Y�

Figure�
21�

show
s�
the�

System
�
Integration�

/�
Com

m
unication�

Category.�
It�

includes�
a�

significant�
num

ber�
of�

high/m
edium

�RPN
�failure�types�and�includes�m

any�relationships.���
�

�
Figure�21�–�System

�Integration�/�Com
m
unication�Category�

�

� � P a g e �|�35�

The�high�RPN�root�failures�here�are�“algorithm:�data�transfer/message”,�“data�handling:�scaling�factor”,�and�“data�

handling:�memory� address”,�which� account� for� about� 4%,� 4%,� and� 3%� of� the� all� the� root� failures,� respectively.��

These�data�dictionary�interface�problems�can�be�dealt�with�using�system�engineering�tools�such�as�SysML�or�AADL.��

The� tools� should� be� system�wide.� � Part�task� interface� controls� do� not� have� the� same� benefits� unless� they� are�

coordinated.� �The�“data�handling:�scale� factor”� failure�type�points� to�the�difficulty�of� tracking� fixed�point�scaling�

correctly� through� all� the� engineering� units,� hardware� interfaces,� etc.� � The� engineering� disciplines� use� different�

units� when� they� address� fixed� point� scaling� and� bias.� � Electrical� diagrams� will� have� Volts,� current,� and� other�

engineering�units.��Software�engineers�want�least�significant�bit�(LSB)�values,�full�range�max/min,�etc.��And�all�are�

further�complicated�by�biases,�both�physical�and�computational,�along�the�way.��Possibly�engineers�need�a�tool�to�

help�with� fixed�point� range,�bias,� scale,�engineering�units/LSB,�etc.� �Several� system� integration�/�communication�

blocks�have�already�appeared� in�other�diagrams�where� they�had� significant� relationships�with� the�blocks� there.��

We�divided�the�diagrams�so�that�no�relationships�were�broken.��All�the�blocks�here�connect�to�the�main�diagram.��

The�red�“algorithm:�data�transfer/message”�failures�can�be�caused�by�the�set�of�“data�handling:�logic”�and�“data�

handling:�transition�logic”.��They�can,�in�turn,�cause�“algorithm:�validity�check”�failures.��In�the�upper,�center�of�the�

diagram� is� a� collection� of� missing� interface� items,� “system� integration:� missing� signals� in� ICD”,� “bus� interface:�

missing� signal”,� and� “system� integration:� missing� datapump”.� � These� are� all� green� blocks� and� are� not� very�

significant.� �They�can�be�caused�by�the�“I/O�system:�data�list”�failure�type�which�is�yellow�due�to�a�high�severity�

score.��In�their�turn,�they�can�contribute�to�the�“data�handling:�indexing”�failure�type,�which�is�yellow�due�to�a�high�

occurrence�rate.��This�reflects�problems�caused�by�shifting�data�when�a�signal�is�missing.��In�the�bottom�left�of�the�

diagram�is�a�collection�of�medium�RPN�data�definition�failure�types.� �They�are�“data�definition”�offset,�size,�data�

type,�and�data�structure.� �The�final� large�collection�of� failure�types� is�the�data�handling�collection�to�the�bottom�

right�of� the�diagram.� � These�are�data�dictionary� issues.� �The� “data�handling:� scaling� factor”�and�“data�handling:�

memory�address”�failure�types�are�the�most�significant�by�far.��They�have�been�discussed�above.�

� �

�

� � P a g e �|�36�

SELF�TEST�CATEGORY�

Figure� 22� shows� the� Self�Test� Category.� � There� are�no�high�RPN� root� failures� here�and�only� three�medium�RPN�

failure�types.��The�most�serious�root�failure�is�the�yellow�“outdated�requirement”�root�failure�which�accounts�for�

slightly�over�1%�of�all� the� root� failures.� �There�are� two�blue� failure� types,� “self�test:� values� for� test”�and�“tools:�

algorithm”.��These�reflect�the�problem�of�generating�“truth�data”�from�the�tools�for�use�in�the�self�test.��All�the�rest�

of�the�blocks�are�green.��At�the�top,�center�of�the�diagram�are�a�collection�of�top�level�design�problems.��They�are�

“self�test� procedure:� missing� reset� function”,� “self�test:� test� timing”,� “self�test:� time� management”,� and�

“performance:�exceed�processor�utilization�target”.���At�the�center,�right�are�two�green�blocks�that�reflect�the�need�

to�include�testpoints�in�the�code�for�monitoring�or�test�value�insertion.��They�are�the�“system�integration:�missing�

testpoint”,�and�the�“system�integration:�testpoint�name”�failure�types.��At�the�bottom,�left�of�the�diagram�are�two�

requirements� issues:� outdated� and� unnecessary.� � At� the� bottom� right� of� the� diagram� are� several� issues� with�

modeling�and�generating�valid�truth�data.��

APPLICATION�OF�DATA�ANALYSIS�RESULTS�TO�EVALUATING�FUTURE�TECHNOLOGIES�

The�data�analysis� results� can�be�used� to�analyze� the� impact�of� the� technologies,� for� example,�possibly� applying�

formal�methods�to�the�algorithms.� �Looking�at� figure�20,� the�algorithm�related�defects�are�a�mixture�of�discrete�

logic� errors� like� “algorithm:� decision� logic”� and� floating�point� calculation� errors� like� “algorithm:� design”.� � An�

application� of� formal� methods� could� be� used� to� identify� and� remove� discrete� logic� defects� in� the� early�

development� stages.� � In� figure� 20,� formal�methods�would� reduce� the� number� of� errors� in� “algorithm:� decision�

�
Figure�22�–�Self�Test�Category�

�

� � P a g e �|�37�

logic”,�“algorithm:�failure�management”,�“algorithm:�initialization�logic”.��

An�adjustment�could�be�made�in�the�Occurrence�or�Detection�numbers�

for�those�entries�in�the�RPN�calculations.��Under�the�System�Integration�

/�Communication�section,�the�collection�of�data�handling�failures�points�

to� the� possible� benefit� of� an� automated� data�dictionary� driving� the�

interface�generation�tools.��Additionally,�evidence�points�to�the�benefits�

of�having�model�based�design�tools�that�encompass�the�entire�system.�In�

particular,� requirements� failure� types�may� be� reduced� by� using� system� level� design� tools� like� SysML� or� AADL.��

Conflicting�or�imprecise�requirements�would�be�spotted�by�Formal�Methods�where�it�could�be�applied.��In�general�

figure� 20,� shows� that� the� data� dictionary� information� is� a� problem� (size,� location,� address,� bit� order,� etc).��

However,�it�is�very�hard�to�find�a�single�technology�that�covers�the�entire�problem�space.�

However,�it�is�believed�with�high�confidence�that�a�significant�number�of�software�problems�can�be�reduced�before�

entering�the�next�phase�of�the�program�by�identifying�the�correct�combination�of�technology�to�cover�the�problem�

space.�

Here�is�one�example�of�how�the�data�analysis�results�can�be�used�to�identify�possible�combinations�of�technologies�

for�software�health�management:�

1.�Create�Matrix�of�evaluation�of�technologies�with�each�root�failure.�

A. Select�technologies/�methods�that�you�want�to�examine.��
B. Prepare� a� table� that� contains� information� of� the� RPN� and� which� factor� is� the� most� and� the� least�

dominating�factor�of�the�RPN.�(Color�Code�in�example.�Orange�=�the�most�dominant�factor,�Yellow�=�2nd�
dominant�factor,�and�Green�=�the�least�dominant�factor)��

C. Evaluate�all�the�Technologies/Methods�chosen�with�respect�to�the�occurrence,�severity,�detection�of�each�
root�failure.�(Figure�23�illustrates�this�process)�

�

2.�Evaluate�each�Technology/Methods�by�affectability�with�respect�to�the�most�and�least�dominant�factor�of�the�

RPN.�(Figure�24�is�the�example�of�this�process)�

�

Figure�23�–�Related�Root�Failure�Categories�

�

Figure�24�–�Related�Root�Failure�Categories�

�

� � P a g e �|�38�

3.� From�Step�2,� come�up�with�different� combination�of�Technologies/Methods� to�use�and�evaluate� them.�From�

Table�2,�we�can�draw�conclusions�that�“method�1”�is�the�most�effective�for�Software�Health�management�method.�

However,�it�does�not�cover�all�the�issues.�Figure�23�provides�some�additional�example�tables�that�show�how�many�

problems�that�can�be�covered�with�different�combinations�of�Technologies/Methods.�

Individuals� that�are�developing�methods�or� tools� for� software�health�management�and�using�currently�available�

methods�or�tools�can�benefit�from�this�kind�of�practice.�

For�the�Developer�of�methods�or�tools�for�software�health�management,�this�practice�can�be�their�assessment,�and�

it�will�help�users�identify�what�kind�of�methods�they�are�going�to�use�for�their�project.�

�

Figure�25�–�Combining�Technologies�and�Methods�

�

� � P a g e �|�39�

Here�are�some�software�development�technologies�which�are�of�interest�in�the�literature�and�research:�

� Automated�Verification�Management�
� Formal�Requirements�Specifications��
� Requirements�and�Traceability�Analysis�
� Formal�Methods�
� Computer�Aided�System�Engineering�
� V&V�Run�Time�Design�
� Rigorous�Analysis�for�Test�Reduction�
� Requirements�and�Design�Abstraction��
� Probabilistic/Statistical�Test��
� Testing�Metrics�

It�would�be�valuable�to�examine�some�of�these�technologies�with�the�new�information�obtained�from�this�study.���

Selection� of� the� emerging� technologies� to� be� evaluated� should� be� guided� by� the� “lessons� learned”� in� research�

efforts� such� as� VVIACS� (Validation� &� Verification� of� Intelligent� and� Adaptive� Control� Systems),� CerTA� FCS� CPI�

(Certification�Techniques�for�Advanced�Flight�Critical�Systems�–�Challenge�Problem�Integration),�and�MCAR�(Mixed�

Criticality�Architecture�Requirements). Several� technologies� including�Auto�Code,�Auto�Test,� Rapid�Prototyping,�

System�Model�Based,�and�Simulation�Based�Design�are�mature�enough�to�already�be�established�with�recognized�

benefits.�

Future� research� should� include� analysis� of� some� additional� programs� to� reflect� a� larger� variety� of� software�

development�processes.��

�

REFERENCES�

�
[1]�Goddard,�P.L.,�“Software�FMEA�Techniques”,�Proceedings�of�the�Annual�Reliability�and�Maintainability�

Symposium,�January�2000.�
�
[2]�Goddard,�P.L.,�“Validating�the�Safety�of�Embedded�Real�Time�Control�Systems�using�FMEA”,�Proceedings�of�the�

Annual�Reliability�and�Maintainability�Symposium,�January�1993.�
�

[3]�Jackson,�D.,�Thomas,�M.,�and�Millett,�L.,�Eds.�Software�for�Dependable�Systems:�Sufficient�Evidence?��National�

Research�Council.�National�Academies�Press,�2007.��

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Contractor Report

 4. TITLE AND SUBTITLE

Concept Development for Software Health Management

5a. CONTRACT NUMBER

NNL06AA08B

 6. AUTHOR(S)

Riecks, Jung; Storm, Walter; Hollingsworth, Mark

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

Langley Technical Monitor: Eric G. Cooper

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 06
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

This report documents the work performed by Lockheed Martin Aeronautics (LM Aero) under NASA contract
NNL06AA08B, delivery order NNL07AB06T. The Concept Development for Software Health Management (CDSHM)
program was a NASA funded effort sponsored by the Integrated Vehicle Health Management Project, one of
the four pillars of the NASA Aviation Safety Program. The CD-SHM program focused on defining a structured
approach to software health management (SHM) through the development of a comprehensive failure taxonomy
that is used to characterize the fundamental failure modes of safety-critical software.

15. SUBJECT TERMS
Software, failure, health management, safety-critical, taxonomy

18. NUMBER
 OF
 PAGES

40
19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

NNL07AB06T
5f. WORK UNIT NUMBER

645846.02.07.07

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/CR-2011-217150

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
05 - 201101-

July 2010

NASA/CR-2009-000000

Software Anomaly Taxonomy Validation

(SWAT-V)

Greg Cotton

Lockheed Martin Aeronautics Company, Fort Worth, TX 76101

NASA STI Program . . . in Profile

 Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA scientific and technical information (STI)

program plays a key part in helping NASA maintain this

important role.

 The NASA STI program operates under the auspices of

the Agency Chief Information Officer. It collects,

organizes, provides for archiving, and disseminates

NASA’s STI. The NASA STI program provides access

to the NASA Aeronautics and Space Database and its

public interface, the NASA Technical Report Server,

thus providing one of the largest collections of

aeronautical and space science STI in the world. Results

are published in both non-NASA channels and by NASA

in the NASA STI Report Series, which includes the

following report types:

TECHNICAL PUBLICATION. Reports of completed

research or a major significant phase of research that

present the results of NASA programs and include

extensive data or theoretical analysis. Includes

compilations of significant scientific and technical data

and information deemed to be of continuing reference

value. NASA counterpart of peer-reviewed formal

professional papers, but having less stringent limitations

on manuscript length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific and

technical findings that are preliminary or of specialized

interest, e.g., quick release reports, working papers, and

bibliographies that contain minimal annotation. Does not

contain extensive analysis.

CONTRACTOR REPORT. Scientific and technical

findings by NASA-sponsored contractors and grantees.

CONFERENCE PUBLICATION. Collected papers from

scientific and technical conferences, symposia, seminars,

or other meetings sponsored or co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific, technical, or

historical information from NASA programs, projects,

and missions, often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-language

translations of foreign scientific and technical material

pertinent to NASA’s mission.

 Specialized services also include creating custom

thesauri, building customized databases, and organizing

and publishing research results.

 For more information about the NASA STI program,

see the following:

Access the NASA STI program home page at

http://www.sti.nasa.gov

E-mail your question via the Internet to

help@sti.nasa.gov

Fax your question to the NASA STI Help Desk at 443-

757-5803

Phone the NASA STI Help Desk at

443-757-5802

Write to:

 NASA STI Help Desk

 NASA Center for AeroSpace Information

 7115 Standard Drive

 Hanover, MD 21076-1320

http://www.sti.nasa.gov/
file:///C:/Documents%20and%20Settings/e.g.cooper/Local%20Settings/Temp/help@sti.nasa.gov

National Aeronautics and

Space Administration

Langley Research Center Prepared for Langley Research Center

Hampton, Virginia 23681-2199 under Contract NNL06AA08B

July 2010

NASA/CR-2009-000000

Software Anomaly Taxonomy Validation

(SWAT-V)

Greg Cotton

Lockheed Martin Aeronautics Company, Fort Worth, TX 76101

2

Table of Contents

Table of Contents .. 2

Nomenclature .. 3

Abstract ... 4

Foreword ... 4

1.0 Introduction ... 5

2.0 Background ... 6

3.0 Methods, Assumptions, and Procedures ... 8

3.1 Mariana Auto-Classification Tool ... 8

MarianaPrep ... 8

MarianaExec .. 9

MarianaPredict ... 9

3.2 Configure Mariana On Computer Asset .. 9

3.3 Prototype Classification Tool using Small Data Set ... 10

4.0 Results and Discussions .. 15

4.1 Apply Tool to Original Data Set ... 15

4.2 Validate Terminology and Results .. 22

4.3 Expand Data Set to Other Databases ... 23

5.0 Conclusions ... 27

6.0 References ... 28

7.0 Appendix A ... 28

Appendix A Contents .. A-3

3

Nomenclature

CD-SHM: Concept Development for Software Health Management

CSV: Comma Separated Value

FCSR: Flight Critical Systems Research

FMEA: Failure Modes and Effects Analysis

IVHM: Integrated Vehicle Health Management

SPAR: Software Product Anomaly Report

SWAT-V: Software Anomaly Taxonomy Validation

SHM: Software Health Management

4

Abstract

Under a previous NASA-sponsored effort, Lockheed Martin created taxonomy for software anomalies

that quantified the scope, magnitude, and types of fundamental software errors. This taxonomy was

created through a manual process whereby several subject matter experts read through and classified a

relatively small number of individual software anomaly reports into fundamental error types. Typical

software anomaly databases, are, however, far too large and subject matter experts are too valuable to

inspect every record manually to develop a failure taxonomy. In an effort to streamline this process,

Lockheed Martin investigated the application of auto-classification algorithms for deriving a failure

taxonomy for flight critical software anomalies. Because software anomalies are generally documented in

free form text, auto-classification tools capable of directly examining this text without significant manual

supervision would be very helpful in understanding software health trends. Indeed, auto-classification

tools may be the only practical method of “mining” the vast amount of available data for software

anomaly trends and failure modes. This report documents the results of Lockheed’s investigation of

NASA’s Mariana free form text auto-classification tool for deriving a failure taxonomy from software

anomaly reports. The investigation included a partial validation of the previously created taxonomy by

using patterns of software failures derived from much larger datasets.

Foreword

Lockheed Martin Corporation, acting through its Lockheed Martin Aeronautics Company (LM Aero)

operating unit, has prepared this document for the National Aeronautics and Space Administration’s

(NASA) Langley Research Center under contract NNL06AA08B, delivery order number: NNL09AD66T.

The work documented herein was performed from September, 2009 through July, 2010.

5

1.0 Introduction

Integrated Vehicle Health Management (IVHM) is one of the four pillars of the NASA Aviation

Safety Program. The Integrated Vehicle Health Management project is pursuing foundational research in

the development of technologies for automated detection, diagnostics, and mitigation of adverse events

due to aircraft software. IVHM includes a Software Health Management (SHM) effort to explore software

health in the context of system level dependability cases (a central recommendation of a recent National

Academies report).

The Software Anomaly Taxonomy Validation (SWAT-V) program was a NASA-funded effort

sponsored by IVHM. This current report documents the work performed by Lockheed Martin Aeronautics

(LM Aero) under NASA contract NNL06AA08B, delivery order NNL09AD66T. SWAT-V is a follow-on

to a previous Flight Critical Systems Research (FCSR) project “Concept Development for Software

Health Management” (CD-SHM), also sponsored by IVHM (task NNL07AB06T). CD-SHM focused on

defining a structured approach to software health management through the development of a

comprehensive failure taxonomy used to characterize the fundamental failure modes of safety-critical

software. For readers who are not familiar with the CD-SHM project, that report is included (as Appendix

A) to provide more context for SWAT-V results.

Under this new effort, Lockheed investigated the use of auto-classification algorithms to replicate and

validate the software failure taxonomy developed under CD-SHM. The investigation included application

of the classification parameters and toolset to large datasets that would otherwise be unsuitable for

inspection by subject matter experts. The resulting taxonomy of anomalies will serve as a candidate for

software health management frameworks. For this effort Lockheed developed the classification

algorithms using NASA’s Mariana free form text tool.

6

2.0 Background

 To enable the detection and mitigation of software errors through SHM, our approach is to treat

software as another system device that exhibits failure modes according to a canonical failure reference of

legacy and emerging safety-critical software. Many SHM concepts stem from failure modes and effects

analysis (FMEA) of software in a manner similar to that used for hardware, however the failure modes for

software are not well known, and the techniques for applying a software FMEA during system design are

not widely published.

CD-SHM cataloged historical aircraft software anomalies using text-based problem report archives

from selected advanced flight-critical software development programs. Anomalies were uncovered during

verification and validation activities throughout the software development lifecycle. Subject experts

derived a failure taxonomy for aircraft system software by inspecting the data records. CD-SHM

quantified the scope, magnitude and types of fundamental software errors that manifest themselves

throughout the development of advanced flight-critical software. It employed a two phase approach: 1)

the creation of a taxonomy for fundamental software anomalies based on data from various advanced,

flight-critical software development programs; and 2) the development of integrated risk models,

mitigation schemes, design considerations and patterns based on fundamental failure data. CD-SHM

mined data from the development of flight-critical software systems for several recent, advanced

development and production programs. The background information required for the investigation and

analysis was gathered from across various database systems and normalized to a common database. The

resulting database served as the source for error classification and comprehensive taxonomy development.

The analysis of the CD-SHM database was performed manually; enlisting several subject matter experts

to read through and classify each anomaly report as a type of fundamental failure. The failure types were

developed after several passes through the data, where the root causes were distilled to basic phrases or

terms that adequately describe and classify their nature. Only those terms which adequately described at

least 0.1% of all the cases studied were considered an eligible term for the fundamental failure type.

The raw data sources for the CD-SHM common database are (more or less) freeform text. From this, it

was quickly evident that the only way to produce a comprehensive taxonomy was to read each account

individually. Analysis required many meetings with program experts to study the current anomaly report

structures. In the current anomaly report structure, there is a multitude of information; however there is no

easy way to outline the cause classification or root cause in detail. It took considerable effort to identify

the anomaly found, the phase in which it was introduced and its severity. This information is the

foundation of the CD-SHM study and the basis for recommendations.

The process used in CD-SHM is not practical for analyzing typical databases, as the databases of

software anomalies are far too large and subject matter experts are too valuable to inspect every record

manually. Auto-classification tools may be the only practical method of “mining” the vast amount of

available data for software anomaly trends and failure modes. This new tasking applied the Mariana auto-

classification tool which was originally developed to assist NASA in categorizing aircraft accident

reports. Under this new tasking, Lockheed sought to apply Mariana to the problem of deriving a software

anomaly taxonomy from problem reports for purposes of demonstrating that free-form problem reports

7

could be efficiently classified and also to validate the taxonomy developed under the previous CD-SHM

effort.

8

3.0 Methods, Assumptions, and Procedures

3.1 Mariana Auto-Classification Tool

NASA Ames provided the MARIANA auto-classification software toolset. MARIANA was

developed to help categorize aircraft accident reports, which are also more or less free form text records.

MARIANA is available from NASA’s DASHLINK web site at the following address:

https://c3.ndc.nasa.gov/dl/algorithm/mariana/

Mariana_v0.8c_par.zip updated 6/22/2010 is the file archive used for SWAT-V.

MARIANA works by inspecting a text file and a category file and automatically developing the

algorithms which map between them. The development of the algorithms is referred to as “training”. The

algorithms form the basis of models which MARIANA can use to automatically categorize new records.

MARIANA consists of three specific tools: MarianaPrep, MarianaExec, and MarianaPredict which are

described in turn.

MarianaPrep

MarianaPrep allows three input files: a text file, a category file in Comma Separated Value (CSV)

format, and a thesaurus file (optional). The text file is just a string of words separated by spaces with

individual records separated by line breaks. The category file is a matrix with a column of fields for each

possible category and a row of fields for each record. The value in the field is “1” if the record is in a

category, “-1” if the record is not in the category, and “0” if it is not known if the record is in a category.

The number of records (lines) must be the same for both the text and category files.

Example CSV Category File (Partial)

Record #1

Member of Category 1 Not Member of Category 5

9

The optional thesaurus is a simple text file which the user may edit. It allows specifying synonyms.

While MARIANA is smart enough to know that plurals are equivalent (i.e. “user” has the same meaning

as “users”), it does not know that “busses” is plural for “buss”. By default, it also considers “invent” as

distinct from “invented”. Another feature in thesaurus called “Stop words” is a list of words to be ignored

(such as “a” or “the”). Thesaurus allows the user a means to modify MARIANA’s behavior for a

particular context.

MarianaPrep combines the input files to compute statistics. MarianaPrep counts the occurrences of

each unique word in each record for each category. It also considers words which are not found in a

category. It produces a separate Zip archive file for each category containing the computed statistics.

MarianaExec

MarianaExec is the tool which “trains” the models. It examines each Zip archive created by

MarianaPrep in turn and creates a mathematical model for each category. It does this by randomly

dividing the records into two groups; the group used to create a hypothetical model and the group used to

test this model. It carries out this process 5 times (each time using a different random group of records)

and chooses the model which performs the best. It even provides statistics on how well it performed

(between 0.5 = 50% ; a coin toss and 1.0 = 100%; perfect).

MarianaPredict

MarianaPredict allows automatic classification of new data against the models created for each

category. A text file (similar to the one used for MarianaPrep) contains a string of words separated by

spaces with individual records separated by line breaks. This can be evaluated against each of the model

files produced by MarianaExec. If the record is determined to be in the category of that model,

MarianaPredict returns a positive number. If the record is not in the category, it returns a negative

number.

3.2 Configure Mariana On Computer Asset

MARIANA is written mainly in Java in a LINUX environment (there are a few system-specific

modules written in C). For this effort the software was ported to a Windows® Vista® environment

comprised of an HP® desktop computer with an Intel Core™ 2 Duo CPU running at 2.83 GHz with 3.48

GB of RAM..

Only a few lines of C-code required changes to compile in Windows®. They mostly referred to the

system time used to generate random numbers. In “helperRoutines.cpp” “getpid” was revised to “_getpid”

and the following was inserted at about line 104:

void gettimeofday(struct timeval* t,void* timezone)

{ struct _timeb timebuffer;

_ftime(&timebuffer);

10

t->tv_sec=timebuffer.time;

t->tv_usec=1000*timebuffer.millitm;

}

In “helperRoutines.h” some additional include statements were needed in place of sys/time:

//#include <sys/time.h>

#include <winsock.h>

#include <sys/timeb.h>

#include <sys/types.h>

#include <process.h>

After compiling, the new library must be renamed “MarianaFunctions.dll” and moved to the “bin”

directory.

3.3 Prototype Classification Tool using Small Data Set

The 8 category Software Product Anomaly Report (SPAR) data developed to de-bug MARIANA was

used to experiment with various “tuning” techniques. To improve the confidence of the classifications, the

thesaurus was expanded from 2 lines to 575 lines.

A PERL script was developed to pre-process the SPAR data. This provided an expedited method of

changing the data from standard spreadsheet format into the CSV and text files required by MarianaPrep.

Three fields were combined to produce the richest possible text file describing the software anomalies.

The script also scrubbed the data by deleting proper names, pronouns, etc. which are not relevant to the

cause or effect of software anomalies. Since some SPAR authors used negative descriptions, the script file

deleted the space following the word “not” so the phrase “not a timing problem” becomes “nottiming

problem”.

The actual pre-processing PERL script file is included below:

11

$file = 'spar_data.csv';

@delete_words = split(" ", <<END);

a about again also although an and any anything anytime anyway apparent apparently appear appears are around as

assume assumed assumes assumption at be became because become becomes becoming been being believe believed

beleiving besides bring bringing but by came can cannot can't cant cause causes causing come comes coming

comma could do does doing done during follow followed following follows for from furthermore get gets getting go

going had happened has have having him however if in into is it its just kind leave leaves leaving like likely look

looked looking looks make maked makes making may mr much must nonetheless note of only other others

otherwise or our overall per please possible possibly possibility pretty quick quicker quickly quite required saw says

see seeing seem seemed seems seen sees shall shortly should significant significantly similarly simply since slight

slightly so some somehow something sometime sometimes somewhat soon sooner specific specifically still such

suggest suggestion suggestions supposed than that their them the then there thereby therefore these they this though

thus to upon use uses was we went were what whatever when whenever where whereas whether which while why

will with would you your =

richard larry dave bruce ted

END

$delete_words = join('|', @delete_words);

open(CSV, $file);

binmode CSV;

while((read CSV, $more_text, 10000)){$text .= $more_text};

close CSV;

$text =~ s/""/ /sg;

while($text =~ /("[^"]*")/s){

 $before=$`;

 $field=$1;

 $after=$';

#print "field=$field\n";

 $field =~ s/,/ /g;

 $field =~ s/\x0d/ /g;

 $field =~ s/\n/ /g;

 $field =~ s/"//g;

 $text = $before . $field . $after;

#print "field=$field\n";

#exit 0;

}

#$text_new .= $after;

#$text = $text_new;

@spars=split(/\x0d/, $text);

$num=$#spars-1; #not counting header line

print "Spars found=$num\n";

foreach $spar (@spars){

 $spar =~ s/\x0d//g;

 $spar =~ s/\n//g;

12

 $text2 .= "$spar\n";

}

$text = lc $text2;

GET HEADER LINE

$text =~ s/(.*)\n//; # get all of first line (and remove it)

$header = uc $1;

$header =~ s/(.*),/$1/;

#print "header=$header\n";

GET COLUMN LABELS

@labels = split(/,/, $header);

$num_cols=$#labels +1;

#print "num_cols=$num_cols\n";

$col=1;

foreach $label (@labels){

print "$col => $label\n";

 $col_index{$label} = $col-1;

 $col++;

}

SCAN DATA FOR CAUSE_CLASSIFICATION CATEGORIES

$cat_col=0;

while($text =~ /(.+)/g){

 $spar=$1;

#print "spar=$spar\n";

 @columns = split(/,/, $spar);

 $cause= lc $columns[$col_index{CAUSE_CLASSIFICATION}];

 if(! $found{$cause}){

 $found{$cause} = 'y';

 $cat_col{$cause} = $cat_col;

 $cat_col++;

 push(@cat_columns, $cause);

 }

}

$num_cats=$cat_col;

$cat_header = join(',', @cat_columns);

READ EACH SPAR LINE

$line_num=0;

open(OUT_ALL, ">all_categories.csv");

print OUT_ALL "LINE_NUMBER,SPAR_ID,CAUSE_CLASSIFICATION,$cat_header,ROOT_CAUSE\n";

open(OUT_TRAIN_CATS, ">categories.csv");

open(OUT_TRAIN_SPARS, ">root_cause.txt");

while($text =~ /(.+)/g){

 $spar=$1;

#print "spar=$spar\n";

 $line_num++;

 @columns = split(/,/, $spar);

 $cause= lc $columns[$col_index{CAUSE_CLASSIFICATION}];

 $anom=$columns[$col_index{ROOT_CAUSE}];

 $combined_cause = $columns[$col_index{ANOMALY_BEHAVIOR}] . ' ' .$anom . ' ' .

$columns[$col_index{TITLE}];

13

remove underscore and non asci characters

 $combined_cause =~ s/_/ /g;

 $combined_cause =~ s/[^\x0a\x20-\x7f]/ /g;

remove non-informative words

 $combined_cause =~ s/\b($delete_words)\b/ /gi;

remove spaces after the word "not"

 $combined_cause =~ s/\bnot\s+/not/ig;

#$combined_cause =~ s/\d+/ /g;

 $combined_cause =~ s/ +/ /g;

 $spar_num=$columns[$col_index{CH_DOC_ID}];

#print "cause=$cause cat_col=$cat_col{$cause}\n";

 foreach $cat_num (0..$num_cats-1){

 if($cat_num eq $cat_col{$cause}){

 $cat_flag[$cat_num] = 1;

 }else{

 $cat_flag[$cat_num] = -1;

 }

 }

 $cats= join(',' , @cat_flag);

print "Spar num=$num cause=$cause anom=$combined_cause\n";

 print OUT_TRAIN_CATS "$cats\n";

 print OUT_TRAIN_SPARS "$combined_cause\n";

 print OUT_ALL "$line_num,$spar_num,$cause, $cats, $combined_cause\n";

}

close OUT_ALL;

close OUT_TRAIN_CATS;

close OUT_TRAIN_SPARS;

exit 0;

Pre-processing PERL Script

These tuning efforts appeared very successful in providing MARIANA the best possible chance of

making correct classifications. The classifications reported better than 90% confidence on average when

run through MarianaExec.

To demonstrate how this PERL script massages data, the following example shows SPAR data before

and after it is pre-processed for MARIANA (note the fields in the spread sheet contain more data than can

be displayed in the fixed cell size shown):

14

Example Of Data Before Pre-Processing

Record #1 Text After Pre-Processing

Obviously repeating this procedure for every record would be very labor intensive manual effort. This

is the reason we use a software script to automate the task.

Three Fields Combined To Produce Text

File

Record #1

unexpected egi failures (mfl fcs056 pfl fcs egi unav) occurred aircraft ground tests ofp fm02c. part 1

test: unexpected mfl fcs056 occurred steps 5 28 52. unexpected mfl egi035 failure occurred steps 28 52.

part 2 egi monitors activated prematurely after powerup before egi powered began communicating flcc.

monitors activated mlg tach sensors indicating wheel speed ~23 knots duration 1 second. tach inputs

unexpected test procedure states aircraft stationary no time test aircraft moved. further investigation test

procedure revealed brake control unit bit initiated pilot mlg tach inputs stimmed ~23 knots maximum 1

second. initiating bcu bit before egi powered nuisance egi failures. unexpected egi failure (mfl fcs056)

aircraft ground test (ofp fm02)

15

4.0 Results and Discussions

4.1 Apply Tool to Original Data Set

CD-SHM partitioned 726 SPARs into 16 “classes” and 114 “fundamental types”. While one

fundamental type (Documentation Error) had 83 members, 37 fundamental types had only a single

example. Since it takes several examples to “train” the MARIANA tool, it was not feasible to use the CD-

SHM fundamental types as the taxonomy categories. In addition, categories with a single example are not

very useful for Software Health Management (no trends). For these reasons, the CD-SHM classification

scheme was revisited.

The data was subsequently revised to a relaxed granularity of classification. Fundamental types (for

example “Memory Address”) with many members were retained as categories. Other fundamental types

were mapped to unique categories such that each category would contain at least 11 members. Remaining

unique SPARs (for example the “Hardware” class with a single member) were grouped together as

“Other”. After several iterations, a data set of 22 categories seemed to provide the best balance between

functionality and usability:

CAT # CATEGORY INSTANCES

1 Algorithm 78

2 Configuration Management 40

3 Data Definition 33

4 Data Handling 45

5 Documentation 83

6 Equation / Calculation 19

7 Failure Detection 11

8 Failure Isolation 14

9 Failure Management 36

10 Incorrect Signal / Data 47

11 Initialization 42

12 Logic 54

13 Memory Address 20

14 No Requirement 15

15 Other 17

16 Range 11

17 Requirements 45

18 Reset Logic 24

19 Scaling Factor 27

20 Self-Test 11

21 Synchronization / Timing 37

22 System Integration 17

TOTAL 726

SPAR Categories

16

The CD-SHM fundamental types are mapped to SWAT-V categories as follows:

CAT

CATEGORY CD-SHM FUNDAMENTAL TYPES INSTANCES TOTAL

1 Algorithm Algorithm - Design 74 78

Algorithm - Syntax 3

Algorithm - Test Modeling 1

2 Configuration

Management

Configuration Management (all) 28 40

System Integration - ICD And SW Mismatch 4

System Integration - Change Release 1

System Integration - Interface 1

System Integration - Manual 1

System Integration - Missing SW Update 5

3 Data Definition Data Definition (all) 33 33

4 Data Handling Data Handling - Bias 1 45

Data Handling - Bit Conversion 1

Data Handling - Breakpoint 2

Data Handling - Byte / Bit Order 2

Data Handling - Indexing 11

Data Handling - Logic 5

Data Handling - Masking Data 2

Data Handling - Input Fault Tolerance 4

Data Handling - Transition Logic 3

Data Handling - Variable 6

Data Handling - Variable Scope 1

I / O System - Data List 4

I / O System - Order Of Data Structure 3

5 Documentation Documentation (all) 83 83

6 Equation /

Calculation

Algorithm - Equation / Calculation 10 19

Algorithm - Engineering Unit 2

Algorithm - Missing Limiter 2

Interprocess Communication - Engineering Unit

Mismatch

1

System Integration - Engineering Unit Mismatch 4

7 Failure Detection Algorithm - Failure Detection 10 11

Algorithm - Threshold 1

8 Failure Isolation Algorithm - Failure Isolation 14 14

9 Failure

Management

Algorithm - Failure Isolation 20 36

Algorithm - Failure Reporting 7

Algorithm - Response To Detected Failure

Condition

8

Interprocess Communication - Failure

Management

1

17

10 Incorrect Signal /

Data

Algorithm - Data Transfer / Message 31 47

Algorithm - Incorrect Signal 4

Algorithm - Typo 1

Bus Interface - Bit Position 1

Bus Interface - Data Source 5

Bus Interface - Missing Signal 2

I / O System - Signal Assignment 3

11 Initialization Algorithm - Initialization Logic 10 42

Algorithm - Initialization Of Values 14

Algorithm - Missing Initialization 2

Algorithm - Setting Value / Variable 13

Bus Interface - Bus Initialization Failure 1

Data Handling - Mnemonics 1

Interprocess Communication - Initialization

Logic

1

12 Logic Algorithm - Decision Logic 38 54

Algorithm - Inverted Logic 9

Algorithm - Compound Logic 1

Algorithm - Relational Operator 4

Interprocess Communication - Decision Logic 1

Interprocess Communication - Logic 1

13 Memory Address Data Handling - Memory Address 20 20

14 No Requirement System Integration - No Requirement 15 15

15 Other Algorithm - Dead Code 1 17

Algorithm - Prototype 2

Compiler Error - Incorrect Assembly Code 3

Hardware - Unexpected Behavior 1

Performance - Exceed Processor Utilization

Target

1

Pilot - Preference 2

Self Test - Time Management 2

Tools - Input Data 1

Tools - Algorithm 4

16 Range Algorithm - Range 10 11

Algorithm - Threshold 1

17 Requirements Implementation - Requirement Implementation

Error

7 45

System Integration - Conflicting Requirement 5

System Integration - Incorrect Requirement 19

System Integration - Requirement Not Clear 12

System Integration - Requirement 1

Self Test - Inadequate Requirement 1

18 Reset Logic Algorithm - Reset Logic 24 24

19 Scaling Factor Data Handling - Scaling Factor 27 27

18

20 Self-Test Algorithm - Threshold 2 11

Self Test - Design 1

Self Test - Values For Test 3

Self Test - Value Of Location 1

Self Test Procedure - Improper Test Condition 1

Self Test Procedure - Missing Reset Function 3

21 Synchronization

/ Timing

Algorithm - Timing 9 37

Algorithm - Reset Timing 1

Algorithm - Sampling Time 2

Algorithm - Threshold 1

Algorithm - Validity Check Timing 2

I / O System - I / O Synchronization 2

Interprocess Communication - Timing 3

Interprocess Communication - I / O

Synchronization

2

Interprocess Communication - Reset Timing 1

Interprocess Communication - Sampling Time 1

System Integration - Channel Synchronization 9

System Integration - Rate Synchronization 3

Self Test - Test Timing 1

22 System

Integration

System Integration - Inconsistent Interface Order 3 17

System Integration - Data Source 2

System Integration - Memory Use 2

System Integration - Incorrect Parameter 1

System Integration - Missing Data 2

System Integration - Missing Datapump 2

System Integration - Missing Header File 1

System Integration - Missing Signals In ICD 1

System Integration - Missing Testpoint 1

System Integration - Parameter Order 1

System Integration - Testpoint Name 1

TOTAL 726 726

Mapping of Categories to CD-SHM Fundamental Types

19

The data was pre-processed with the previously described PERL script. Another, simple PERL script

was developed to call MarianaPrep successively for each category:

$num_runs=22;

print "num_runs=$num_runs\n\n";

foreach $i (1..$num_runs){

 $run_printout = `java -Xmx512M -Djava.library.path=.\\ MarianaPrep -h ..\\data\\thesaurus.test -c

..\\data\\categories.csv -o test\\spar_$i.zip -cl $i -t ..\\data\\root_cause.txt`;

 print "Run $i output:\n$run_printout\n";

}

MarianaPrep Script

 This resulted in the creation of 22 Zip archives each containing 12 files. The archives each look

similar to the following:

Typical Zip Archive

20

MarianaExec was called on each of the Zip archives produced by MarianaPrep. The result is a separate

model file for each of the 22 categories. A custom PERL script automated the successive calls for each

category:

$num_runs=22;

print "num_runs=$num_runs\n\n";

foreach $i (1..$num_runs){

 $run_printout = `java -Xmx512M -Djava.library.path=.\\ Mariana -p test\\spar_$i.zip -c $i -o test\\cat_$i.model`;

 print "Run $i output:\n$run_printout\n";

}

MarianaExec Script

 When MarianaExec runs, it provides statistics on the model’s ability to correctly classify. The

confidence statistics are computed for both a default MARIANA algorithm and an optimized algorithm.

Since a record is either IN or NOT IN a category, a confidence of 50% represents random chance. The

resulting average confidence of 93.6% (92.4% when using optimized algorithms) indicates MARIANA

has high confidence in its classifications. The confidence statistics for each category are presented in the

following table:

21

 CONFIDENCE

CAT # CATEGORY INSTANCES DEFAULT OPTIMIZED

1 Algorithm 78 0.908425 0.907509

2 Configuration Management 40 0.990956 0.986434

3 Data Definition 33 0.931358 0.915462

4 Data Handling 45 0.822997 0.817829

5 Documentation 83 0.893231 0.913043

6 Equation / Calculation 19 0.974286 0.973333

7 Failure Detection 11 0.994413 0.955307

8 Failure Isolation 14 0.796610 0.806497

9 Failure Management 36 0.877193 0.843275

10 Incorrect Signal / Data 47 0.910750 0.910256

11 Initialization 42 0.859649 0.763158

12 Logic 54 0.944763 0.944046

13 Memory Address 20 0.997207 0.997207

14 No Requirement 15 0.966292 0.966292

15 Other 17 0.980226 0.905367

16 Range 11 0.983146 0.983146

17 Requirements 45 0.991429 0.991429

18 Reset Logic 24 0.918095 0.899048

19 Scaling Factor 27 0.983580 0.983580

20 Self-Test 11 1.000000 1.000000

21 Synchronization / Timing 37 0.905848 0.905848

22 System Integration 17 0.952514 0.952514

TOTAL 726

AVERAGE 0.935589 0.923663

Original SPAR Statistics

It is interesting the “Other” category has 98% (91% optimized) confidence even though the SPARs in

this category only share the fact that they are not in any other class. The “Other” SPARs could have been

eliminated from the set if they had low confidence of classification (leaving 21categories). The relative

high confidence seems to validate the decision to leave “Other” in the data. The existence of “Other” also

insures any SPAR will have a valid available classification.

22

4.2 Validate Terminology and Results

The models produced by MarianaExec were then tested with MarianaPredict on the same data. With

the high confidence reported by MarianaExec, it was expected that about 93% of the SPARs would be

correctly classified. The results were rather different:

 CONFIDENCE

HITS, AB,

ERRORS

BATTING

AVERAG

E CAT # CATEGORY

INSTANCE

S

DEFAUL

T

OPTIMIZE

D

1 Algorithm 78 0.908425 0.907509 0/78/1 0.0000

2 Configuration Management 40 0.990956 0.986434 13/40/0 0.3250

3 Data Definition 33 0.931358 0.915462 0/33/0 0.0000

4 Data Handling 45 0.822997 0.817829 12/45/0 0.2667

5 Documentation 83 0.893231 0.913043 44/83/0 0.5301

6 Equation / Calculation 19 0.974286 0.973333 0/19/0 0.0000

7 Failure Detection 11 0.994413 0.955307 0/11/0 0.0000

8 Failure Isolation 14 0.796610 0.806497 0/14/0 0.0000

9 Failure Management 36 0.877193 0.843275 6/36/1 0.1667

10 Incorrect Signal / Data 47 0.910750 0.910256 19/47/0 0.4043

11 Initialization 42 0.859649 0.763158 9/42/0 0.2143

12 Logic 54 0.944763 0.944046 1/54/0 0.0185

13 Memory Address 20 0.997207 0.997207 2/20/0 0.1000

14 No Requirement 15 0.966292 0.966292 0/15/0 0.0000

15 Other 17 0.980226 0.905367 0/17/0 0.0000

16 Range 11 0.983146 0.983146 0/11/0 0.0000

17 Requirements 45 0.991429 0.991429 0/45/0 0.0000

18 Reset Logic 24 0.918095 0.899048 0/24/0 0.0000

19 Scaling Factor 27 0.983580 0.983580 0/27/0 0.0000

20 Self-Test 11 1.000000 1.000000 1/11/0 0.0909

21 Synchronization / Timing 37 0.905848 0.905848 7/37/0 0.1892

22 System Integration 17 0.952514 0.952514 0/17/0 0.0000

TOTAL 726

AVERAG

E 0.935589 0.923663 114/726/2 0.1570

“Batting Average” Of MarianaPredict

23

Of the 726 SPARs, only 114 were categorized correctly. The majority (610) were not assigned to any

category. The good news is only two SPARs were categorized into the wrong class. The results varied

considerably by category and apparently independently of the number of training examples.

These results lead us to hypothesize the possibility of potential improvements in the MARIANA tool

for increased productivity. There may also be more optimum numbers of categories or choices of

categories. Any such efforts would require coordination with NASA Ames to better understand the

interdependencies and are beyond the scope of the current effort.

 Even though the productivity is low, the MARIANA tool is still useful for classifying software

anomalies. It takes very little effort to run MARIANA (after set up) and it quickly classified 16% of

anomalies correctly. The error rate is a very low 0.3% (points to a possibility of adjusting the algorithms

to make MARIANA more likely to make category calls, albeit with a higher risk of incorrect calls).

4.3 Expand Data Set to Other Databases

With the MARIANA tool configured and validated against the previous data, it was time to see how it

performed with different data. We collected an additional 2896 SPARs from flight-critical software on

other aircraft programs. This data followed the same general format, but was compiled by different

engineers on different programs over a different time frame. It should therefore represent how generally

the developed models might apply to any flight critical software.

The new data was prepared with the pre-processing script. MarianaPredict was called on this data

against each of the 22 models produced from training with the previous 726 SPARs. Yet another PERL

script was used to make the successive calls.

$num_runs=22;

print "num_runs=$num_runs\n\n";

foreach $i (1..$num_runs){

 $run_printout = `java -Xmx512M -Djava.library.path=.\\ MarianaPredict -m test\\Cat_$i.model -t

..\\data\\root_cause.txt -o test\\SparCat${i}test.csv`;

 print "Run $i output:\n$run_printout\n";

}

MarianaPredict Script

24

This created a file for each of the 22 categories with a determination on whether each of the 2896

records was in that file. These files were merged together. Positive numbers indicate a record is in that

category. Negative numbers indicate the record is not in the category. The actual Raw Data is a 22 x 2896

matrix which is too large to provide here. MarianaPredict performance on the expanded data is

summarized below:

Expanded Data Statistics

318 of 2896 SPARs were categorized which represents 11% of the records. Of these, 54 SPARs were

placed in multiple categories. The remaining 264 SPARs placed in a single category represent 9% of the

total. It should be noted that the categories are not mutually exclusive, so placing a SPAR in multiple

categories may not be incorrect. Indeed, that may be a benefit from an automated taxonomy; it should

place SPARs in ALL relevant categories, while human experts tend to place them in only the most

appropriate category. A quick check of the SPARs placed in 3 or 4 categories shows that some of those

placements were in error. Many of the placements in 2 categories seem reasonable.

This placement performance is reasonably consistent with MarianaPredict on the original data (16%

placed). A similar 0.3% error rate would equal 9 SPARs incorrectly assigned. While we did not submit

the results to a detailed review by subject matter experts, a top level estimate is this is approximately the

number of errors MarianaPredict produced on the expanded data.

As noted previously, it may be possible to tweak the MARIANA algorithms to force more record

classifications if we accept a higher error rate. For the purposes of software anomaly taxonomy, this holds

some promise. Taxonomy errors may be less important than failures to classify.

Number

of

SPARs

Different

Categories

Number of

Placements

 0 >4 0

 3 4 12

 4 3 12

 47 2 94

 264 1 264

 2578 0 0

TOTAL 2896

Placed 318 >0 382

% Placed 11%

25

The results on the expanded data correlate well with the original data:

CAT # CATEGORY INSTANCES

PREVIOUS

BATTING

AVERAGE

1 Algorithm 0 0

2 Configuration Management 86 0.325

3 Data Definition 0 0

4 Data Handling 97 0.2667

5 Documentation 153 0.5301

6 Equation / Calculation 0 0

7 Failure Detection 0 0

8 Failure Isolation 0 0

9 Failure Management 0 0.1667

10 Incorrect Signal / Data 11 0.4043

11 Initialization 0 0.2143

12 Logic 0 0.0185

13 Memory Address 0 0.1

14 No Requirement 0 0

15 Other 0 0

16 Range 0 0

17 Requirements 0 0

18 Reset Logic 0 0

19 Scaling Factor 0 0

20 Self-Test 0 0.0909

21 Synchronization / Timing 35 0.1892

22 System Integration 0 0

TOTAL 382

Mariana Predict Performance On Expanded Data

Compared To Original Data

The categories with the most placements match the training data. Notice the number called in a

category is highest for those categories which were previously correct the most often. This implies the

26

models for those categories are useful on a larger data set. Conversely, the models associated with Scaling

Factor (for example) do not appear to be effective on either data set.

The implication is some of the categories are not modeled well. This could be due to the MARIANA

algorithms or the category choices themselves. A reasonable effort was already expended on choosing the

categories and any further improvements really require coordination with the MARIANA experts.

27

5.0 Conclusions

The potential for auto-classification algorithms to generate a failure taxonomy from software problem

reports appears promising. Because software anomalies are generally documented in free form text, auto-

classification tools capable of directly examining this text without significant manual supervision would

be very helpful in understanding software health trends as the databases of software anomalies are far too

large and subject matter experts are too valuable to inspect every record manually to develop a failure

taxonomy. Auto-classification tools may be the only practical method of “mining” the vast amount of

available data for software anomaly trends and failure modes

The software failure taxonomy developed under CD-SHM was partially validated by the reproduction

of the identified patterns of software failures over a much larger dataset. This provides evidence that at

least some of the indentified failure types are fundamental to flight critical software development. Overall

results showed potential for auto-classification algorithms to derive a failure taxonomy, and the Mariana

tool was moderately successful in classifying the anomalies identified under previous tasking. The use of

auto-classification algorithms may facilitate development of an even stronger software failure taxonomy

incorporating the concept of software failures belonging to more than one category. Findings also suggest

that the taxonomy developed under CD-SHM may benefit from additional tuning to reduce ambiguity and

offer less subjective boundaries.

28

6.0 References

Windows® and Vista® are registered trademarks of the Microsoft Corporation.

HP® is a registered trademark of the Hewlett-Packard Corporation

Core™ 2 Duo is a trademark of the Intel Corporation

7.0 Appendix A

The full text of the Concept Development for Software Health Management (CD-SHM) final report

from August 4th, 2009 is included in its entirety as an appendix to this report. It has been re-formatted to

be more compatible with this document.

 SWAT-V Appendix A

FZM-9673-06

FZM-9673-06

 P a g e | 2

SWAT-V Appendix A

Concept Development for

Software Health Management

(CD-SHM)

Final Report

Contract: NNL06AA08B

Delivery Order: NNL07AB06T

CDRL A003

FZM-9673-06

04-August-2009

Prepared and Approved for Release by:

Walter A. Storm – Program Manager

LOCKHEED MARTIN AERONAUTICS COMPANY

DISTRIBUTION STATEMENT A. Approved for Public Release. Ref: AER200907017

Copyright © 2009 by Lockheed Martin Corporation.

All rights reserved.

FZM-9673-06

 P a g e | 3

SWAT-V Appendix A

Contents

Foreword ... 5

Introduction ... 6

Approach 6

Preparing the Data ... 6

Classification Details ... 6

Creating the Baseline ... 7

Creating the Failure Taxonomy ... 7

Analysis Results .. 8

Failure Classes 8

Algorithm .. 8

Bus Interface .. 9

Configuration Management (CM) ... 9

Compiler Error ... 10

Data Definition .. 10

Data Handling .. 10

Documentation .. 11

Hardware ... 12

Input-Output (I/O) System ... 12

Implementation .. 12

Inter-process Communication .. 13

Performance ... 13

Self-Test .. 13

System Integration ... 14

Tools .. 15

User/Pilot ... 15

Error Analysis 15

Background .. 16

The Risk Priority Number ... 16

Detailed Class Analysis ... 18

RPN Component Analysis ... 19

Bus Interface Error Class Profile ... 23

Configuration Management Error Class Profile .. 24

FZM-9673-06

 P a g e | 4

SWAT-V Appendix A

Data Definition Error Class Profile ... 24

Data Handling Error Class Profile ... 25

Inter-Process Communication Error Class Profile ... 25

Input/Output System Error Class Profile ... 26

Self-Test Error Profile ... 26

System Integration Error Class Profile .. 27

Root Failure Cause and Effect Relationship Analysis 27

Background .. 27

Ground Rules ... 28

Overview of Root Failure Cause and Effect Relationship Chart ... 28

Documentation and External Problems Category .. 29

Requirements Category ... 30

Configuration Management Category ... 31

Algorithm Category ... 31

System Integration / Communication Category ... 35

Self-Test Category ... 39

Application of Data Analysis Results to Evaluating Future Technologies .. 39

References ... 43

FZM-9673-06

 P a g e | 5

SWAT-V Appendix A

Foreword

Lockheed Martin Corporation, acting through its Lockheed Martin Aeronautics Company (LM Aero)

operating unit, has prepared this document for the National Aeronautics and Space Administration’s

(NASA) Langley Research Center under contract NNL06AA08B, delivery order number: NNL07AB06T.

The work documented herein was performed from October, 2008 through July, 2009.

Contributors included Jung Riecks, Walter Storm, and Mark Hollingsworth. Additional support was

provided by: Claudia Marshall, Dan Harbour, Diane Nixon, and Tom Schech.

FZM-9673-06

 P a g e | 6

SWAT-V Appendix A

Introduction

This report documents the work performed by Lockheed Martin Aeronautics (LM Aero) under NASA

contract NNL06AA08B, delivery order NNL07AB06T. The Concept Development for Software Health

Management (CD-SHM) program was a NASA-funded effort sponsored by the Integrated Vehicle Health

Management Project, one of the four pillars of the NASA Aviation Safety Program. The CD-SHM

program focused on defining a structured approach to software health management (SHM) through the

development of a comprehensive failure taxonomy that is used to characterize the fundamental failure

modes of safety-critical software.

To enable the detection and mitigation of software errors through SHM, our approach is to treat

software as another system device that exhibits failure modes according to a canonical failure reference of

legacy and emerging safety-critical software. Many SHM concepts stem from failure modes and effects

analysis (FMEA) of software in a manner similar to that used for hardware, however the failure modes for

software are not well known, and the techniques for applying a software FMEA during system design are

not widely published [1], [2]. Our goal was to address these shortcomings by quantifying the scope,

magnitude and types of fundamental software errors that manifest themselves throughout the development

of advanced flight-critical software. We developed our approach in two phases: 1) the creation of a

taxonomy for fundamental software anomalies based on data from various advanced, flight-critical

software development programs; and 2) the development of integrated risk models, mitigation schemes,

design considerations and patterns based on fundamental failure data.

The following sections document the process and results of the study.

Approach

Preparing the Data

The source of our study was the development of flight-critical software systems from a combination of

several recent, advanced development and production programs. The background information required for

the investigation and analysis was gathered from across various database systems and normalized to a

common database. We used the resulting database as the source for our error classification and taxonomy

development.

The analysis of the database was performed manually, as several subject matter experts read through

and classified each anomaly report as a type of fundamental failure. The failure types were developed

after several passes through the data, where the root causes were distilled to basic phrases or terms that

adequately describe and classify their nature. Only those terms which adequately described at least 0.1%

of all the cases studied were considered an eligible term for the fundamental failure type.

Classification Details

As it turns out, all of the raw data sources for this analysis are (more or less) freeform text. From this,

it was quickly evident that the only way to produce a comprehensive taxonomy was to read each account

FZM-9673-06

 P a g e | 7

SWAT-V Appendix A

individually. We held many meetings with our program contacts to study the current anomaly report

structures. In the current anomaly report structure, there is a multitude of information; however there is no

easy way to outline the cause classification or root cause in detail. Nonetheless, we identified areas that

still gave us some advantages. Using the current reporting system, we were able to identify the anomaly

found, the phase in which it was introduced and its severity. This information is the foundation of our

study and the basis for our recommendations.

Creating the Baseline

The first step in creating the baseline data set involved eliminating all of the unnecessary information

from the raw reports, and boiling them down to the fundamental symptoms, phases, severities, and root

causes. The steps involved in the data elimination process were:

Delete all the blank sections

Delete unimportant sections for this project. (i.e. User ID, date,…etc)

Delete ‘cancelled’ or ‘analysis’ in status

Delete ‘external’, ‘duplicate’, ‘not a problem’, ‘suspended’ in final resolution

Delete ‘No’ in confirmed problem

Delete all the data which is not a software related problem in problem product

After this purging, the resultant database was the baseline for the project.

Creating the Failure Taxonomy

There are four different sections from the anomaly reports that we receive from any given program.

These sections are the: Anomaly Behavior; Expected Behavior; Root Cause and Corrective Action Task.

All of these sections have a description field that is free format text which contains a limit of 2,000

characters. From the four sections above, we create sections that are named: Anomaly; Cause

Classification and Root Failure.

The “Anomaly” contains a very short description of the problem behavior. The “anomaly” comes from the

“Anomaly Behavior” and “Expected Behavior” sections from the original report.

The “Cause Classification” is the classification and abstraction of the failure. The “Cause Classification”

information comes from the “root cause” and “corrective action task” section of the anomaly reports.

The “Root Failure” is the taxonomy of failures. The “Root Failure” information also comes from the “Root

Cause” and “Corrective Action Task” section of the anomaly reports.

Since we do not have an outline of the Cause Classification and Root Failure, we first started with a

sample group of anomaly reports to attempt to identify a pattern of Cause Classification and Root Failure.

While we were working on this sample group, we realized that the anomaly reports are not a large enough

sample group to discern a pattern of cause classification and root failure. We decided that we needed to

FZM-9673-06

 P a g e | 8

SWAT-V Appendix A

review all of the anomaly reports to create the initial outline of Cause classification and Root Failure. The

anomaly report data contains all the life cycle of the program. After examining several hundred anomaly

reports, we started to see some patterns. The patterns enabled us to keep as much detail as possible with

respect to the Cause Classification and Root Failure while still allowing enough entries to be statistically

significant. This analysis was then refined into the final taxonomy described in the following section.

Analysis Results

Our taxonomy consists of 16 failure classes and 114 fundamental failure types. In order to define a

specific failure type, the type must provide statistical significance for the term by adequately defining at

least 0.1% of all anomaly reports studied. Each class and the fundamental types derived from them are

described in the following sections.

Failure Classes

Algorithm

The Algorithm failure class defines a family of 31 software errors that represent, in general terms,

fundamental errors in the software design. For example, errors such as invalid assumptions about the

environment in which the system operates may be considered Algorithm errors.

Algorithm Failure Class

Failure Type Definition

compound logic incorrect compound logic (i.e. and, or, nand, nor…)

data transfer/message incorrect algorithm of data transferring (refresh)

dead code leftover code form past causes a problem

decision logic
incorrect decision logic (i.e. if-then-else, case statements, begin-end,

mode transition, wrong execution sequence….)

design logic of algorithm is incorrect

engineering unit incorrect engineering unit is used in calculation

equation/calculation incorrect equation or calculation

failure detection incorrect failure detection algorithm

failure isolation incorrect failure isolation algorithm

failure management incorrect failure management logic (failure reporting)

failure reporting incorrect failure reporting or trigger logic to generate failure report

incorrect signal incorrect signal is used in calculation

initialization logic incorrect initialization algorithm

initialization of values incorrect initialization values

inverted logic inverted true or false logic

missing initialization missing initialization function

missing limiter missing limiter in the calculation

prototype missing prototype

range incorrect or unnecessary range in calculation or condition

relational operator incorrect relational operator (i.e. >, <, >=, <= ...)

FZM-9673-06

 P a g e | 9

SWAT-V Appendix A

reset logic incorrect reset algorithm

reset timing incorrect reset timing

response to detected failure condition incorrect repose to detected failure condition

sampling time incorrect sampling time

setting value/variable incorrect algorithm to setting values or variables

syntax syntax error

Algorithm Failure Class (Cont'd)

Failure Type Definition

test modeling incorrect test modeling produce incorrect values for the test

threshold incorrect threshold

timing incorrect delay

typo typo in algorithm causes disconnect between signals

validity check timing missing or incorrect or inappropriate timing of validity check

Bus Interface

The Bus Interface class defines a collection of error types that represent data source and bus

translation errors. This is a relatively focused class with the following 4 error types.

Bus Interface Failure Class

Failure Type Definition

bit position incorrect bit position

bus initialization failure bus initialization failure

data source incorrect data source is connected to bus interface

missing signal missing a signal in bus interface

Configuration Management (CM)

Although often referred to in the context of process and tools, problems within CM manifest

themselves as real problems in flight-critical software systems. Through this study, we identified the

following 6 CM failure types.

Configuration Management Failure Class

Failure Type Definition

approval delay correct version of SW was not approved.

implementation delay

incorrect version of software using incorrect version of SW

missing CR implementation missing CR implementation

FZM-9673-06

 P a g e | 10

SWAT-V Appendix A

outdated requirement did not update requirement to match a SW change

requirement incorporation delay did not update SW to match a requirement change

Compiler Error

The Compiler Error is a general class of error that is created by the tools in the software build chain.

That is, an error in any specific tool used in the process of translating source code into executable code is

considered a Compiler Error. In this study, the only type of compiler error identified was the generation

of incorrect assembly code—most likely because the tools used to build the flight-critical systems in the

study are mature and have been pre-qualified. In fact, when developing flight-critical systems using

mature software development environments, compiler errors account for less than 0.5% of all software

errors.

Compiler Error Failure Class

Failure Type Definition

Incorrect Assembly Code Incorrect Assembly Code

Data Definition

Incorrect representation of data structures in memory, data offsets and row ordering are all examples

of Data Definition errors. During this study, we identified the following 6 distinct data definition error

types:

Data Definition Failure Class

Failure Type Definition

data structure incorrect data structure

data type incorrect definition of data type

enumeration incorrect enumeration

lookup table data incorrect lookup table data

offset incorrect data offset for I/O or bus list or memory-mapped message

size incorrect bit or byte size

Data Handling

A Data Handling error is a class of software error that involves illegal, undefined or incorrect use of a

data element or variable. Data Handling errors differ from Data Definition errors in that they do not

manifest themselves at the module interface, and do not necessarily involve incorrect structure

definitions. We have identified the following 14 types of Data Handling errors:

Data Handling Failure Class

FZM-9673-06

 P a g e | 11

SWAT-V Appendix A

Failure Type Definition

bias missing or incorrect bias

bit conversion incorrect handling of 16bit and 32 bit conversions

breakpoint incorrect breakpoint

byte/bit order
incorrect byte or bit order(i.e. endianness, byte swap, LSB and MSB

reversed)

indexing improper indexing into arrays or table

input fault tolerance incorrect tolerance to detect input fault

logic incorrect data handling logic

masking data
masking data with incorrect values or not masking data which we are

expecting to be masked

memory address using incorrect memory address

mnemonics incorrect mnemonics in hash table

Data Handling Failure Class(Cont'd)

Failure Type Definition

scaling factor using incorrect scaling factor

transition logic incorrect transition logic

variable incorrect variables or variable type to access data

variable scope incorrect variable type (global, local)

Documentation

The Documentation Error is a general class that defines errors in the documentation (requirements,

design documents, flowcharts, state-charts, architecture diagrams, etc.) that lead to software anomalies

downstream in the process. There were no emergent patterns from this study to define specific

documentation error types with any statistically significant basis, even though 11% of all errors were of

this type. Fortunately, Documentation errors—having a high phase-containment ratio—are often detected

during the development phase in which they are created, or the very next phase in the process. We discuss

the significance of this in more detail later1.

1 See Error Analysis – Rankings by Occurrence.

FZM-9673-06

 P a g e | 12

SWAT-V Appendix A

Hardware

Hardware Errors are defined as a class of error that elucidate deficiencies or flaws in the physical

systems upon which the software has direct or indirect influence. This study defines 1 type of hardware

error:

Hardware Failure Class

Failure Type Definition

unexpected behavior Hardware deficiency mitigated by Software

Input-Output (I/O) System

I/O System Errors represent a class of errors that are resident in modules or subsystems which are

responsible for providing data to (and getting data from) other modules or subsystems within the

architecture. Although this class of error is not the most prevalent, I/O System errors have the highest

average severity of all the error classes. Again, the significance of this will be discussed later in the

report2. We recognize 4 distinct I/O System error types.

I/O System Failure Class

Failure Type Definition

data list incorrect data list

I/O synchronization Coordination of I/O timing, lists, etc.

order of data structure incorrect order of data structure

signal assignment missing or incorrect signal assignment

Implementation

An Implementation Error is defined as a general class of error through which a requirement or

software change request was implemented incorrectly in the source code. This study did not reveal any

significant or distinct implementation error types, and all implementation errors account for less than 1%

of all anomaly reports studied.

2 See Error Analysis – Rankings by Severity.

FZM-9673-06

 P a g e | 13

SWAT-V Appendix A

Inter-process Communication

We define, in general, Inter-process Communication Errors as incorrect hand-shaking between

processes or parallel modules. This includes coordination of resources, failure management and overall

timing issues. This study revealed 9 distinct inter-process communication error types.

Inter-process Communication Failure Class

Failure Type Definition

decision logic
incorrect decision logic (i.e. if-then-else, case statements, begin-end, mode transition,

wrong execution sequence….)

engineering unit mismatch engineering unit mismatch

failure management incorrect failure management logic

I/O synchronization I/O is not synchronized in inter-channel data box

initialization logic incorrect initialization logic

logic incorrect logic of inter-process communication

reset timing incorrect reset timing

sampling time incorrect sampling time

timing incorrect delay

Performance

The class of errors considered under the term Performance defines those errors which violate either

real-time requirements or processor utilization thresholds. During our study, we were able to statistically

substantiate the following performance error type:

Performance Failure Class

Failure Type Definition

Exceed Processor Utilization Target Exceed Processor Utilization Target

Self-Test

As part of the development process for flight-critical systems, it is necessary to incorporate into the

system a sufficient suite of pre-flight tests that verify the suitability of the system relative to the mission it

is about to perform. This test sequence; often referred to as Self Test or built-in test, is designed to provide

a go/no-go decision relative to predetermined fitness conditions. However, errors in the Self Test itself

may yield erroneous results. Such is the class of error defined by this category, from which we identify

the following 8 distinct types:

Self-Test Failure Class

Failure Type Definition

improper test condition running test with improper condition

FZM-9673-06

 P a g e | 14

SWAT-V Appendix A

design incorrect test design

inadequate requirement requirement is not specific enough to test

test timing incorrect test timing

time management inefficient use of time

value of location location contains incorrect values in test pattern

values for test incorrect values or reference for test

missing reset function missing reset function in test procedure (for either necessary or work around)

System Integration

System Integration defines a class of errors that arise when major system components come together

or interact with moderate dependency. Such errors may be obvious right at system power-up, while others

may not be identified until the system is subject to unique or unforeseen circumstances. Based on this

study, System Integration errors have the most derived types of all the error classes. We identified 24 of

them.

System Integration Failure Class

Failure Type Definition

channel synchronization channels are not synchronized

conflicting requirement conflicting requirement

change request (CR) incorrect CR was written, approved and incorporated.

data source incorrect data source is connected to bus interface

engineering unit mismatch

signals from two different systems did not agree on units (i.e. radian,

degree)

ICD and SW mismatch ICD and SW are not matching

inconsistent interface order inconsistent index(order) of I/O between systems

incorrect requirement incorrect requirement

interface incorrect interface

manual incorrect manual (flight manual)

memory use
using incorrect kind of memory (i.e. use CPU check RAM instead of

internal RAM)

missing data missing data in a table of design document

missing datapump missing data in data pump list

System Integration Failure Class (Cont'd)

Failure Type Definition

missing header file missed include header file in the main code

missing signals in ICD missing signals in ICD

missing SW update hardware changed but SW did not change

missing testpoint symbol is missing for test symbol table

no requirement there is no requirement for an issues so it needed to be created

parameter incorrect parameter

parameter order parameter order

FZM-9673-06

 P a g e | 15

SWAT-V Appendix A

rate synchronization rate synchronization

requirement not clear not enough guide lines to understand requirement

testpoint name symbol name of signal and signal in code are not the same

unnecessary requirement unnecessary requirement needed to be deleted

Tools

Unfortunately, tools also introduce errors into software systems. Through our study, we identified the

following 2 Tool Error types:

Tool Failure Class

Failure Type Definition

Algorithm tools generates incorrect signal or values

input data missing or incorrect input data so tool generate junk code

User/Pilot

Any errors associated with the operation of the system purely from the perspective of the user or pilot,

under normal operating conditions, fall under the User/Pilot class. That is, errors identified through

specific flight tests or failure conditions—perhaps employing a pilot or user—are not considered

User/Pilot errors. Through this study, there were no instances where any action on behalf of the user or

pilot caused a software failure that was not properly matched to another error class. All qualifications

considered; we identified the following type of User/Pilot error type:

User/Pilot Failure Class

Failure Type Definition

preference
results that are not necessarily incorrect or unsafe but pilots want to change so they feel

more comfortable or low Cooper-Harper ratings

Error Analysis

Once we identified the proper taxonomy, we were able to perform some useful analysis on the

resultant data. This section describes our analysis and the corresponding results.

FZM-9673-06

 P a g e | 16

SWAT-V Appendix A

Background

Similar to many risk management approaches3, our approach considers the primary drivers of

probability and severity. We also add a third dimension—the likelihood of detection. Although similar

in name to what one may encounter in a failure mode and effects analysis worksheet4, this parameter

measures how long a given type of software error is likely to remain present in the system before it is

found. That is, it is a measure of the delta between the phase in which an error is detected and the phase in

which the root cause analysis determined it was likely injected.

The primary difference between our analysis and other risk assessments is that our results are based on

data and events that already exist and have transpired rather than estimating a probability of occurrence

and a severity. We then use the entire collection of data to make predictive inferences and suggestions for

solutions that can mitigate high-risk areas through software health management.

The Risk Priority Number

The Risk Priority Number (RPN) is a fundamental measure of risk associated with each failure type.

It is a parameter, normalized to a value between 0 and 1000, which clearly indicates the relative risk

priority of elements within the taxonomy. It is calculated as:

𝑅𝑃𝑁 = 𝑂 × 𝑆 × 𝐷

Where:

𝑂 ∶= 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑂𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑒

𝑆 ∶= 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝐸𝑟𝑟𝑜𝑟

𝐷 ∶= 𝑃ℎ𝑎𝑠𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 − 𝑃ℎ𝑎𝑠𝑒𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑

Calculating Relative Frequency

The relative frequency of a class is calculated by the sum of all anomalies under that class divided by

the number of anomaly reports in the most frequent class. It is represented as a normalized number

between 0-10.

3 i.e. quantitative or probabilistic risk assessment
4 See http://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis for an example.

http://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis

FZM-9673-06

 P a g e | 17

SWAT-V Appendix A

Calculating Relative Severity

The severity term is calculated by normalizing the anomaly severity codes against a weighted scale.

Each anomaly report we analyzed had an associated severity code ranging from 1-5, where severities 1&2

directly affect safety of flight. To accurately represent this separation, we normalized the severity code as

a number between 1 and 10 according to the following table:

Calculating The Detection Parameter

The final parameter of the RPN represents how long a software error remained within the system since

the error was first introduced. That is, it is an indicator of how likely a certain class of error will go

undetected by the established verification and validation (V&V) process.

To create the parameter, we analyzed each anomaly report and calculated the weighted delta-phase

factor directly from the table below. For example, if an anomaly was detected during Integration and Test,

and the root cause of the error was found to be an error in the Requirements of that module, then the

delta-phase value is 8.

Prescriptions of the RPN Model

In general, any element with an RPN greater

than 100 can be considered high-risk. Although

this cutoff is open to conjecture, the upper end of

the RPN spectrum surely deserves attention. For

instance, the top-most element—algorithm

design—can emerge as an entire field of study in

its own right. The table to the right shows

FZM-9673-06

 P a g e | 18

SWAT-V Appendix A

elements from the entire taxonomy whose RPN is greater than 100.

Detailed Class Analysis

The following sections present a detailed analysis of each error class. The analysis shows the RPN for

each specific error type of the taxonomy as well as the type’s relative distribution profile within the class.

The following table is a summary of those error classes which have a limited number of types.

Error Class Error Type RPN

Documentation Documentation error 262

Implementation requirement implementation error 46

Tools Algorithm 30

Compiler Error Incorrect Assembly Code 29

Pilot Preference 12

Hardware unexpected behavior 8

Performance Exceed Processor Utilization Target 7

Tools input data 1

A roll-up the individual error types reveals some

notable observations about the individual error classes

themselves. Perhaps the most notable of which is that

the top three error classes—Algorithm, Data Handling

and System Integration—account for over 70% of all

software errors, as illustrated in the graph shown in

Figure 1, at right.

Figure 1 - Class-Level Analysis

FZM-9673-06

 P a g e | 19

SWAT-V Appendix A

Figure 2 – Class-Level Error Profile

Not only are the top three classes the most frequent; with RPN values between 100 and 1000, they are

also in the high-risk category, as seen in Figure 2 below.

RPN Component Analysis

At this point, we discuss the individual parameters of RPN for the failure class analysis. The most

dominant discriminator for RPN analysis is the occurrence parameter. There is some distinct

differentiation between severity and detection as well, but not nearly as drastic as occurrence. The

following sections present the results of each RPN parameter individually.

FZM-9673-06

 P a g e | 20

SWAT-V Appendix A

Occurrence Parameter

Figure 3 – Occurrence Dimension

The occurrence parameter is the most discriminating factor of all the failure classes. Figure 3, above,

shows the breakdown by failure class. Note that there are several displacements from the raw RPN

breakdown. This is because, although some errors are more frequent than others, they may not be as

severe or as hard to detect—which justifies the failure analysis across the three fundamental dimensions

of occurrence, severity, and likelihood of detection.

FZM-9673-06

 P a g e | 21

SWAT-V Appendix A

Figure 4 – Severity Dimension

Severity Parameter

Figure 5 – Detection Dimension

The severity dimension, illustrated in Figure 4 above, shows that the dominant failure class is I/O

system. That is, most errors in this class are likely to affect safety of flight—resulting in grounded aircraft

or specific operating limits.

FZM-9673-06

 P a g e | 22

SWAT-V Appendix A

Detection Parameter

The detection parameter also offers some useful insight into the nature of the errors. Figure 5 shows

that hardware and user errors exist longest in the development cycle, while implementation, tools, and

documentation error types are detected rather quickly.

Algorithm Error Class Profile

Figure 6 - Algorithm Error Profile

Considering the Algorithm failure class, overall algorithm design has the highest RPN and also

accounts for 22% of all algorithm errors. Decision logic and data transfer/messaging components come in

next; where the top three combined account for nearly half of all the algorithm errors.

Some examples of an Algorithm error may be: incorrect power-up or initialization routines after a reset

that cause failure monitors to trip in another module; good-channel average selection algorithms that

inadvertently include the bad signal in the calculation; or perhaps a set of limit values that are not used

when different loading or air vehicle configurations are selected from another subsystem. In hindsight,

these types of errors may seem obvious and may lead one to believe more unit-testing is required. The

reality is, however, that these types of errors may be so embedded in the algorithm that unit tests would

not exercise the unforeseen states properly. Consider the case of the limiter value switching algorithm. A

unit test may verify that the set of limits is properly switched under all conditions through which a request

may be made. But if the logic in the algorithm is designed to never make the proper request, the limit set

is never switched.

FZM-9673-06

 P a g e | 23

SWAT-V Appendix A

This report is not intended to provide philosophical or anecdotal justification of the data presented;

however this particular case is considered at length in [3]. Essentially, proper algorithm design requires

intimate knowledge of the environment in which the software is to operate as well as sufficient domain

knowledge to consider purposeful or inadvertent changes to that environment. This study reveals the

gravity of this error class and recommends that technologies be developed to address it.

Bus Interface Error Class Profile

Figure 7 – Bus Interface Error Profile

The bus interface errors we studied all have an RPN lower than 100, but greater than 10. Based on the

entire set of data represented in this study, RPN values between 10 and 100 could be considered medium-

risk, where RPN values lower than 10 represent low-risk items. The distribution of error reports classified

as interface error types are fairly evenly distributed across the specific types within the class, as identified

by the cumulative percentage line in red.

FZM-9673-06

 P a g e | 24

SWAT-V Appendix A

Configuration Management Error Class Profile

All CM errors are in the medium-risk RPN range. Many of these errors can be addressed by existing

processes.

Figure 8 – Configuration Management Error Profile

Data Definition Error Class Profile

Figure 9– Data Definition Error Profile

Data definition errors are also medium-risk errors and can be addressed earlier by more detailed data

and interface models.

FZM-9673-06

 P a g e | 25

SWAT-V Appendix A

Data Handling Error Class Profile

Figure 10 – Data Handling Error Profile

The two high-risk error types for the data handling error class are: scaling factor and memory address.

This is essentially the interface between subsystems and can be addressed with more detailed interface

modeling and design verification techniques.

Inter-Process Communication Error Class Profile

Figure 11 – IPC Error Profile

IPC errors are generally low-risk. Timing and synchronization errors can practically be caught only in

a lab environment, although formal analysis and design verification can address several of the others.

FZM-9673-06

 P a g e | 26

SWAT-V Appendix A

Input/Output System Error Class Profile

I/O errors are generally difficult to find during development and exist for a significant time in the

product lifecycle. More detailed and realistic modeling could address these issues, but would require a

detailed cost-benefit analysis to determine break-even points for mitigating the risk.

Figure 12 – I/O System Error Profile

Self-Test Error Profile

Figure 13 – Self-Test Error Profile

Self-test errors are of marginal concern and could be addressed through process and technique.

FZM-9673-06

 P a g e | 27

SWAT-V Appendix A

System Integration Error Class Profile

The system integration class contains many specific failure types. This observation in itself shows that

a significant amount of errors, in general, are of this class. Although software may work well in individual

modules or unit-test levels, it is when the modules are integrated with a larger system that all of the

environmental assumptions and erroneous invariants begin to surface. This error class requires an entire

dedicated study, as the root of the errors lie in the original requirements and specifications that needed

interpretation.

Figure 14 – System Integration Error Profile

Root Failure Cause and Effect Relationship Analysis

Having calculated the RPN for the Fundamental failure types, we moved our focus from individual

risk assessment to examining the relationships between the fundamental failure types. We made charts to

show the relationships. This section describes the root failure cause and effect relationship charts and our

analysis on it.

Background

When we were working on the failure type taxonomy, we realized that some of the failure types have

cause and effect relationships. For instance, the failure types of “algorithm: initialization of values”,

“algorithm: timing”, and “algorithm: initialization logic” would all be related in the failures of initializing

correctly to start a new mode during a mode transition. This has shown up in concrete examples where a

process switched into a new mode before another process generating inputs had switched to the new

mode. In this case, the analysis engineers would record the defect in one of the three failure types but it is

FZM-9673-06

 P a g e | 28

SWAT-V Appendix A

a mistake to consider that failure type in isolation from the other two. We constructed diagrams indicating

the failure types that we should consider together. We connected related failure types by arrows. The

direction of the arrows is from the broader scoped failure type to the more specific failure type. Then we

pulled together the connected parts into logical groupings centered on the largest of the 17 failure classes.

Several of the 17 failure classes ended up split between logical groupings.

Ground Rules

The relationships were not necessarily direct cause-effect relationships, but were rather a logical

correlation between the two.

An error or confusion in one area might tend to imply an error or confusion in the related area.

Each failure type appears only once in the diagrams. We split the diagrams so that no relationships were

lost. Only the requirements class appears in multiple diagrams to indicate where the requirements come

into those diagrams.

We color coded the 114 failure types to indicate their RPN percentile among the failure types by:

 - Red = 5% Highest RPN failure types

- Orange = Next 10% RPN failure types

- Yellow = Next 15% RPN failure types

- Blue = Next 20% RPN failure types

- Green = Remaining Lowest 50% RPN failure types

 In this report we call these the “RPN percentile groups”. The red and orange blocks are the “high-

RPN” failure types. The yellow and blue blocks are the “medium-RPN” failure types.

Overview of Root Failure Cause and Effect Relationship Chart

We organized the 114 failure types into related items and formed seven logical groups. The seven

logical groups are Requirement, Configuration Management (CM), External Problems, Documentation,

Algorithm, System Integration/Communication, and Self-Test.

Figure 15 – Related Root Failure Categories

FZM-9673-06

 P a g e | 29

SWAT-V Appendix A

Figure 15 shows the top-level organization of these seven groups. The “Requirements” category is at

the center because it affects virtually all of the other categories. “External Problems” category does not

consist exclusively of software problems but they are problems that require software modification to

overcome them. The “Algorithm” category is the largest and contains a concentration of high-RPN failure

types. “System Integration/Communication” is also a large category with some high-RPN failure types.

The “Self-Test” category has no high-RPN failure types. “Documentation” was a large category only

because we did not sub-divide it. We left the “Configuration Management” category as a stand-alone item

because it involves every step in the software development process. We can look at the “Configuration

Management” category as a process problem that runs parallel with other categories of problems. For its

small size, it has a large number of medium-RPN failure types.

Here is the number of different RPN percentile groups in each category:

Requirements: 2 orange, 1 yellow, 1 green

CM: 2 yellow, 4 blue, 2 green

External problems: 1 blue, 3 green

Documentation: 1 red

Algorithm: 3 red, 9 orange, 6 yellow, 8 blue, 20 green

System Integration/Communication: 1 red, 1 orange, 7 yellow, 8 blue, 17 green

Self-Test: 1 yellow, 2 blue, 13 green

Documentation and External Problems Category

Figure 16 – Documentation Category

Figure 16 shows the Documentation category. Documentation errors are in the top 5% RPN due to the

rate of occurrence. These failures accounted for over 11% of the total failures. The severity score was

average and the detection score was low (meaning they were easy to detect and were removed quickly).

We did not analyze or sub-divide this failure type category. We did not try to analyze the relationships

between these failures and others. We did not try to determine if other failures influenced the

documentation errors or vice-versa. There might be some connection between them.

FZM-9673-06

 P a g e | 30

SWAT-V Appendix A

External

Problems

Compiler Error

Incorrect Assembly Code

Hardware

 unexpected behavior

Pilot

preference

system integration

manual

Figure 17 – External Problems Category

Figure 17 shows the External Problems category. It is a “Catch-All” category for a small number of

problems. The root causes of these failures are all external to the core software development process of

the application code. They are primarily are due to requirements for the application software to mitigate

unexpected failures in other areas. Except for “Compiler Error: Incorrect Assembly Code”, all these

failure types are in the low-RPN range (green). The “Compiler Error: Incorrect Assembly Code” has

unremarkable severity and detection scores. The “Pilot: preference” failure type is due to test pilots not

agreeing or changing their preference. It has a low severity score but a relatively high detection score.

None of these failure types has a high occurrence rate, but their detection scores are high. The “system

integration: manual” refers to errors in the flight manual. This failure type has an especially high

detection score although its severity score is low.

Requirements Category

Requirements

system integration

conflicting requirement

system integration

incorrect requirement

system integration

no requirement

system integration

requirement not clear

Figure 18 – Requirements Category

Figure 18 shows the Requirements category. These are all system integration problems. Requirements

rarely conflict and are usually clear enough. They are more likely to be missing or incorrect. There are

FZM-9673-06

 P a g e | 31

SWAT-V Appendix A

two high-RPN failure types. The RPN differences of the Requirements category are mostly due to the rate

of occurrence. There are no clear relationships between these failure types or with any other failure types.

Configuration Management Category

CM

approval delay

CM

incorrect version of

software

system integration

ICD and SW mismatch

system integration

inconsistent interface

order

system integration

missing SW update

CM

implementation delay

CM

missing CR

implementation

CM

requirement

incorporation delay

CM

Figure 19 – Configuration Management Category

Figure 19 shows the Configuration Management category. Most of these failures are related to Change

Request (CR) process delays and their impact on system integration. This category has two yellow failure

blocks and several blue blocks. It is a significant failure category. The RPN differences of the

Configuration Management category are mostly due to the rate of occurrence. This is the first category

with relationships between failure types. Several “system integration” failure types appear in this

diagram because of their relationships with the “configuration management” failure types. The two

yellow blocks, “CM: implementation delay” and “CM: missing CR implementation” are grouped together

with the green “CM: requirement incorporation delay” to collect the problems with delays in

already approved changes. This collection relates to several “system integration” failure types, all

having to do with incompatible software or interfaces. The “system integration: missing SW update”

failure type can be caused by the “CM: implementation delay”, or “CM: missing CR implementation”

failure types. The same relationship is true for the “system integration: inconsistent interface order” and

“system integration: ICD and SW mismatch” failure types. The green “CM: approval delay” is green

because it does not occur often, but its severity score is high. It can contribute to the “CM: incorrect

version of software” failure type, which is blue.

Algorithm Category

Figure 20 illustrates the Algorithm category. This is a significant and interrelated category of failure

types. It shows the relationship between algorithm design, inter-process communication, and requirements

category. It is the most significant collection of related failure types. It includes the top two RPN-ranked

failure types, “algorithm: design” and “algorithm: decision logic”. The “algorithm: design” failure type

FZM-9673-06

 P a g e | 32

SWAT-V Appendix A

alone accounts for over 10% of all the root failures in the study. The next highest is “algorithm: decision

logic”, which accounts for over 5% of all the root failures in the study. The final red root failure type in

the diagram is “algorithm: failure management”. This type involves the logic of signal redundancy,

selection, and verification. It accounts for about 3% all the root failures. The designs in that system should

not require a great deal of modification in the normal design loop. Another noticeable part of the

Algorithm diagram is the three related orange failures of “algorithm: initialization logic”, “algorithm:

timing”, and “algorithm: initialization of values”. Together these are over 4% of all the root failures. This

failure type includes problems in timing of initializations when modes change and the inputs are not

correct for the new mode. In addition, state variables may not have been reset correctly when new mode

started running. Several of the failure types group together. In the upper left of the diagram is a set of

three signal definition problems, “data definition: lookup table data”, “algorithm: incorrect unit”, and

“algorithm: incorrect signal”. These are problems which are interior to the algorithm but they can be

influenced by the “system integration” fault types of “system integration: missing data” or “system

integration: engineering unit mismatch”. This set of failure types can cause “algorithm:

equation/calculation” failure types. Another significant collection of failure types deals with the range

processing of signals. It consists of the “algorithm: range”, “algorithm: threshold”, and “algorithm:

missing limits” failure types. This set also can influence the “algorithm: equation/calculation” failure

type. One set of failures which is unrelated to other failures is the set of random “mutation” type failures,

“algorithm: syntax”, and “algorithm: typo”. Usually the compiler detects these types of errors

immediately but the ones that slip through can be very difficult to detect. It is difficult for the compiler to

detect a variable name typo that ends up matching the wrong, but otherwise valid, variable. It is also

difficult for compilers to spot the “if(A = B)” vs. “if(A == B)” problem unless the first one is

specifically disallowed. These failures can go undetected for a long time. We have also included

“algorithm: dead code” in this set although it may have relationships to CM failure types which we have

not established yet. The “algorithm: reset timing” failure type is green. It has a low occurrence rate but a

high severity score. It is influenced by the “algorithm: reset logic” failure type, which is orange due to a

high occurrence rate. The “algorithm: reset timing” failure type is secondary to the “algorithm: reset

logic” failure type. There is a significant set of discrete logic problems consisting of (listed in order of

decreasing RPN) “algorithm: decision logic”, “algorithm: inverted logic”, “algorithm: relational

operator”, and algorithm: compound logic”. The “algorithm: decision logic” failure type is red due to its

high rate of occurrence. It may include some failures that belong in the other more specific logic

categories if we examined them further. These failures are largely self-initiated due to the complexity of

the logic and do not have relationships to other failure types. They are structural / discrete logic defects

that may be detected if formal methods can be applied. Toward the right of the diagram are several failure

management / failure reconfiguration blocks. Many of these are have significant RPN values. The entire

collection is “algorithm: failure detection”, algorithm: failure reporting”, “algorithm: failure

management”, “algorithm: failure isolation”, “algorithm: response to detected failure condition”,

“interprocess communication: failure management”, “data handling: input fault tolerance”, and “bus

interface: bus initialization failure”. At the lower left of the diagram is a large collection of low-RPN

green/blue blocks dealing primarily with interprocess communication timing problems. The red

“algorithm: design” block has already been discussed.

F
Z

M
-9

6
7

3
-0

6

P
a

g
e

 | 3
3

S
W

A
T

-V
 A

p
p

en
d

ix
 A

FZM-9673-06

 P a g e | 34

SWAT-V Appendix A

Figure 20 – Algorithm Category

FZM-9673-06

 P a g e | 35

SWAT-V Appendix A

System Integration / Communication Category

F
Z

M
-9

6
7

3
-0

6

P
a

g
e

 | 3
6

S
W

A
T

-V
 A

p
p

en
d

ix
 A

Figu

re
 2

1
 – Syste

m
 In

te
gratio

n
 / C

o
m

m
u

n
icatio

n
 C

ate
go

ry

FZM-9673-06

 P a g e | 37

SWAT-V Appendix A

Figure 21 shows the System Integration / Communication Category. It includes a significant number

of high/medium RPN failure types and includes many relationships.

FZM-9673-06

 P a g e | 38

SWAT-V Appendix A

The high-RPN root failures here are “algorithm: data transfer/message”, “data handling: scaling

factor”, and “data handling: memory address”, which account for about 4%, 4%, and 3% of the all the

root failures, respectively. These data dictionary interface problems can be dealt with using system

engineering tools such as SysML or AADL. The tools should be system-wide. Part-task interface controls

do not have the same benefits unless they are coordinated. The “data handling: scale factor” failure type

points to the difficulty of tracking fixed-point scaling correctly through all the engineering units,

hardware interfaces, etc. The engineering disciplines use different units when they address fixed point

scaling and bias. Electrical diagrams will have Volts, current, and other engineering units. Software

engineers want least significant bit (LSB) values, full range max/min, etc. And all are further complicated

by biases, both physical and computational, along the way. Possibly engineers need a tool to help with

fixed-point range, bias, scale, engineering units/LSB, etc. Several system integration / communication

blocks have already appeared in other diagrams where they had significant relationships with the blocks

there. We divided the diagrams so that no relationships were broken. All the blocks here connect to the

main diagram. The red “algorithm: data transfer/message” failures can be caused by the set of “data

handling: logic” and “data handling: transition logic”. They can, in turn, cause “algorithm: validity check”

failures. In the upper, center of the diagram is a collection of missing interface items, “system integration:

missing signals in ICD”, “bus interface: missing signal”, and “system integration: missing datapump”.

These are all green blocks and are not very significant. They can be caused by the “I/O system: data list”

failure type which is yellow due to a high severity score. In their turn, they can contribute to the “data

handling: indexing” failure type, which is yellow due to a high occurrence rate. This reflects problems

caused by shifting data when a signal is missing. In the bottom left of the diagram is a collection of

medium-RPN data definition failure types. They are “data definition” offset, size, data type, and data

structure. The final large collection of failure types is the data handling collection to the bottom right of

the diagram. These are data dictionary issues. The “data handling: scaling factor” and “data handling:

memory address” failure types are the most significant by far. They have been discussed above.

FZM-9673-06

 P a g e | 39

SWAT-V Appendix A

Self-Test Category

Figure 22 – Self-Test Category

Figure 22 shows the Self-Test Category. There are no high-RPN root failures here and only three

medium-RPN failure types. The most serious root failure is the yellow “outdated requirement” root

failure which accounts for slightly over 1% of all the root failures. There are two blue failure types, “self-

test: values for test” and “tools: algorithm”. These reflect the problem of generating “truth data” from the

tools for use in the self-test. All the rest of the blocks are green. At the top, center of the diagram are a

collection of top-level design problems. They are “self-test procedure: missing reset function”, “self-test:

test timing”, “self-test: time management”, and “performance: exceed processor utilization target”. At the

center, right are two green blocks that reflect the need to include testpoints in the code for monitoring or

test value insertion. They are the “system integration: missing testpoint”, and the “system integration:

testpoint name” failure types. At the bottom, left of the diagram are two requirements issues: outdated and

unnecessary. At the bottom right of the diagram are several issues with modeling and generating valid

truth data.

Application of Data Analysis Results to Evaluating Future Technologies

Figure 23 – Related Root Failure Categories

FZM-9673-06

 P a g e | 40

SWAT-V Appendix A

The data analysis results can be used to analyze the impact of the technologies, for example, possibly

applying formal methods to the algorithms. Looking at figure 20, the algorithm-related defects are a

mixture of discrete logic errors like “algorithm: decision logic” and floating-point calculation errors like

“algorithm: design”. An application of formal methods could be used to identify and remove discrete

logic defects in the early development stages. In figure 20, formal methods would reduce the number of

errors in “algorithm: decision logic”, “algorithm: failure management”, “algorithm: initialization logic”.

An adjustment could be made in the Occurrence or Detection numbers for those entries in the RPN

calculations. Under the System Integration / Communication section, the collection of data handling

failures points to the possible benefit of an automated data-dictionary driving the interface generation

tools. Additionally, evidence points to the benefits of having model based design tools that encompass the

entire system. In particular, requirements failure types may be reduced by using system level design tools

like SysML or AADL. Conflicting or imprecise requirements would be spotted by Formal Methods where

it could be applied. In general figure 20, shows that the data dictionary information is a problem (size,

location, address, bit order, etc). However, it is very hard to find a single technology that covers the entire

problem space.

However, it is believed with high confidence that a significant number of software problems can be

reduced before entering the next phase of the program by identifying the correct combination of

technology to cover the problem space.

Here is one example of how the data analysis results can be used to identify possible combinations of

technologies for software health management:

1. Create Matrix of evaluation of technologies with each root failure.

Select technologies/ methods that you want to examine.

Prepare a table that contains information of the RPN and which factor is the most and the least

dominating factor of the RPN. (Color Code in example. Orange = the most dominant factor, Yellow =

2nd dominant factor, and Green = the least dominant factor)

Evaluate all the Technologies/Methods chosen with respect to the occurrence, severity, detection of

each root failure. (Figure 23 illustrates this process)

2. Evaluate each Technology/Methods by affectability with respect to the most and least dominant

factor of the RPN. (Figure 24 is the example of this process)

FZM-9673-06

 P a g e | 41

SWAT-V Appendix A

Figure 24 – Related Root Failure Categories

3. From Step 2, come up with different combination of Technologies/Methods to use and evaluate

them. From Table 2, we can draw conclusions that “method 1” is the most effective for Software Health

management method. However, it does not cover all the issues. Figure 23 provides some additional

example tables that show how many problems that can be covered with different combinations of

Technologies/Methods.

Individuals that are developing methods or tools for software health management and using currently

available methods or tools can benefit from this kind of practice.

FZM-9673-06

 P a g e | 42

SWAT-V Appendix A

Figure 25 – Combining Technologies and Methods

For the Developer of methods or tools for software health management, this practice can be their

assessment, and it will help users identify what kind of methods they are going to use for their project.

Here are some software development technologies which are of interest in the literature and research:

Automated Verification Management

Formal Requirements Specifications

FZM-9673-06

 P a g e | 43

SWAT-V Appendix A

Requirements and Traceability Analysis

Formal Methods

Computer-Aided System Engineering

V&V Run-Time Design

Rigorous Analysis for Test Reduction

Requirements and Design Abstraction

Probabilistic/Statistical Test

Testing Metrics

It would be valuable to examine some of these technologies with the new information obtained from

this study. Selection of the emerging technologies to be evaluated should be guided by the “lessons

learned” in research efforts such as VVIACS (Validation & Verification of Intelligent and Adaptive

Control Systems), CerTA FCS CPI (Certification Techniques for Advanced Flight Critical Systems –

Challenge Problem Integration), and MCAR (Mixed Criticality Architecture Requirements). Several

technologies including Auto-Code, Auto-Test, Rapid Prototyping, System Model-Based, and Simulation-

Based Design are mature enough to already be established with recognized benefits.

Future research should include analysis of some additional programs to reflect a larger variety of

software development processes.

References

[1] Goddard, P.L., “Software FMEA Techniques”, Proceedings of the Annual Reliability and Maintainability

Symposium, January 2000.

[2] Goddard, P.L., “Validating the Safety of Embedded Real-Time Control Systems using FMEA”, Proceedings of

the Annual Reliability and Maintainability Symposium, January 1993.

[3] Jackson, D., Thomas, M., and Millett, L., Eds. Software for Dependable Systems: Sufficient Evidence? National

Research Council. National Academies Press, 2007.

	Release Letter F OCR
	Initial Determination_Page_1
	Initial Determination_Page_2

	NNL06AA08B NNL07AB06T NASA CR-2011-217150 F
	NNL06AA08B NNL09AD66T SWAT V Final Report F
	CoverPaqeTemplateR.pdf
	Description of document: Two National Aeronautics and Space Administration (NASA) Studies on Software Anomalies, 2010-2011
	Posted date: 04-January-2021
	Source of document: FOIA request LaRC FOIA Public Liaison NASA Langley Research Center MS 151 Hampton, VA 23681 Email: larc-dl-foia@mail.nasa.gov

