BEACONS

BEACONS AS AIDS TO NAVIGATION

Radar beacons afford information to radar-equipped aircraft which has been found to be of value in navigation. As long as aircraft are provided with pulsed-radar systems, it will undoubtedly continue to be valuable to provide ground-radar beacons, since at a very slight expense in weight and complexity in the aircraft this provides a new and accurate navigational aid for all such radar-equipped aircraft. Radar beacons permit accurate homing, and they permit accurate navigation across country with respect to any point designated by beacons. With suitably designed radar sets they require less equipment in the aircraft than almost any other navigational system except ground-radar sets working on the echo from the aircraft.

In general, however, radar beacons constitute a secondary navigational aid rather than a primary one. There are two reasons for this.

The first is that they are available only to radar-equipped aircraft or to aircraft which carry special interrogator-responsors. Since it appears unlikely that every aircraft will be so equipped, this limits their usefulness.

The other is their limited range. Radar beacons, on frequencies above 100 megacycles are limited to horizon or line-of-sight range, and this depends upon the altitude of the aircraft. Thus, aircraft which fly on very long-range missions will require a long-range navigational aid of the nature of Gee or Loran in any case. Furthermore, radar-equipped aircraft will often be equipped with computers such as the GPI for navigational purposes and a well-designed microwave radar is itself a quite useful navigational instrument. There are, to be sure, many occasions on which radar navigation becomes unsatisfactory for a variety of reasons, such as inability to recognize difficult terrain and atmospheric disturbances such as clouds and storms. All in all, radar beacons constitute a secondary navigational aid.

Radar beacons are particularly adapted for rendezvous purposes and their use on ships is of particular value for joint aircraft-ship operations.

The design of radar beacons to be used in the future must, of course, be contingent upon the type of radar that will be installed in aircraft. During the recent war a considerable variety of ground beacons had been developed to work with a considerable variety of airborne radar sets. The only extensive development of airborne radar sets with which beacons have not been associated has been K-band radar. In this case the development of K-band beacons was not undertaken because of the technical difficulties which were involved at the time and because of the large amount of atmospheric attenuation which might be encountered. The first of these difficulties has already disappeared to a large extent; however, the difficulty of atmospheric attenuation will almost certainly continue to make it inadvisable to develop radar beacons for long- (horizon) range navigation at those frequencies at which atmospheric at-
tenuation may become large. In practice this will limit long- (horizon) range radar beacons to wavelengths of 1.8 cm or longer.

It is not necessarily self-evident that the radar-beacon frequency and the radar frequency should be the same, and there is a philosophy which says that beaconry is distinct from radar and ought not to be tied up thereto. This philosophy has, in fact, been adopted in the Mark V, IFF-UNB program, in which a complete beacon system has been developed, quite independent of all airborne radar, in the 1000-megacycle region. By a complete beacon system is meant a system containing transponders, airborne interrogators and display systems which permit the use of these beacons independently of any radar equipment. The advantage of such a system is that it provides a universal beacon system in the sense that anyone carrying the proper interrogator-responder can see these beacons and that no change in the frequency or characteristics of the beacon will be required because of the introduction of a new radar set which is different for some reason from previous radar sets. The improvements which have followed upon one another so rapidly in radar sets have rendered beacons obsolete as they render radars obsolete, and the universal beacon system is designed to eliminate this obsolescence. This argument is accordingly based on expediency rather than principle, since the improvements that warrant new radar sets may apply as well to new beacons.

The development of a universal beacon system has in fact been associated with the development of a universal IFF system, the need for which is a subject which it is not necessary to discuss here. It has accordingly been rather consciously divorced from the development of airborne radar equipment. It is proper at this point to say that this very fundamental question, which is of prime interest in the development of beaconry, is one on which general agreement does not exist. There are able exponents of the universal beacon system, whose ideas have been outlined above.

We propose here the counterargument, which holds that the development of ground beacons is associated with that of airborne radar, and not with IFF. The technical similarities between IFF and beacons (both are transponder systems) ought not to prevent us from seeing that tactically they are entirely dissimilar. The major employment of IFF transponder equipment is in aircraft, for identification from ground, ship, and to a slight extent, airborne radar. The employment of navigational beacons is on the ground, in conjunction with airborne radar only. Ground and ship radar are very different from airborne radar, which tends to the shortest possible wavelength. Transponder requirements are correspondingly dissimilar.

During the present war, the divergent viewpoints presented above resulted in the parallel development of two entirely different kinds of beacons. The Mark III IFF 176-megacycle beacons and the Mark V IFF, United Nations Beaconry systems represent the universal system of beaconry, and the AN/CPN-3, 6, 8, and 17 and the AN/UPN-1, 2, 3, and 4 are examples of the ad hoc beacons built especially to work with microwave airborne radar. So far as beacon navigation alone is concerned, the results have entirely justified the proponents of ad hoc beaconry. In England, unlike the U. S., an official decision between these systems was quite unnes-
sarily made, and as it happened, was in favor of the universal beacon system. The pressure of reality has even then forced the designers of British airborne radar to incorporate *ad hoc* beacon provisions in their equipment, showing, perhaps, the unwisdom of making decisions on philosophical rather than technical and empirical grounds. It may be argued that had the proponents of universality carried the day entirely, the results would have been disastrous in hampering both technical development and military application.

The entire argument above is based on the navigational use of ground beacons only. In fact, however, it has turned out that since the *ad hoc* beacons were microwave beacons and the universal beacons were not, that many other applications, such as beacon bombing (Microwave-H) were possible, so that the military value of the beacons was vastly enhanced over what it would have been had they been used only as secondary aids to navigation.

The Design of Navigational Beacons.

Since the airborne radar of the future will almost certainly be a microwave radar, it follows that the radar beacon of the future will likewise be a microwave beacon.

Should airborne radar become standardized at one particular frequency band or at a few frequency bands the problem of ground beacons will be relatively simple. Should the frequencies of airborne radar be considerably diversified covering, say, thousands of megacycles, a somewhat more difficult technical problem will arise. However, it is certainly true that making radar beacons to conform to the existing radar set requirements is the proper philosophy to follow; this must be considered an argument against too great a diversification of radar frequencies.

The important characteristics of microwave beacons which distinguish them from other types of navigational aids are: (1) the extremely precise range measurements possible, (2) the very accurate homing which can be done with a microwave beacon, and (3) the comparative independence from all meteorological disturbance.

Design of Radar Sets for Beacon Operation.

It must be emphasized that beacon reception must be considered while the radar is in the design stage, and the radar set should be built with the best beacon reception possible.

In order to make the most efficient use of beacons, airborne radar sets as well as ground radar sets which are to work with beacons should be designed with that end in view from the beginning. It is not satisfactory to design a radar equipment and then add beacon provisions as a minor afterthought. The fact that many of our early radar sets were designed this way has been a considerable handicap for many purposes. Recent radar sets have been designed with beacon operation in mind, much more than was previously the case, and their beacon operation is accordingly far more satisfactory.

Radar sets should have the following facilities on beacon operation:

(1) The turning for beacons should be automatic. No local oscillator adjustment by hand should be necessary.
(2) The bandwidth of the receiver during beacon reception should be sufficiently great so that all beacons will be received which are operating properly. This means that all tolerances in frequency drift both within the radar set and within the beacon must be so accounted for that sets which are operating properly will all work together. In fact, a certain amount of excess bandwidth in the beacon receiver in the aircraft is desirable to provide for some leeway in adjustment.

(3) Provisions should be made for radar reception alone, beacon reception alone, and for simultaneous beacon and radar reception. None of our present-day airborne radar sets have this feature, but it has proven to be extremely valuable on ground radar equipment. The APS-10 does not have simultaneous beacon and radar but can be quickly switched back and forth between beacon and search functions. It has been shown that the provision of this possibility would be of great value.

Provisions of more than one beacon frequency is worth considering in the design of beacon systems. This will increase the amount of information which can be conveyed to aircraft by beacons.

It is further true that navigation with ground beacons is not the most important function of beacons, nor is it the major reason for including beacon facilities in military airborne radar sets. The tactical functions of beacons discussed elsewhere provide the major military uses of beacons.

TACTICAL EMPLOYMENT OF BEACONS

Beacons for Paratroop Use.

The use of beacons for paratroop operations has thoroughly justified itself. More than any other aid, beacons have helped to insure the success of hazardous paratroop missions. Their use for this purpose is firmly established.

In paratroop operations, beacons are used in several different ways:

(1) As navigational aids at home bases and at points along the route taken by the troop-carrier aircraft.

(2) As H-system markers for dropping pathfinders. This use was about to be tested in the ETO when the European war ended.

(3) As markers for DZ’s (dropping zones). In this use the beacon is carried down by the pathfinders and set up by them, so that subsequent serials of the main force may home upon them.

Beacons for paratroop use do not require a very long range. They must be light, rugged, and dependable. In the past the standard paratroop beacon has been the Eureka. This was used in conjunction with the Rebecca interrogator. These equipments have proven dependable and very valuable. Recently the use of microwave beacons for paratroop operations has been considered and, in fact, introduced on a small scale. Large-scale use has not yet been tried.

Paratroop beacons require a considerable degree of security. This is because there is always danger that a beacon may in the course of a paratroop-dropping operation fall into enemy hands and be set up by him as a decoy. This has, in fact, happened
in the war. The situation is saved in this case by providing some means of coding as a security measure. In Eureka, a hand key for Morse coding is provided.

It is also extremely desirable that beacons be viewed on a PPI scope so that disposition of a series of such beacons on the ground may be viewed. This requires high resolution. Since only short range is required the possibility of using very short wavelengths which increases the ease of getting good resolution must be strongly considered. This must be weighed against the desirability of a presentation which only shows to the radar operator the particular beacon in which he is interested. This question cannot be considered to have been settled.

Beacons for Air-Ground Cooperation.

The use of beacons for air-ground cooperation has hardly been touched upon as yet. A great deal of experimental work needs to be done to discover just how beacons on the ground near the front lines, on the front lines, in armored divisions, moving columns, self-propelled guns, and all the infinite variety of ground units can best be used to communicate information to supporting aircraft. (We are assuming that it will continue to be necessary to support ground troops with piloted aircraft.) Very little is known as yet as to how such cooperation can be enhanced by the use of beacons. It seems clear, however, that beacons can contribute to it in some manner. Certainly the use of beacons on the ground, together with suitable radar-equipped aircraft in the air, will be of enormous advantage to the ground commander since the use of beacons and radar simultaneously offer him a method for telling where his troops are even if they themselves do not know. The greatest need in this field is not for the development of new radar or new beacons but for experimental work in maneuvers or preferably under battle conditions to discover just how this cooperation can best be carried out. Such experiments have been, in fact, projected. Any recommendations for future action must depend upon the results obtained. The provision of relay radar at fighter control centers for receiving the display information from a remote MEW opens up the intriguing possibility of using an airborne radar set to superimpose a beacon-marked frontline on a painted-in radar map of the vicinity, and to display this directly at headquarters.

Airborne Beacons for Air-to-Air Use.

Airborne beacons which work against airborne radar for air-to-air beaconry have been developed but had not, in fact, been much used in the war. Such beacons are of use in rendezvous and assembly problems. The application of such equipment in the future will, of course, depend upon the existence and nature of such problems. Perhaps aircraft in the future will not fly in formation, in which case assembly problems will not arise, nor may there be any rendezvous needed, which would eliminate the requirement for such beacons. Both of these developments appear unlikely, if only for the reason that until the techniques of navigation, bombing, and traffic control become very much simpler than at present, it does not appear that the average air crew will be able to cope with the military problems involved independently.

The uses that have been contemplated for airborne beacons in conjunction with airborne radar include use in pathfinders or flight leaders on which following planes
can assemble. This is only possible where all aircraft are radar equipped as in the Twentieth and Twenty-first Bomber Command. Their use in fighter escort planes has also been considered.

Miscellaneous Uses of Beacons.

Lightweight or portable ground beacons and airborne beacons will undoubtedly be discovered to have many uses which had not come up in the war. The possibility of being able to mark any desired point or aircraft or vehicle with a distinguishing tag gives a dimension to radar which can be of extreme value. This has been demonstrated in the use of airborne beacons with ground radar for all sorts of control purposes. Beacons have been used on ships at sea as identifying markers for aircraft, to guide them over previously designated positions as in troop-carrier operations. They are used also to designate routes, as markers, and to designate and outline runways as a beam-approach landing system. They have been used in this way by night fighter planes equipped with radar.

Other applications include the use of beacons as "Jellyfish," a droppable buoy containing a beacon, used as an aid in sea-search operations to mark a point on the ocean, "Walter," a very light air-sea rescue beacon to be used in life rafts, and possibly as target markers, dropped by pathfinder aircraft to designate targets to the main bombing force.

THE USE OF BEACONS FOR BOMBING

Ground Beacons.

The use of ground beacons at known locations to permit the bombing of targets by aircraft within radar line-of-sight range of the beacon is known as the "H-system." In this system two beacons at known points are used to survey in an aircraft which can accurately measure its range from these two ground beacons. Since the range measurements depend ultimately upon measurements of time, and very accurate standards of time are available in the form of crystal oscillators, it has proved possible to make extremely accurate measurements of range even in moving aircraft. No angular measurements are required in H-bombing. Accordingly, the errors that are encountered can be reduced almost entirely to operational errors and the instrumental errors can be eliminated almost completely.

Of all the existing H-bombing systems, Shoran is the only one in which instrumental accuracy has in fact been carried to this point. In the other two systems, Micro-H and Gee-H, this point has not yet been reached. This is perhaps not too surprising since Shoran is the only one of these systems which was conceived, engineered, tested and produced in an orderly and logical fashion. Both of the other systems have been afterthoughts imposed upon already existing equipments.

The proven accuracy of the H-type bombing is thus due to the excellence with which range measurements can be made and the relative simplicity of computers which use data which are already given in ground coordinates. There are several features of the system which are, however, susceptible to improvements. In the first place, present H-systems are confined to the use of a limited variety of courses. The most popular courses in all systems are the circular courses flown with one of the
ground stations as a center. Such courses are often the easiest to fly and the easiest to compute. However, they severely limit the tactics of the operation and they have in addition the operational disadvantage that an alert enemy can infer from the courses flown the nature of the equipment being used and the location of the ground station. This, in fact, is what did happen in the case of Oboe, which also employs circular courses. Hyperbolic courses are also possible in these systems without much difficulty, and the combination of one hyperbolic and two circular courses does give a choice of approach which has proven nearly adequate for most tactical situations.

However, a very high traffic density at the target is desired and thus more courses should certainly be one of the aims of further development. Any limitation of approach is undesirable.

The generalizing of the approach to make it possible from any direction is perfectly possible at the expense of some complications in the computer. However, the principles of the design of such computers are perfectly well known and, in fact, certain of these are already under development. One of the advantages inherent in a computer which would permit an approach from any direction would be the removal of the necessity for flying quite as long an approach course to the release point. It has been shown that, in general, a somewhat longer approach run is required with a circular or a hyperbolic course which is fixed in space than would be needed if a truly general approach were possible. Thus the provision of a computer which allows approach from any direction would not only increase the traffic capacity and the generality of application of the system but also would decrease the possibility of the plane being shot down. Computers could undoubtedly be developed to be as complex as may be required, and in fact evasive action may be taken into account as well as change of direction.

The most important limitation of the H-system as we have it at present is, of course, the limitation of radar line-of-sight from the beacon. In the early stages of the war this was considered an extremely serious drawback and in fact, the development of suitable H-system bombsights suffered considerably because of the prejudice against short-range systems. It was not adequately realized that there are uses for short-range bombsights as well as for long-range equipment, and that enemies within 250 miles often deserve the attention of bombers as much as enemies who are further away. This fact has now been more generally recognized, and in fact, the H-system came into its own in that period of the war in which front lines existed. A vital important need was fulfilled by providing an accurate bombsight for distances of up to 250 miles from the front, an area embracing almost all tactical targets and many strategic targets.

However, the great precision of the H-system and its undoubted superiority over any radar system involving target recognition with present radar techniques makes it especially urgent to investigate any possibility of applying the procedure to long-range bombing.

Several possibilities for this have been suggested. In the first place the direct range of radar line-of-sight bombing may be expected to increase in the future as the operational altitude of aircraft may increase. Not much is to be hoped for in this direction since the range only increases as the square root of the altitude and in order to double the range four times the altitude must be attained. Thus to increase the range from 250 to 500 miles would require an increase in altitude from 30,000 to 120,000 ft.
There are other more promising possibilities that may be considered. One is to relay both the interrogations and responses of the beacon by means of equipment in a special aircraft flying a fixed course, of geometry so chosen as to minimize the errors introduced into the range measurements. In practice this would place the aircraft on a line joining the beacon and the target. This is a procedure that has been adopted by Oboe in attempting to extend its range. This procedure suffers from a considerable number of drawbacks.

Another possibility is the location of the beacon (the fixed point from which the ranges are measured) at high altitudes which are attained by placing the beacon in an aircraft. Lighter-than-air craft, helicopters, and conventional aircraft have been suggested. Immediate objections will, of course, be apparent to each of these. However, there exist methods for overcoming these objections.

The most promising method that has so far been suggested is one that involves a considerable increase in computing complexity but which offers such great advantages that it is now clear that it must certainly be investigated very fully in any attempt to increase the scope of this very accurate method of bombing. We refer to the extension of range by means of the procedure of using airborne beacons whose responses are adjusted to convey information as to the position of the aircraft carrying the beacon. In ordinary H-bombing the positions of the two beacons are known at all times and computations are made with respect to them, this being simple because the two beacons are at stationary points on the ground. However, we can see that if information were continuously available in the bomber as to the position of these beacons it would be quite possible to correct for motion in the beacons. It is exactly this procedure which is recommended as worth investigation for the case of airborne beacons.

There are three problems involved: (1) The aircraft in which the beacon is located must at all times know its location with very great precision. A precision comparable to that with which ground stations are located must be the objective of the equipment it carries. (2) The replies of the beacons thus carried in aircraft must be modulated in such a way as to provide this information as to the instantaneous position of the beacon to all aircraft interrogating the beacon. This system sacrifices nothing in the way of ultimate performance except the inaccuracies inherent in introducing additional computing operations and additional observation of distances. Since, however, instrumental error can be made exceedingly small and automatic computations can be carried out, we conceive it to be quite possible that the inherent accuracy of the system should be compromised only very slightly by the introduction of a moving rather than a stationary beacon. (3) Computers would have to be carried on all the bombing aircraft, which will take into account the present position of the beacon.

A simplified version of this scheme is also possible, especially if one restricts oneself to a single target or a single target area of somewhat variable dimensions depending upon the precision required. Here the airborne beacon returns a response delayed in time in such a way that, to a radar set stationary at a point directly above the target, the range of the airborne beacon would appear to be constant. This is a simpler version of the general case described above, and is a rather attractive one,
since it dispenses with the need for the special computer in the bombing aircraft which is to take account of the motion of the beacon. Thus it could be used with existing H-system radar sets. The motion of the beacon has already been taken out by the computer in the beacon aircraft.

In either of these two cases it is necessary for the aircraft carrying the beacon to have some means of measuring its present position accurately at all times and of translating this information into electrical characteristics which can be superimposed on the beacon response. In the case of microwave beacons this characteristic may well be the spacing between successive code pips of the beacon reply. Any number of other characteristics of the reply signal could be used, such as frequency, pulse width, etc.

The range of the system would now depend upon the maximum possible range from home bases at which one can fly beacon-equipped aircraft and still retain very accurate knowledge as to their instantaneous position. The development of pulsed radar has reached a point where, with adequate radar reconnaissance and with improved fundamental knowledge of the nature of radar echoes, it should be possible to find within horizon range of the target isolated objects which give clear and identifiable radar reflections. These objects must be small and at a known location on the map. Let us assume, for the moment, that such objects can be located. Suppose an isolated radio tower can be found which fulfills the prescription; then a radar in the aircraft carrying the beacon can be used to measure continuously the position of the aircraft with respect to the single fixed object. If sufficiently precise measurements can be made (and the precision needed is not beyond the capabilities of present radar systems if the beacon aircraft does not travel too far away from its reference point), then a computer of the general type of the GPI will suffice to grind out information which gives the present position of the aircraft at all times. This data output can be used to modulate the reply of the airborne beacon with information corresponding at all times to the present position of the aircraft. This system can be operated over enemy territory so that all restrictions on the range of the H-system have been removed, and the airborne beacon made useful anywhere on the face of the earth, provided that suitable radar echoes can be discovered, identified, and used.

An alternative to this radar method is the location of the beacon aircraft by means of Shoran, or any other accurate navigational system, this implying that the beacon aircraft is within range of ground beacons maintained by friendly personnel. Still another alternative is the use of a very precise ground radar to track the aircraft and transmit information as to its position to its continuously. Clearly the most general of all these is the first procedure, namely the one in which a beacon aircraft determines its position by means of radar observations on a single radar target.

If we assume that the beacon aircraft may fly at altitudes up to 30,000 ft and that the bombing aircraft is also at 30,000 ft, then a line-of-sight range of 500 miles between the bomber and the beacon aircraft becomes permissible. It would be a rare target, indeed, within 500 miles of which two suitable radar reference targets could not be found. Still another interesting possibility is afforded by the realization that if the reference points are within 200 miles of the target and the beacon aircraft are at 25,000 ft or higher, all restrictions as to the altitude of the bombing aircraft are removed and these aircraft may, if desired, go in at ground level. The accuracy of loca-
tion of a plane in space in the H-system is extremely high. In Shoran, for example, the plane is located in space with an error not greater than 50 ft. If advantage is taken of this fact by the use of low-level bombing, then extremely precise bombing indeed can be envisaged.

Bombing by the Use of Airborne Beacons.

The systems which have been used up to date in which airborne beacons on the bomber plane are used to give the position of the plane accurately to ground stations are the Oboe and SCR-584 systems. The use of MEW for this purpose is also being considered and investigated. Experience has shown that while Oboe can in fact yield fairly accurate bombing the organizational problems inherent in a system of this nature are enormous. Two ground stations are required, with reliable and secure communications between them over large distances, and with reliable and secure communications with the aircraft; such a system almost falls down of its own weight. It proved just barely possible in England, with the very best of organization and of expert attention, to keep an Oboe system in operation as long as the bases were in England. It proved to be extraordinarily difficult to transport the ground stations to France and get them working satisfactorily there. In view of this experience it must be admitted that the generally held concept of Oboe as an extremely difficult system operationally has been borne out by the facts and experience of the war. That Oboe should ever have been made to work at all is indeed a reason for congratulation of the organizations which fulfilled this difficult task.

Oboe has inherently very little to recommend it as compared with H. Its organization is enormously more complex, the problem of traffic capacity is inherently extremely difficult with Oboe (in fact practically almost insoluble, as witness the enormous difficulties of the British Oboe Mark 3) and the accuracy in the Ninth Air Force has ever been inferior, because of the great operational difficulties, to that attained by the H-system (Shoran). Accordingly it should be adopted as a policy that beacon bombing of the triangulation type should all be of the H-system variety and that Oboe should not be used.

One cannot, however, dismiss as readily the variety of beacon bombing which uses a single ground station as exemplified by the single-station 584-Oboe system, so-called, and by MEW bombing. Here the organizational difficulties have been enormously reduced and in the case of the MEW the traffic capacity is theoretically almost infinite. The 584 is restricted to one plane at a time because of the nature of its antenna and its angular measurements. A large ground station of the MEW type can do bombing, in principle at least, of very great accuracy, and can control a sufficiently large number of planes. It is believed that only stations of this type should be considered for future development. The extension of range beyond radar horizon is, of course, inherently extremely difficult with such systems.

It should perhaps be pointed out that the use of the H-system with guided missiles is an obvious extension to its use with bombing aircraft. In principle this simply involves a change of instrumentation. Instead of presenting the data on dials or scopes to radar operator, pilot, and bombardier, it is simply necessary to feed the same data into automatic equipment (all of which already exist) to permit the use of synchros,
servos, relays, etc., instead of operators. It is worth pointing out that the airborne beacon system of
operation described above lends itself admirably to the use of guided missiles at great distances from the
point of origin. It is merely necessary to direct these missiles in such a way that they arrive within the
area of coverage of the beacons and then the radar will take over control automatically and direct the
missiles into the target, including the final dive down to the moment of impact.

THE FUTURE OF HYPERBOLIC NAVIGATION

HYPERBOLIC SYSTEMS

Hyperbolic navigation is achieved when synchronized signals having a known velocity of propagation are transmitted from at least three known points, and when the relative times of arrival of these signals are measured and interpreted by a navigator. The signals may be transmitted and received by any known means, but radio is at present the only mechanism which offers interesting accuracy at long ranges. A number of kinds of signals, ranging from continuous waves through modulated waves to pulses, may be used. In the more useful current applications, pulse transmission is preferred as ambiguity is minimized and the power supplied to the transmitters may be kept low. The apparent increase in the bandwidth required for the system, because of the use of pulses, may be entirely illusory because by their use a number of methods of identifying signals become available. Thus a large number of pulse signals may be transmitted within a common radio frequency channel without excessive confusion, while continuous wave systems require the use of a separate radio frequency for each component in order to provide identification.

At present the hyperbolic principle is used by only three operating systems if we exclude those (such as Sonne and the Omnidirectional Range) in which the baseline is so short that each is contained within a single transmitting site. Of these three, the pulse method is exemplified by two, Gee and Loran, while the continuous wave technique is used in the Decca system.

Consider two fixed stations to transmit signals at the same instant. If a navigator receives these signals simultaneously, and if the velocity of propagation can be considered to be equal over the two paths, he knows that his position must be somewhere along the perpendicular bisector of the line connecting the transmitting stations. If one signal arrives before the other, a measurement of the time difference identifies some other line of position on which the navigator must be. These lines of position are approximately spherical hyperbolas but may usually be represented by plane hyperbolas drawn on a conformal conic projection if the distances involved are not too great, say, less than 300 or 400 miles in the case of a system whose errors are expected to be several hundreds of yards.

In practice, in the pulse systems, the signals are not transmitted simultaneously but are separated by an arbitrary, constant, time difference. This is done partly to
avoid uncertainty as to which signal is which, and partly so that the state of the receiving equipment may be altered as required to accommodate each signal individually. The signals are ordinarily repeated in an endless sequence so that the measurement to be made is actually one of relative phase rather than a time difference between single impulses, although the units usually used have the dimension of time.

The navigator obtains a fix by finding his lines of position relative to two or more pairs of stations. These readings may be made individually or simultaneously, or may be continuously indicated by semiautomatic equipment. In air navigation, a few of the available lines of position are usually precomputed and exhibited on special charts so that any line of position may be obtained by interpolation, while on surface vessels the navigator may use similar charts or may reproduce a portion of each line of position on his plotting sheet by taking the requisite data from special tables.

The number of distinguishable lines of position in the pattern surrounding a pair of stations is equal to twice the time taken for a signal to travel from one ground station to the other divided by the smallest change in time difference which can be observed on the navigator's indicator. In Gee there are typically a thousand resolvable lines for a single pair, while in Loran or Decca the number may be as much as 8000 or 10,000. Since, at considerable distances from the ground stations, the lines of position are approximately radial with an origin at the center of the base line, the positional accuracy of a hyperbolic system is about that which would be obtained with a direction-finding system capable of resolving one-fifth to one-fiftieth of a degree.

The labor involved in computing these lines of position is large, so large that several hundred thousand man-hours have already been spent in the construction of Loran charts and tables, but the results of the computations are permanently available as the lines are fixed with respect to the surface of the earth. Thus the time spent, per navigator, decreases with increasing use of the system and becomes small compared with the computing time required for celestial navigation, and the process of taking a fix is greatly speeded by the precomputation.

The whole process of hyperbolic navigation may easily be compared to celestial navigation. The determination of lines of position is essentially similar except that the hyperbolic lines involve a more complex mathematical solution than the circular lines obtained in celestial navigation. This additional complexity becomes unimportant, however, because as explained in the preceding paragraph, the unchanging character of the lines permits precomputation. The hyperbolic system may therefore be thought of as equivalent to one which would be obtained if a number of stars could be permanently established above fixed points on the surface of the earth, thus providing lines of position which would immediately be known upon measurement of the stellar altitudes.

An important feature of hyperbolic navigation, as of some other radio aids, is that the act of navigation may be carried out in the future rather than in the past. A navigator may determine, from charts or otherwise, the indications which obtain at some distant point (such as his objective or one of a series of points on the route to his objective) and may preset his equipment to the constants applicable at that point. His vessel may then be so steered as to follow a simple path until the pre-
dicted indications are obtained at the instant of arrival. Thus, at certain interesting times and places, the taking of a fix is made instantaneous instead of yielding the position occupied at some previous time.

The great advantage of hyperbolic navigation over radar beacon systems, which do or could offer equal or greater precision over the same ranges, lies in the fact that saturation of the ground facilities is impossible. The transmitters of a hyperbolic system are essentially a family of lighthouses whose keepers simply transmit intelligence according to prearranged standards. Thus there is no correlation between the activities of the navigators and those of the transmitter operators and the behavior of the system does not at all depend upon whether one or ten or thousands of navigators are making use of the service it provides.

GEE

The Gee system has been the primary radio navigational aid of the European war and its successes have been far too numerous and are too well known to need recounting. The system went into operational use in March, 1942, and, while its usefulness over Germany varied somewhat with changes in type and magnitude of enemy jamming, it has continuously served as an invaluable homing system for the Royal Air Force and the American Air Forces.

Gee operates with about 300 kw of power radiated on frequencies between 20 and 85 megacycles and therefore gives service at somewhat more than optical ranges. Near the surface of the earth, the useful range is not over 150 miles but the reliable service radius increases with altitude to a maximum of 450 miles, in the case of fixed stations with high antennas, for aircraft of 30,000 ft. The pulses used are about 6 microsec in length (as seen on the oscilloscope) and the method of comparison is such that a time difference can be estimated to perhaps one-tenth of the pulse length.

The pulses from three or four stations are presented on a cathode-ray tube on a double-time base whose total length is 4000 microsec. The base lines are usually about 75 miles in length and are disposed with the master station in the center and the two or three slaves dispersed around the circumference of a rough circle. Each of these groups of stations operates on a different radio frequency and half a dozen frequencies are available in each of four bands. This flexibility is, of course, of great value in avoiding the worst effects of enemy jamming. The navigator's indicating equipment presents visually a family of four or five pulses, two being transmitted from the master station and one from each slave. By the use of delay circuits, four fast cathode-ray sweeps can be initiated at such times that two of the sweeps contain and exhibit the master-station pulses and the other two exhibit in inverted form two of the slave pulses. Each of the slave pulses may be laterally adjusted to lie with its base coincident with the base of one of the master pulses. When this adjustment has been made, the two time differences (between each of the master pulses and its corresponding slave pulse) are read from the relation between families of markers which can be switched onto the cathode-ray traces. The most closely spaced family of markers has a unit separation of 6-2/3 microsec and interpolation to tenths permits a reading to 2/3 microsec.

On the line between master and slave stations this matching and reading accuracy corresponds to a precision of about 100 yd relative to a line of position, but
since the hyperbolic lines diverge approximately in proportion to the distance from
the two stations, a reading error of 2/3 microsec will correspond to a line-of-position
error of somewhat more than a mile at the maximum distance of 450 miles. The error
of fix varies even more with distance because it is proportional to the linear errors and
also varies inversely as the sine of the angle between the two lines of position. Since
this quantity decreases approximately inversely with distance, the error of fix varies
roughly as the square of the distance from the transmitting stations. In the case of Gee,
the average error in reading a time difference is about equal to the least reading (2/3
microsec) and this corresponds to an average error of fix which increases from about
200 yd near the stations to about five miles at the maximum distance of 450 miles.

As suggested above, two lines of position can be determined at once, as two
of the slave pulses can be compared simultaneously with the two master pulses. It
is this important property of Gee which makes it especially suitable for homing opera-
tions, otherwise known as "instantaneous fixing" or "navigation in advance." As
mentioned in the section on "Target Properties," the navigator's equipment may be
preset to the constants applicable, say, at the home airport. The two pairs of pulses
will not then appear in coincidence, on the fast sweeps, but may be brought closer
together, in general, by flying any course which brings the aircraft closer to the
desired place. If one of the pairs of pulses comes into coincidence and is held so
by flying the proper course, the aircraft then proceeds along one of the hyperbolic
lines of position which passes through the airport. The rate of approach to the air-
port and the instant of arrival there may be determined by observing the decreasing
separations of, and the coincidence between, the second pair of pulses. Without
searching out either line of position, the Gee navigator can approach his objective
by any course, knowing that simultaneous coincidence of the two pairs of pulses can
only be obtained by his arrival there.

Whether Gee or Loran be used for navigation in advance or for obtaining oc-
casional fixes to be used with dead-reckoning methods, the most important feature
of hyperbolic navigation is used to full advantage. Since the hyperbolic lines are
fixed with respect to the earth, all courses derived from them are true courses and
all speeds are ground speeds. Thus the effects of drift are compensated automatically
with the result that a tyro can navigate an aircraft with amazing ease and accuracy.

As a permanent navigation system, Gee has much to recommend but it suffers
from four limiting factors.

(1) The choice of frequency yields good range only at high altitudes and re-
results in a system having high accuracy over only a small area. Thus a very large number
of chains would be required to provide service over a continental region.

(2) The choice of recurrence rate would limit the length of the base lines
that could be used, even if the frequency or synchronizing technique should be
changed, and it therefore forbids much expansion of the linear dimensions of the
service area.

(3) Because only one chain of stations can be operated in a half-megacycle
radio-frequency channel, the problem of finding sufficient room in the radio spectrum
would inhibit the operation of an extensive system.
(4) The pulses to be compared are in general of varying amplitudes, so that some experience and judgment are required in making a match. This factor would probably result in either additional complication or reduced accuracy if automatic matching equipment were to be used.

LORAN

Standard Loran is a hyperbolic system which was developed primarily for overwater navigation. It operates on one of several frequencies between 1700 and 2000 kc and therefore enjoys propagation characteristics determined primarily by soil conductivity and ionospheric conditions. The transmitters currently in use radiate about 100 kw and give a ground wave range over sea water of about 700 nautical miles in the daytime. The daytime range over land is seldom more than 250 miles even for high-flying aircraft and is scarcely 100 miles at the surface of the earth. At night, the ground wave range over sea water is reduced to about 500 miles by the increase in atmospheric noise, but sky waves, which are almost completely absorbed by day, become effective and increase the reliable range to about 1400 miles. The transmission times of the sky waves are somewhat variable, thus reducing the accuracy of the system, but the timing errors grow smaller with increasing distance and partially compensate for the increasing geometrical errors, so that navigation by sky waves, appropriately enough, compares tolerably well with celestial navigation. Except in the case of overland ground wave transmission, the signal strength, and therefore the usefulness of the system, does not vary at all with the altitude of the receiver. Even in the overland case the signals increase rapidly with height so that there is little improvement to be had by going to altitudes greater than 3000 ft.

Because of the medium frequency used, and the consequent necessity for conserving bandwidth, the use of pulses whose length is of the order of 50 microsec is unavoidable, and it is wise to operate as many stations as possible in a single radio-frequency channel. The large pulse length creates the necessity for careful matching techniques in order to obtain reasonable precision. The method employed is to alter the gain of the receiver as requisite in order to produce pulse of equal amplitude on the oscilloscope no matter what distances or attenuating factors may be present in the two transmission paths. The pulses may then be accurately superimposed, provided that they are made sufficiently identical by all transmitters, and a measurement may be made with a precision of one percent of the pulse length if the signal-to-noise ratio is sufficiently good.

In other respects, the method of measurement is similar to that used in Gee, except that no effort is made to indicate two lines of position at once. This is a very important exception. The reason for it is somewhat involved and will be discussed below. The navigator can make readings to the nearest microsec, two-thirds of the precision of the Gee reading. The base lines ordinarily used are about 300 miles in length so that the geometrical factors at 1400 miles are similar to those of Gee at 350 miles.

If three Loran stations are used as a triplet, a common orientation, the accuracy of fix may be compared to that of Gee, as all of the same factors apply. The average error at short distances is of the order of 300 yd and increases smoothly throughout
the ground wave service area to a little more than one mile at 700 miles. At night, sky waves may be used at distances between 300 and 1400 miles with average errors ranging from 1-1/2 to about 8 miles.

The average errors of fix are frequently smaller than these estimates at long ranges, because pairs can often be found with crossing angles better than those obtainable from a triplet. Loran stations are often installed in a chain, along a coast line or between islands. The number may be anything greater than two, and each station may or may not operate as a member of two pairs with the stations at each side. In each pair pulses are transmitted at a special recurrence rate, one of a family which have the ratios 400:399:398:397:396:395:394:393. Thus eight pairs may operate in a single radio-frequency channel. The navigator's equipment can be adjusted to synchronism with any one of these rates; the pulses at the chosen rate then appear stationary so that their time difference can be measured, while the pulses from all other stations pass across the screen at speeds such that confusion is negligible. Stations intermediate between the ends of a chain ordinarily are "double," that is, they act in all essentials as two independent stations at the same location, so that a chain consists of a number of separate pairs set accurately end to end.

The navigator can choose from among these the pairs he will use for determining a fix in the same way that he would choose stars for celestial navigation, that is, by taking those whose lines of position cross at the most favorable angle. In fact, he frequently uses three or four line fixes if he wishes to attain maximum precision, the reading of a single line of position at a time permitting great freedom of choice. This arrangement stems directly from the concept that Loran navigation is to be effective over an area large in comparison to that which could be served by a single pair or triplet.

The system in the North Atlantic, for example, consists of a chain of four stations along the east coast of the United States, Nova Scotia and Newfoundland, a triplet between Newfoundland, Labrador and Greenland, and a triplet extending from Iceland through the Faroes to the Hebrides. These stations form a total of seven pairs, so that often a total of three, four or five lines of position are available to the navigator.

Because of the superposition of several pairs of Loran stations on the same radio frequency it would be necessary nearly to double the number of components in the navigator's equipment in order to give him the advantage of simultaneous determination of two lines of position, as in Gee, if his freedom of choice of lines is to be maintained. It has therefore seemed better to reduce the complexity of the receiving equipment and to recommend the use of two complete receivers for the cases in which instantaneous fixes must be had.

With Loran equipment a fix is ordinarily taken in about three minutes, or about twice the time taken with Gee. Homing to a point can be accomplished by following one line of position until the correct compass heading has been determined and then switching to a second pair of stations to determine the progress along the first line. This process is cumbersome and finds favor only with those operators who have not had experience with Gee.

The chief disadvantages of Loran are:

1. The impossibility of instantaneous fixing without dual installations.
(2) The fact that the use of sky-wave transmission requires the application of corrections before the charts or tables can be entered.

(3) The presence at night of long trains of pulses reflected from the ionosphere. In one of these trains only the first reflected pulse is useful for navigation, but from one to twenty useless pulses may follow it, thus greatly increasing the difficulty of identifying the correct one and interfering with the operation of other pairs in the same channel.

(4) The fact that ionospheric transmission is not homogeneous, so that the shapes of the sky-wave pulses are often distorted, making them hard to match, while the time of transmission varies from hour to hour creating minor errors which cannot be eradicated.

(5) The rather embarrassing difference between the ground wave ranges over land and over water. This difference is so extreme as to inhibit the free choice of station sites in many cases, and to reduce the base lines for overland triplets to about the scale of Gee.

SS LORAN

An alternative technique for using the equipment developed for standard Loran takes advantage of the long nighttime range of E layer transmission to extend the base line of a pair of stations to 1200 or 1300 miles. This kind of operation is known as Sky-wave Synchronized Loran. It is effective because of the large increase in geometrical accuracy which derives from the long base line.

Because sky-waves are used for transmission paths between stations and from the stations to the navigators, there is no escape from the timing errors produced by variations in the height of the reflecting layer. The total error has an average value of about eight microsec for a single reading. This establishes the minimum average error of fix at about 0.9 nautical mile, the case where the navigator is at the intersection of two base lines which cross at right angles. This condition is obtained in the preferred orientation of stations, the SS Loran quadrilateral where, ideally, the stations occupy the corners of a square and the base lines are the diagonals. In this case the useful service area is nearly the area of the square, say 1,000,000 sq miles, and nowhere does either the crossing angle or the separation between hyperbolas become greatly inferior to the value at the center of the pattern. The distance corresponding to a change of a microsec in the time difference may degenerate from 500 to 800 ft, and the crossing angle may change from 90° to 60° at the outer edges of the service area, but these variations increase the average error only from 0.9 to about 1.7 miles. Unfortunately, the timing errors may make consistent and unpredictable excursions at times, especially during ionospheric storms, but the maximum errors of fix seem to be about five or six miles and to occur not more than about one percent of the time. The serviceability of the system, or the fraction of the night hours within which satisfactory synchronization can be maintained, is remarkably high, about 99.8%, except where the points of reflection are close to or in the auroral zone.

LOW-FREQUENCY LORAN

Another variant of Loran is under development (and should soon be in operational use) to take advantage of the increased range of propagation at low radio frequencies.
The LF-Loran system will probably offer a daytime range about equal to the nocturnal range of standard Loran and will permit base lines two or three times as long as those now in use. Its greatest single advantage seems to be a tremendous improvement in range over land at low frequencies, an increase which gives promise of a system with at least 1000 mile range over land or sea, by day or by night. A service radius of 1500 miles over land obtains at present [May, 1945] in the trial system in the United States, but this range depends upon daytime sky-wave transmission which is not yet fully understood and which may well not be dependable in the summer in some latitudes.

The timing accuracy of LF Loran is not equal to that of standard Loran, primarily because it is necessary, for technical reasons and also because of the limited available spectrum, to operate with a smaller bandwidth and correspondingly longer pulses. The pulse length is about 300 microsec and the average reading error at short distances seems to be about four microsec, or four times that of standard Loran. The errors at long distances are not yet well known but there seems to be evidence to indicate that the extreme timing errors are not larger than in SS Loran, and that therefore the errors of fix may be comparable if the crossing angles are made equally good.

A very great advantage of LF Loran is that, since the radio-frequency energy never penetrates beyond the E-layer of the ionosphere, the long trains of nighttime sky waves (which make identification difficult at two megacycles) are not present in 200-kc transmission. Because of the great pulse length, the various orders of E-layer reflections overlap the ground wave and result in the arrival of most of the energy in a single pulse. Thus, ambiguity is avoided to a degree which permits the use of more complex and more useful pulse patterns than in standard Loran.

The first step towards more versatile Loran systems is the operation of three stations at a common recurrence rate, as is done in Gee. If two slave stations operate in synchronism with a common master station midway between them, the slaves themselves are then in synchronism. Since the base line connecting the slave stations is twice either of the other base lines, the slave-slave hyperbolas diverge only half as much as those associated with the master station. Thus the three stations generate three families of hyperbolas and the “extra” family has important properties which provide greater accuracy at long distances and nearly straight lines of position in the center of the coverage pattern.

Another interesting orientation of stations is the quadrilateral in which four stations occupy approximately the corners of a square. If the four stations operate on the same recurrence rate, any one of them may be the master while those at either side are normal slave stations. The fourth station may be a secondary slave operating against either of the other slaves. In this arrangement, six families of hyperbolas are available, the two of greatest interest being those which are erected upon the diagonal base lines and provide crossing angles of 60° to 90° over the whole area of the square. An advantageous feature is that the diagonal geometrical base lines are 1.4 times the length of the synchronization paths, thus providing double the service area of a quadrilateral system of two independent pairs, since transmission and noise conditions always determine the maximum separation of a synchronized pair.

Other more complex groupings of stations are possible and may eventually become useful. All of these arrangements involving the use of more than two pulses, on
a common recurrence rate, require that one or more of the pulses be identified by a peculiar shape or in some other way, but innumerable identification methods can be used and undue confusion is not to be feared. The method being used in the triplet now under trial is to vibrate one of the pulses slightly in phase so that, in addition to a steady pulse used for measurement, there appears a "ghost" pulse partially overlapping the steady pulse.

The use of more than two pulses at a rate will permit the easy exploitation of instantaneous fixing as in Gee, but this feature will have to await the construction of new and improved Loran indicators. The-immediate steps being taken to add low-frequency service to Loran assume the use of existing receivers and indicators with the addition of a simple frequency converter which changes the low frequency to that at which the existing equipment operates. The converters have been designed to permit extremely simple installation and operation, so that low-frequency service can be provided without requiring any extensive additional training for operators and navigators. Low-frequency transmitting stations are more complex and require new construction, except for most of the timing elements, but the number of them is small so that the total effort required to add low-frequency operation to the present Loran system is entirely within reason.

A version of LF Loran which may become extremely important, at least for certain applications, is called "cycle matching" and consists in comparing the phase of the radio-frequency or intermediate-frequency cycles of a pair of pulses rather than in comparing the envelopes of the two pulses. Equipment for utilizing this technique is still in such an early state of laboratory development that an accurate appreciation is impossible, but it seems reasonable to expect that measurements may be made to 0.1 microsec over ground-wave ranges. The facility with which such readings can be taken is as yet unknown, but it is probably safe to predict that, after a difficult development program, cycle matching can provide a blind-bombing system with accuracy nearly equal to Shoran and with a range of 600 or 800 miles.

In the current experiments in cycle matching, intermediate-frequency cycles are exhibited upon the oscilloscope and superimposed in almost exactly the way that pulse envelopes are superimposed in standard Loran. While this may not, in the long run, be the most satisfactory method, it yields matches which are easy to control to at least 2° or 3° of phase, and appears to be the path which will lead most directly to results of military value. Even so, the most that can be hoped is that a few model shop sets may be in tactical operation in about a year.

While cycle-matching receivers and indicators for aircraft or shipboard use present a severe technical problem because of the continually changing phase of one received pulse with respect to another, and because of the extreme stability required of all timing elements, the technique is easy to apply to the synchronizing receivers at the ground stations where all phase and timing relations are fixed and where highly stable timers are already available. Because it is easy both to build and to use them, cycle-matching receivers are being provided for the first low-frequency ground stations. Thus, for the low-frequency envelope-matching program, the synchronization of the ground stations will be more than adequate, and the stations will be ready to provide transmission suitable for the high-precision cycle-matching navigator's instruments which may be available soon.
DECCA

Decca is a low-frequency continuous-wave hyperbolic system which has been undergoing service tests and operation by the British Admiralty for some years. Transmissions are made on two frequencies which are simply related, as by one being three-fourths of the other. As in Loran and Gee, one station monitors the transmissions from the other and maintains its own emissions at the appropriate frequency and at constant phase. The navigator's equipment consists of two receivers, multiplying or dividing networks to reduce the two received signals to a common frequency, and a simple phase meter. Maintenance of a constant reading on the phase meter indicates that hyperbolic course is being followed and changes in phase may be summed up when cutting across the hyperbolic zones.

In practice, a three-station three-frequency system is used with continuous indications of the phases in each pair. The wavelengths used are of the order of 1 mile and the reading precision is variously quoted from 1/1000 of a wavelength to 1/50 of a wavelength.

This simple form of Decca is highly ambiguous in that there can be no identification of a cycle. Thus, although a great many lines of position are available, the lines have no names and identification depends upon a vessel's departure from a known point and upon continuous operation of the equipment. The ambiguity can be reduced as far as desired by modulating the carrier frequencies with lower-envelope frequencies, which give coarser identification of the hyperbolic lines, but this technique apparently makes the receiving equipment prohibitively complex.

In any case, the system suffers from two other defects which militate against its extensive usefulness. One is the rather extravagant use of the radio spectrum. When a careful comparison of pulsed and continuous-wave navigation systems is made, it is found that the pulsed systems are quite likely to require a smaller total bandwidth to provide service over a given large area. The reason for this paradoxical behavior is that a number of pulse families can operate in a single radio-frequency channel while the continuous-wave systems require a distinct channel for each station in order to provide identification. Unfortunately, the channel width, for the continuous-wave systems, is determined not by the nearly-zero width of the transmitted spectrum but by the receiver bandwidths and the degree to which the receivers can be relied upon to maintain frequency calibration. The German Sonne system (a highly refined form of direction finding), for example, uses a total bandwidth greater than that required for LF Loran in order to provide service over the eastern North Atlantic between Norway and Spain, whereas LF Loran itself could provide service over the entire North Atlantic, if not North and South together, in the same channel.

Decca does not necessarily suffer from this defect as much as Sonne, since the receivers for Decca are highly specialized and may be made very selective, but the disadvantage of requiring two frequencies to establish a line of position may go far to offset this advantage.

The second, and more serious, defect of Decca is that interfering continuous waves can distort the readings almost without limit. One serious form of this interference arises from the sky-wave transmission which is often or always present at the low frequencies. The effect of these sky waves is to prevent the use of base lines
of more than 100 miles, and to limit the service radius to perhaps as little as 200 miles. For military purposes the use of Decca is even more unsatisfactory since, like all continuous-wave systems which depend upon phase or direction of arrival, enemy jamming may take the subtle form of insertion of additional energy of the same frequency and random phase so that the navigator sees or hears no evidence of jamming except that the system loses its accuracy.

It should be noted that cycle-matching LF Loran, which is superficially very much like Decca, can avoid the sky-wave pitfall because the navigator should examine only those cycles, at the beginning of the pulse, which are propagated by ground-wave transmission and can neglect the anomalous effects produced by sky-wave interference.

POTENTIAL ACCURACY AND RANGE

The factors which control the timing accuracy with which two pulses can be compared do not, in general, vary except with radio frequency. If the pulses are visually superimposed and have their amplitudes made equal, and if the signal-to-noise ratio is really good, the precision of measurement is of the order of one percent of the length of the pulses. This accuracy can be realized in practice because, in the hyperbolic systems, the two signals to be compared pass through the same receiving networks and encounter exactly the same artificial delays and distortions, so that their time difference is not at all affected by the circuit parameters, except to the extent that the pulses are lengthened beyond their proper duration.

The length of pulses which can be used effectively cannot easily be made less than some 50 or 60 cycles of the radio frequency employed. In fact, in many services, attempts to shorten the pulses beyond this limit result in inefficient use of the radio spectrum because careful control of the pulse shape and the spectral energy distribution become difficult or impossible.

Combination of the estimates in the preceding two paragraphs indicates that a Loran system, if by that term we mean one in which the pulses are equalized and superimposed, should yield matches which are accurate to about half a wavelength. This accuracy corresponds to a minimum error of line-of-position of a quarter wavelength of 125 feet at the frequency used for standard Loran. Actually the minimum error in standard Loran is about 500 feet, an increase due in part to the use of pulses about twice the length quoted above and in part to the use of reading techniques which are not as precise as they might be.

The accuracy of Loran, in the ground-wave service area, could no doubt be quadrupled by the use of shorter pulses and navigator's indicators having more stable circuits and more closely spaced families of marker pips, but these improvements would not enhance the sky-wave service (which contributes a large part of the usefulness of the system) because in that case the accuracy is controlled by propagational variations which seldom permit an average error of less than two microsec, which is twice the current reading error.

A similar argument for Gee must be modified by a factor of ten as the Gee pulses are not equalized in amplitude or superimposed and therefore a measurement is good only to the order of one-tenth of the pulse length. In this case the practical maximum accuracy is about a hundred yards while the "theoretical" accuracy is about one-
fourth as much, or even less at the higher frequencies. Here again the departure from
the optimum is accounted for in part by the use of long pulses in order to reduce band-
width requirements and in part by a certain crudity permitted in the indicating equip-
ment in the interests of simplicity.

For LF Loran the same analysis leads to an estimate of average errors of the order
of a quarter mile in the best areas. It appears at present that this figure may be attained
at short distances, but propagational factors as well as geometrical ones will probably
operate to increase these errors over a large part of the service area.

In the case of Decca or other phase-comparison systems it seems reasonable to
expect that a precision of one degree of phase may be attained although both Decca
and cycle-matching LF Loran do not yet seem to have reached that accuracy in prac-
tice. Even the presently indicated precision of about one percent of a wavelength,
however, is extremely interesting in comparison with the pulse-envelope methods.

Transmission ranges and service areas also depend primarily on frequency, but
in this case the lower the frequency the better. Throughout the microwave region the
reliable range is little more than the optical range. Even in the ultrahigh-frequency,
band ranges are not more than, say, one and a half times the optical range. This
often results in good cover for high-flying aircraft, as in the case of Gee, but the dis-
tances usable at the surface of the earth are discouraging from the point of view of
navigation.

As the frequencies decrease through the high- and medium-frequency regions,
ground wave ranges increase and the differential between high- and low-altitude be-
havior grows smaller, especially over sea water, but the propagation of signals is
no longer simple because of the complex structures of multiple sky-wave reflections
which vary tremendously with the time of day and which, at the higher frequencies,
are extremely unpredictable.

These sky-wave phenomena become more simple and predictable in the lower
part of the medium-frequency range, but only at the low frequencies is there such a
degree of stability that sky waves can be used without some undesirable confusion of
the navigator. At the very low frequencies, propagation over thousands of miles is
easy and reliable, but wide-band antenna systems are not available (because the re-
quired size is prohibitive) so that, so long as current techniques prevail, the pulse
methods cannot be expected to operate there. It seems at present that 100 to 150 kc
is about the lower limit to which pulse systems can be used. At these frequencies,
ranges of 1500 miles should be easily obtained over land or sea and at any altitude,
and either pulse- or continuous-wave systems may be used, although the pulse systems
will require the larger and more expensive antenna structures.

If there is a requirement for reliable ranges greater than about 1500 miles, re-
course must be had to the very low frequencies and to continuous-wave systems or
to pulse systems involving very long pulses and relatively low accuracy.

All of these considerations lead to the conclusion that there are theoretically
two infinite families of hyperbolic navigation systems, the pulsed- and the continu-
ous-wave methods, and that for each method the choice of frequency establishes the desired
compromise between range and accuracy. The continuous-wave systems have in-
herently greater precision but suffer from ambiguity to such an extent that they are of interest only at the low-frequency end of the spectrum. The pulse systems, on the other hand, may be useful at any radio frequencies except the very lowest, but suffer from limited range at the higher frequencies, from sky-wave interference and ambiguity problems in the middle range, and from limited accuracy at the low frequencies.

The choice from among these many possibilities is easy. In a permanent navigation system the ambiguities inherent in the continuous-wave method and in the pulse method in the high-frequency range are intolerable. Therefore the choice lies between low-frequency and ultrahigh-frequency pulse methods. Of these the ultrahigh-frequencies cannot stand alone because of the very short ranges at the surface of the earth, while a secondary factor of great economic importance is the far smaller number of low-frequency stations required to cover a given area. An LF Loran system should give navigation within five miles or so over tremendous areas and errors well under a mile in certain areas. For most purposes this accuracy is sufficient. In case much greater accuracy is required there are two alternatives whose relative merits have yet to be investigated. The more attractive possibility is that of reducing cycle-matching techniques to practice so that either high-precision (blind-bombing or local approach) or medium-precision (general navigation) problems may be solved with the aid of the same network of transmitting stations. If this attempt should fail because of undue complexity of the navigator's equipment or techniques, the obvious step is to add local-approach ultrahigh-frequency chains to the low-frequency general navigation system, maintaining all timing elements the same at the two frequencies and thereby adding little or nothing to the navigator's equipment or to the training problems.

AUTOMATIC DATA ANALYSIS

It requires only limited acquaintance with a Gee or Loran receiver to realize that it is possible to perform all of the set manipulations automatically. That is, there is no technical problem in producing a receiver which will automatically present, say, the Loran readings on two lines of position on a pair of dial counters. For military purposes there has been little or no requirement for this sort of receiver and it has been advisable so far to apply the available research and development effort to standardization and rapid production of manually operated sets.

With the application of hyperbolic navigation to commercial transportation, however, there will be a demand for a position-determining set which operates continuously, like the chronometer in the chart room, and at which the navigator may look when he wishes to know his position. There are a great many ways in which such machines can be built but all, or most, of them may be so complicated that the navigator would be properly skeptical of their reliability.

The most common suggestion for a device of this kind is that, essentially by recording Loran charts or tables in mechanical form, the machine be made to read directly in latitude and longitude rather than in Loran coordinates. This is a natural but a misguided desire as there is little that is inherently more desirable in latitude and longitude than there is in the Loran coordinates themselves. The two things a navigator always wants to know are the distance and direction to one or to several points.
The next picture which comes to mind is that of a black box containing a number of push buttons and a pair of visible counter mechanisms. A navigator might push the button marked “Bermuda” whereupon the counters would spin and stop so that he could read “Distance 342 miles; Course 114 degrees.” This device, however fine a toy it may be, fails because the navigator should not be satisfied unless he is told his relation to a great many different places. To obtain this information he must, with either the black box or the latitude-longitude indicator, proceed to plot his position on a chart before he can understand the interrelations between his position and all other interesting points.

Obviously the only really effective automatic aid to navigation will plot the vessel’s position continuously, and preferably leave a permanent track on the chart, so that the navigator can see at a glance his current position in its relation to all other points on the chart, and also can have the history of his voyage presented before his eyes.

There are many ways to build a device of this sort, and most of them suffer from a high degree of complexity. The desirability of such an instrument, however, will be especially obvious to the sales managers of our larger electronic corporations who, now as before the war, may be expected to be in a position to see that the necessary development time is spent to reduce such a device to practice. The only prerequisites are that ground stations must be in operation to provide the necessary coverage, and that the control of the ground stations be in responsible hands.

It is worth while here only to point out a single concept, which while it violates sea-going tradition, may have some influence because of its simplicity. In any Loran or Gee indicator there is sure to be a shaft whose rotation is more or less linearly proportional to the Loran reading. This shaft may be connected to a pen through a mechanism such that the lateral position of the pen also bears a linear relation to the Loran reading. A second shaft from the same or a second indicator may be connected so that a rotation of that shaft in accordance with a second Loran reading produces a linear motion of the pen at an angle to the first motion. With this arrangement any pair of Loran readings which define a point on the earth’s surface also define a position of the pen point on a plane. A sheet of paper over which the pen moves is therefore a chart drawn in Loran coordinates. This simple system has the defect of considering all Loran lines in a family to be straight and parallel and also considering that the angles of intersection between the lines of the two families are constant all over the chart. These limitations, however, may not be too severe, especially in the case of an area at some distance from the ground stations. The angle between the two directions of motion of the pen may be set at the mean value of the crossing angle of the Loran lines in the area and the rates of motion in the two directions may be set to be proportional to the relative separations of the lines in each family.

This plotting-board concept has the immense advantage of mechanical and electrical simplicity. In many cases, if the area on a chart is not too great and if the ground stations themselves are not in the charted area, the distortions encountered in drawing such a chart in Loran coordinates are no greater than those involved in many other projections.

Some experiments have been conducted using a plotting board of this sort with SS Loran. An ordinary Lambert chart was used to cover an area whose side was 150
miles, about a sixth of the length of the base lines, and the Loran lines were sufficiently straight and uniform so that the errors due to the assumptions mentioned in the preceding paragraph were no larger than the errors inherent in SS Loran.

AUTOMATIC PILOTING

It is mentally only a very short step, and mechanically not a long one, from automatic presentation of position on a map to the making of a connection between the map and the rudder of a vessel so that a predetermined track may automatically be followed. The means are easy to visualize and are already at hand. Only a little incentive and time are required, so that here, again, commercial enterprise may be relied upon to bring a family of such devices into being.

One variant from past experience with direction finding must be pointed out. When using a direction-finding system, any change of course is immediately indicated and measured so that its correction, if it be accidental, may be made instantaneously. When a hyperbolic system is used, however, a change of course does not lead to any change of indication until after the new course has been held for a finite time. That is, the hyperbolic system gives an indication of position, not of direction, and the indication does not at all depend upon the attitude of the vehicle. This is an important point and a valuable one. It makes navigation independent of currents in sea or air because, as pointed out above, all courses and speeds directly derived from hyperbolic systems are ground courses and ground speeds.

If a simple right-left indicator he built to show an airplane pilot whether he is to the right or left of a Loran line he wishes to follow, and even how far to the right or left he is, it will not be very successful as a means for aiding him to follow the line. This is so because there is no appreciable relation between the indications on the meter and the course the pilot should follow, so that he tends to turn more and more to the right, if the meter shows him to be to the left of his desired track, until he crosses the line at a large angle and has to repeat the process in reverse. The net result is a very zigzag track which does, in fact, pass nearly over the objective but which wastes unconscionable quantities of time, fuel, and pilot's energy on the way.

This difficulty could theoretically be removed if the pilot would study the right-left meter in enough detail to appreciate both his displacement from the line and his rate of progress toward or away from it. With a knowledge of both these factors he could determine a reasonable course change which would bring him gently to the desired track and maintain him on it with only small excursions. The pilot is, however, too much occupied with his proper business to enter into such a study, so it is necessary to advance the equipment another stage and to present to the pilot both his rate of approach and the distance to the line he wishes to follow. Thus, he may be shown two meter readings, as is currently done with Shoran, one of which tells him, say, that he is 1000 ft to the left of the line while the other shows him that he is approaching the line at 50 ft/sec. It is immediately clear that, if he continues on the same course he has been holding, he will reach the line in 20 sec and that, if he wishes to come smoothly onto the line, he should begin to change course to the left. This conclusion is, of course, the opposite to that which would be derived from the simple right-left indicator and shows clearly the defect in that presentation.
Within certain limits it is possible to combine the factors of displacement and rate of change of displacement automatically so that instead of the two meters mentioned in the preceding paragraph the pilot could be presented with a single indicator calibrated in terms of the appropriate course correction such as "two degrees to the left." The only defect in this instrument would be the existence of a time constant dependent upon the time required to analyze the rate of approach to the track, so that the pilot would have to learn not to make a second correction too closely upon the heels of the first.

This difficulty would vanish if the meter indication, instead of being presented to a human pilot, were connected to a gyrocontrolled automatic pilot, because in that case the linkage to the automatic pilot could easily be given the appropriate time constant to prevent overcorrection.

The mechanism suggested above is the simple and natural way to build a device which will automatically follow a Loran line. This is a worth-while thing to do because there is always a line passing through any target in a Loran-service area, but it falls far short of the really desirable solution. The most important quality which the automatic equipment, like the human pilot-navigator combination, should have is the ability to proceed by a simple and reasonably direct course from wherever the vessel happens to be to wherever it should go.

This ability can only stem from simultaneous examination of two families of hyperbolas. There are many ways to make this examination, as there are many ways to make a plotting board, but one of them offers such great advantages of simplicity that it should be developed here.

Assume a Loran receiver capable of automatically following two Loran readings in two families of hyperbolic lines. The shaft rotation corresponding to either of these readings could be connected through the displacement-and-rate device mentioned above to the rudder of the vessel so that any desired Loran line in the corresponding family could automatically be followed. A Loran line passing through the initial position of the vessel could, for instance, be followed until it intersected a line passing through the objective after which instant the second line could be followed. This would produce the desired end result, but it might be by a very indirect route indeed.

A much more direct path would be one cutting across both families of lines in such a way that the rates of change of the two Loran readings constantly bore the same ratio to each other as the total changes between initial and final readings. Along such a path, if the changes in one Loran reading were automatically followed while the delay between the second pair of cathode-ray traces were constrained to vary in the designated ratio to the variation in the first reading, then the second pair of pulses, once set to coincidence, would remain so. The steering mechanism might be controlled by the second pair of pulses so as to maintain the coincidence, directing the vessel along the chosen path.

For example, if the readings were 3500 at the initial point and 2700 at the objective on the first Loran pair, and 1400 and 1800 on the second pair, the linkage between the indications would be set at one-half. The vessel would then follow a course
such that it would successively pass through points whose Loran coordinates were 3400-1450, 3300-1500, 2800-1750, to the objective at 2700-1800. The course would be quite direct unless it passed very near one of the transmitting stations. In fact, the course would differ from a great circle only in proportion as the Loran lines differed from being straight and parallel.

This sort of path has been called the "Lorhumb line" because it is the exact parallel, in hyperbolic navigation, of the rhumb line in Mercator sailing. Various Lorhumb lines might be connected together by the navigator to form an approximate great circle or any other desired path. Devices utilizing this principle will probably be adequate for all navigational purposes (as distinguished from problems of pilotage) and will presumably be more simple than others which, through more complete analysis of the exact forms of the hyperbolic lines, could follow slightly more direct paths. The advantages of design are so obvious that devices which embody this principle may be expected to be ready for experimental operation soon after the release of engineering talent from more immediate military requirements.

RELAYED FIXES

A device for retransmitting the hyperbolic indications from the receiving point to a remote indicator has been used to some extent with the Gee system, under the name "Gee sendback," but has not yet been applied to Loran. Equipment of this sort may take the form of a pulse transmitter which is triggered by the various pulses in the output of a receiver tuned for a hyperbolic system, or may be essentially a superheterodyne receiver in which the intermediate frequency is sufficiently amplified and radiated. A timer, of course, may or may not be used at the relay point.

The frequency used for relaying time differences in this way should be either very high or very low, as the interfering effects of multiple sky-wave reflections would operate exactly as in standard Loran to confuse the picture. The technique is so simple, especially in the case where no indication is provided at the relay point, that there is no need here to do more than mention one or two operational uses of such a mechanism.

The obvious uses for a system involving relayed fixes are those in which it is more necessary or convenient for a distant controller to have knowledge of position than it is for the occupants, if any, of the vehicle under control. Probably the only really military use might be in the control of fighter aircraft (or pilotless aircraft) where it could be expedient to relay fixes to a carrier or other base for analysis and appreciation, and then to retransmit the appropriate action information through a communication circuit.

A somewhat similar use may be for extensive study of ocean currents. In this case a number of automatic drifting buoys could relay their fixes to one or more control stations, afloat or ashore, and thus permit the gathering of precise continuous data in any weather and over long periods of time.

Probably the most important peacetime use of such a system, however, would involve the standardized installation of relay equipment in lifeboats. The information received from them would be far more useful for rescue work than directional data because it would permit potential rescuing vessels to determine at once not only the
direction but the distance to those in need of assistance. Such a program must await
the general use of Loran receivers on shipboard, but could then easily be integrated
with an automatic distress signal-receiving mechanism, provided that a frequency
channel entirely devoted to such operation can be made available.

GUIDANCE OF PILOTLESS AIRCRAFT

Since hyperbolic navigation does not call for the transmission of any information
from the vehicle under control, it is a mechanism with vast potentialities for the two-
dimensional guidance of automatic projectiles. If flying bombs are to become the all-
weather air force of the future, no other system offers such immediate possibilities for
the mass control of very large numbers of projectiles.

Systems which require some contact between a projectile and ground operators
other than the launching crew may well have many tactical uses in close-support op-
erations, but the possibility of maintaining strategic bombardment by such methods
is remote. A hyperbolically-controlled flight of pilotless aircraft, on the other hand,
could be operated without any close coordination between launching crews and the
controlling group, and without saturation of the guiding facilities.

The receivers for hyperbolic operations of this sort would differ greatly from
the present Loran and Gee receivers. In fact, their evolution should be in nearly the
opposite direction from that suggested in the last few pages. Instead of being adapt-
ed to more flexible and versatile methods for general navigation, the equipments for
pilotless aircraft should be reduced to the stage where they know only a single time
difference, but know it well. The corresponding ground equipment, however, must
have a degree of flexibility not now in use, so that the hyperbolic lines recognized by
the aircraft might be made to lie across any desired target. A pair of ground sta-
tions would establish a line of position extending from the launching area to the
target while a second pair would define the intersecting line at which the projectiles
would descend. Under gyroscopic control the projectiles could be launched at any
time and in any number, and the accuracy of their initial courses would need only to
insure an intersection with the first hyperbolic line before passing the target.

With a system of this sort, aircraft could be launched from many points in a
large area. Dozens or hundreds of launching sites would independently send off aircr
sensitive to a single line of position, without any requirements for coordination
except that the control system would have to be in operation. These aircraft
would follow their independent courses, perhaps for half the distance to the target,
until they came within the zone of influence of the hyperbolic line, whereupon each
would change its course and come about exponentially to ride the line to the objective.
The effect would be that of raindrops falling into a gigantic funnel and being con-
centrated into a steady stream playing upon the target.

Such a stream of bombs would, of course, rapidly obliterate any objective. In
practice, therefore, the ground-station operators would steadily alter their timing
constants so that the line followed by the projectiles would be caused to sweep back
and forth over the target area, while the constants of the release line would be alter-
ed, perhaps in steps, to provide the requisite variations in range. Thus the streams
could be played back and forth across the target area like the stream of a fire hose
or more exactly, like the stream of electrons scanning a television screen; all this control could be exercised without any cooperation from the launching crews who would, like the loaders on a battleship, simply maintain the flow of projectiles without giving thought to their destination.

Similarly, the beam of pilotless aircraft could be swung from target to target to satisfy tactical requirements without requiring any change in the launching technique or orders, provided only that the rate of sweep of the beam must be commensurate with the transverse acceleration available in the aircraft.

This use of the hyperbolic principle differs from Loran, Gee, and Decca, in that many types of transmission should be made available for it. While coding and other features may reduce the susceptibility to jamming, the best defense is unexpect-ed variation of the operating frequency. If this sort of mass control of pilotless aircraft is to be developed, great attention should be given to all the timing elements to insure that none of the boundary conditions of the system shall inhibit the free choice of radio frequency. The indicating and control mechanisms should be standard-ized and reduced to practice in the simplest and most reliable form, but the method of transmission and detection of the hyperbolic information should be capable of alteration at a moment's notice, so that while LF-Loran frequencies might be used for one tactical operation; Gee frequencies, or microwaves or infrared might be used for the next.

In this respect, as in the additional flexibility of the ground stations and the simplification of the airborne equipment, the development of hyperbolic control of pilotless aircraft lies in a direction different from that in which commercial development of a general navigation system may be expected to go. It is, therefore, clear that, while the exploitation of the new methods of navigation may be left to private enterprise, the development of a "hyperbolic air force" must, if it is desired, be obtained through direct and positive action by the armed services.

HYPERBOLIC SURVEYING

There is one other aspect of hyperbolic navigation which deserves examination by government agencies or by the large philanthropic organizations. Whatever the merits of cycle-matching LF Loran for navigation, it shows great promise for the precise measurement of distances of several hundred miles. Under laboratory conditions it seems reasonable to expect an error of the order of ten feet in a single measurement of the distance between two transmitting stations, and the average of a number of observations made under good conditions in the field should exhibit about the same precision in the hands of skilled crews. This is about the accuracy which a good trigonometrical survey measures a distance of 100 miles.

It seems probable, therefore, that radio surveying can supplement the ordinary methods for regions in which the basic triangulation system can be on a large scale. The procedure might be as follows: Three stations could be set up at the vertices of an equilateral triangle several hundred miles on a side, and the lengths of the side determined by repeated measurements of the bounce-back time over a period of several weeks. During these measurements a number of navigator's receivers could be set up and operated for brief periods at points which could be identified on airplane photographs, thus providing a network of points of secondary accuracy, based upon the ori-
original triangle. After thus surveying the area contained in the triangle, one station could be removed to a new location on the opposite side of the remaining base line, and the process could be repeated. Thus, a precise triangulation would be extended over immense areas in a relatively short time, while as many points as desired could be located with respect to the basic network. Neighboring secondary points would not be known, with respect to each other, with the precision obtainable by optical survey, but the absolute errors should not be more than a few yards and the speed of the whole operation should make it economically available in parts of the earth's surface which could not otherwise be surveyed for many years to come. By this method, of course, islands and shoals which cannot be reached by optical means could be accurately charted.

Unfortunately, this is the sort of enterprise which cannot be undertaken on a small scale but which must be attacked with vigor and with the expenditure of considerable money and time. It appears obvious, however, that, once in motion, the method could produce surveys of an accuracy comparable to that of any other method, and produce them in a time far shorter than that now required. Good coordination of these methods with airplane photography may permit the charting, within the next few years, of very large areas which are relatively inaccessible and therefore not well known, but which, nevertheless, may be of actual or potential military or economic importance.
GROUND CONTROL OF AIRCRAFT

TECHNICAL ASPECTS OF THE CONTROL AND AIRCRAFT LOCATION PROBLEM

In parallel with the trends in air weapons, there are definite tendencies in radar equipment which provides for more effective use of the air weapons, and are necessary for building a defense against them. In the following discussion, certain fundamental limitations imposed by nature must be kept in mind.

(1) The range of any radar equipment, regardless of its power, is essentially limited by the optical horizon. It is possible to see slightly farther beyond the horizon by increasing the performance of the equipment, but this increase is a negligible fraction of the horizon distance.

(2) Measurement of absolute position of aircraft is limited by uncertainties caused by moisture and temperature gradients in the atmosphere. These gradients, in general, cause more uncertainty in height measurements than in plan position. Although the error in absolute position may be rather great, the error in relative position of two targets decreases as they approach and becomes zero as they come into coincidence.

(3) Atmospheric phenomena are more pronounced as the wavelength decreases. Absorption by the atmosphere will probably prevent the use of wavelengths shorter than 2 cm for long-range equipment.

(4) For detection of aircraft over water, low-frequency radar suffers the disadvantage that interference between the direct and the reflected rays prevents the detection of low-flying aircraft. The shorter the wavelength, for a given antenna height, the shallower is the region thus excluded. Even over land such interference may be serious for frequencies below 1000 megacycles roughly depending, naturally, on one terrain.

It is now technically possible to build a ground- or ship-based radar equipment capable of detecting and accurately measuring (subject to atmospheric uncertainties) the position and height of all aircraft flying below any given altitude and above the optical horizon. Weight and size might make such an equipment impractical for many uses, but would not be a serious drawback for fixed ground stations. Airborne equipment has so far been limited by the size of the aircraft, but there is no reason to suppose that ranges of 200 miles or more for detection of small aircraft will be impractical in the near future. It may therefore be assumed that horizon rather than equipment will impose the eventual limit to the coverage attainable by all long-range radars.

Since it is possible to eliminate targets which are not moving, the area covered by a single equipment will be determined by the height of the set and by screening by
surrounding hills. In general, where maximum coverage is desired, the highest sites will be selected. Further implications of this statement will be discussed later.

Since the control of aircraft requires an accurate knowledge of its position and height, future development may be expected to go in the direction of increased accuracy and resolution. Under normal atmospheric conditions, a resolution and absolute position accuracy of the order of 50 yards may be expected at long range. Studies of atmospheric phenomena may eventually result in techniques for correcting the data on abnormal days to preserve a large proportion of this accuracy under all conditions.

Techniques of presentation of the traffic picture may be expected to advance to the point where the controller can be given a three-dimensional view of the traffic where required. It is probable that the bulk of the controlling will be carried out from a two-dimensional map presentation, however. On this map, the direction of travel and identity of all aircraft will be displayed. It is probable that each aircraft controller will have the choice of operating from the map plotting board covering the whole area, or from a three-dimensional expanded view of a limited area. Specialized indicators may be expected for air-to-ground operations such as blind bombing or control of pilotless aircraft. Through the use of radio relay systems, the control can be centralized in one place distant from the radar equipment, and may have information from a number of equipments immediately available. The time delays and errors now caused by verbal relaying of the aircraft's coordinates will be eliminated by the transmission of the radar signals and the direct displaying of these signals to the controller.

One of the major problems is still the identification of aircraft. Beacons in the aircraft present a partial solution, and will probably continue in use but will be combined with other functions.

Since all friendly aircraft will operate under control from centralized stations within the areas crossed by the flight, combination of the beacon with the communications equipment would aid greatly in identification. The use of a directional antenna at the control station and pulse-communication system coupled with the beacon would give secure communications and reasonably certain identification by limiting the azimuth and range from which the ground will receive synchronized signals.

In the case of pilotless aircraft, the beacon could be combined with the control mechanism and could even be used to transmit to the ground information necessary to complete the calculations for the bomb run.

Finally, ground-to-ground and ground-to-air communications must be considered as an integral part of the aircraft control problem. Ground-to-ground communications from fixed stations will be handled by wire or cable in most cases, because more channels can be made available without mutual interference. Standby radio channels must be provided for cases of failure of the land lines. These radio channels will be point-to-point, using narrow radio beams to prevent interference with adjacent stations and to reduce power requirements for reliable transmission. Security will be obtained by use of directional transmission, and also by use of speech scramblers and pulse communication systems.

Ground-to-air communications will fall into two classes. An omnidirectional antenna will be needed to provide communications with aircraft whose position is un-
known, and for information of a broadcast nature such as weather. Directional equipment will be used for communication with a particular aircraft. For security reasons, this transmission will be coded or scrambled in some manner. Since the present ground-to-air communications are now open to monitoring, both the Axis and the Allies usually found it more desirable to monitor radio transmissions than to jam them. Because jamming techniques are well known and are available for the frequencies now in use, present equipment may be jammed at any time the enemy finds it to his advantage to do so. This means that secure communications systems must provide means for working through heavy jamming.

Voice and teletype communications may, for specialized applications, be augmented with picture-transmission devices. Transmission of weather maps to planes on long-range flights, for example, can be handled by a narrow radio channel, since considerable time can be taken relaying the information. This will permit the use of wavelengths which are not restricted by horizon. On the other hand, television pictures from an observation plane may have to be transmitted in a very short time, thereby requiring a wide band of frequencies. This will probably restrict the equipment to the use of high radio frequencies, and will therefore impose line-of-sight transmission. Suitable relay equipment can be used, however, to extend the range beyond the horizon of the first transmitter.

TACTICAL EMPLOYMENT

The prime function of ground radar is rapidly becoming that of control. Tightness of control will vary from the complete control of pilotless aircraft to merely having an over-all air picture which can be called upon to help an aircraft in difficulty. Since all of these control functions require a picture of the air traffic and a coordination of this traffic, a centralized control organization must be established to handle a given area. This organization must have radar information and communication facilities. The communication facilities must provide for passing information on aircraft movements from one organization to adjacent area control centers, and may include provisions for transmission by television of the air-traffic picture.

The radar information must be presented to the controllers in a form which shows the present position of the aircraft, the direction of flight, and identification. At present, the over-all picture is obtained by plotting, but at the cost of time delays. In order to eliminate the time delay, the controller is given an indicator, but then has only the present position of aircraft displayed, unless he chooses to plot on the tube face. He therefore has to watch both the plotting board and the tube to obtain the complete picture. In the ideal situation, the plotting board would be made to present an up-to-date picture or the track identification, and direction would be displayed on the control tube. The former could be accomplished by a suitable projection indicator coupled with a plotting technique, while the latter could be provided by electronically placing the tracks and identification symbols on the tube. In both cases, prominent map features should also be displayed. When the controller display progresses to a three-dimensional picture, plotting techniques in three dimensions for presentation on the indicator would be desirable.
Functionally, the radar control network will be called on for (1) navigation, (2) warning, (3) air-sea rescue and (4) meteorological data.

Navigation, in the broad sense, may be considered to include everything from keeping an aircraft on the proper course on a routine flight, to blind bombing or blind landing. During peace or war, there is a requirement for backing up other navigational systems with ground radar. The need for the ground radar control becomes increasingly great as the planes approach congested areas such as airports because at these points, in bad weather, the failure of navigational aids may leave the pilot in a critical situation. Furthermore, the use of several methods of checking the aircraft position will minimize the danger of errors and of freak atmospheric effects.

In addition to long-range moderately-accurate navigation, there is need for precision navigation. For control of traffic at an airport, an accurate short-range system is needed to handle the traffic from the control tower and to place planes in the proper position for a landing. For this purpose, a high-resolution three-dimensional presentation is badly needed. A further requirement is an adequate identification system which can select a single plane from a snarl of traffic. This identification will probably be based upon the use of an airborne beacon. The beacon system should have provisions for coding, and should have a resolution at least as good, if not better, than the radar. It would also be desirable to combine this beacon with a communication system which would be sufficiently localized in space to insure that the wrong plane was not responding by mistake. This should be feasible by combining a highly directional antenna with a pulse communication system which is so gated that replies could be received only from planes at approximately the correct range. This requirement exists even during peace.

For ground control of blind bombing and control of pilotless aircraft, a long-range precision system is required. Although a partial solution of this problem exists in the "Close-Support Bombing" modification of the SCR-584, some system should be developed which avoids the difficulty in picking up aircraft and has a greater plane-handling capacity. The ground control of bombers is limited by horizon, but has the advantage that the man upon whom the decisions rest is working in a relatively quiet room and is not under the stress caused by enemy fire. It also permits last minute change of target in a simple manner, and provides the commanding officer an opportunity to obtain a preliminary evaluation of the mission.

Another precision navigation requirement is interception of hostile aircraft. Since this problem received considerable attention in the war, it is reasonably well solved by present ground radar. Limitations in aircraft performance are at present one of the main factors contributing to interception failures. The main lack in the present system is an adequate identification system. Here again, there is a requirement for a beacon system which will provide suitable coding, and will have a resolution at least as good as the radar. Increased radar resolution could improve interception results, but is not essential if suitable navigation equipment is used.

The warning function of radar falls into two categories. Even during peace, there is a requirement for warning aircraft of the presence of other aircraft. Although collision avoidance can be solved by airborne equipment, there is still a need for the airport control tower to be able to alert pilots to the presence of other aircraft. Dur-
ing war, there is the additional requirement for warning aircraft of the presence of en-
emy planes even at great distances. This function has been successfully carried out in the ETO by the British Type 16 and the American AN/CPS-1 equipment.

Air warning of enemy attack to ground installations is only a partially solved problem. The solution has failed in two ways: There has been failure to establish the existence of hostile aircraft, and there has been failure to appreciate that warning without thwarting the attack is of little value.

Failure to pick up enemy attack has been caused by "on the deck" flying which results in screening by the horizon, and by the extreme high-altitude trajectories of the German V-2 rockets. The low-altitude attack can be met by elevation of the warning radar. This can best be accomplished by the use of a long-range airborne set. A start toward the solution of this problem has been made with the introduction of the AEW. In order to complete this solution, it will be necessary to remove sea return and ground echoes, and to increase the range of the equipment considerably. V-2 warning must be accomplished by improving the high-altitude coverage of radar equipment. Since the rocket weapons of the future will go to fantastically high altitudes, it may be impractical to provide coverage for warning purposes over more than a limited portion of the trajectory.

The provision of warning, without measures for preventing the attack, is almost useless. In the case of low-flying aircraft, the use of airborne warning systems must be coupled with control of defensive measures. As in the case of ground radar, the warning function must take second place to the control function. Two possibilities exist: control must be carried out either from the aircraft, or from a ground station to which the air picture is relayed.

Since rocket weapons of great size and long range are likely to be one of the main weapons of the next war, the defense against these must be developed. The unsolved problem of this war is the provision of warning of the approach of such rockets, and, much more important, their destruction at a safe distance from the target. Obvious requirements of the battle against super rockets are a maximum period of warning, and a projectile capable of destroying them at high altitudes. Both of these requirements remain to be met.

Air-sea rescue requires little comment. The two necessary factors are a means of spotting the aircraft in trouble and the crew in the water, and rescue craft which can be controlled to the pick up. Airborne and life-raft beacons, coupled with ground and airborne radar, can provide for expeditious rescue. Provisions for an emergency beacon code should be made to distinguish the plane in distress.

Meteorological data can be furnished by tracking free balloons to obtain upper-

atmosphere winds, by noting storm positions on microwave radar, and by observing anomalous propagation. The second of these items is perhaps the most interesting. It has already been demonstrated that it is possible to guide aircraft safely through gaps in tropical storms, and that short-range weather predictions can be aided by tracking rain squalls.
TRENDS IN RADAR FOR GROUND CONTROL

V-Beam.

The most complete organization for the use of ground radar is that used for tactical air command. This can be used for almost any purpose since there is nothing lacking for complete control.

The basic set which is now used to keep track of what goes on in a tactical air command is the AN/CPS-1, or MEW, and this will shortly be supplanted by the V-Beam. The V-Beam enables even small aircraft to be followed with certainty within a radius of 100 miles from the station and enables heights on all aircraft to be found. The coverage is shown in Fig. 12, and this represents present technique. Future technique could add at least 12 db to the performance of this set, and if that were done, the existing V-Beam, with no change in antenna size, merely change in feed, could give coverage on aircraft out to 150 miles no matter what the size of aircraft. On formations of aircraft, the range would be very much greater, consistent with the horizon limitation.

This set is used to give a complete picture of all flying within a radius of 100 miles. At present the data is handled by a rather clumsy technique involving plotting from data given on B-scans. Even with present-day technique this can be improved by, for example, the use of a photoprojection PPI developed by the Eastman Kodak Company which enables the picture of a PPI to be put on a vertical operations screen three times a minute. Plotters standing behind this screen can give a reasonably good interpretation of all the plots turned in by the radar set. Whether this is the best way to handle the data or not remains to be seen. It leaves something to be desired in that it is not possible to present height directly. The presentation of height is best done in the old-fashioned scheme of small posts with labels put on a large, flat map, as is familiar to all who have seen an information center. On these posts are displayed the number of aircraft, whether hostile or friendly, and also a number representing the height. The disadvantage of this scheme of plotting is that it is inevitably cumbersome, and the data so presented is not up to date. Therefore the vertical-plotting board which can be brought up to date with the use of the photoprojection scheme and a separate presentation of height on some tabulating board (now known as a tote board) is probably the best that can be done.

This being the case, we can envisage one V-Beam with a complete operations room with a general-situation board or vertical-plotting screen on which are carried up to 50 or so separate tracks. These are handled by means of the photoprojection screen. In front of these will be placed various control facilities. These are, at present, eight to ten off-center PPI's with height tubes interspersed among them as required. The functions of these off-center PPI's are varied. Mostly they are used for control which is carried out by means of an ordinary VHF system. In addition one could be used for describing weather; others could perhaps be used for liaison with other units in which flights are passed accurately from one controller to another. In any event the basic philosophy is that of knowing what is in the air and having equipment to do something about it by means of VHF control.
Figure 12 — Organization for Control Network
Control Aids.

Many aids to this scheme of general control exist. One, for example, is the scheme known as video mapping. This consists of a means of developing in the video the information necessary to write a map or any information needed on the off-center PPI. This is then kept as a facility which the controller or scope operator can fade into his whenever he wishes. In this way it is possible to marry-up radar targets with points on the ground.

A second aid is a beacon such as the AN/APN-19 which locates friendly or otherwise specialized targets at will.

A third and most important aid is the VHF direction-finding equipment which will locate an airplane, in direction only, to an accuracy of one degree. This enables particular planes to be sorted out.

When equipment is available for general control, the necessity for accurate control now arises. This can be achieved in several ways. Either one can extract maximum accuracy out of the general control radar, or one can design a specific radar intended for accurate control. Up to the present this latter has not been done, but a modification of a fire control radar, the SCR-584, has been used in which for accurate control of a single aircraft an accurate track is carried on a plotting board by means of the locking-on feature of the SCR-584, and this is used to give vectors to the plane. It is felt by many that it would be better to build a set which did not forego the ability to see everything else in the neighborhood while controlling, and this would involve essentially a rapidly rotating V-Beam set with rather small antennas perhaps set at X-band rather than S-band, and a number of these sets would be fixed up appropriately so as to permit accurate control. A preliminary specification of a possible set is given:

- **Wavelength, X-band**
- **Dish size, 15 x 3 ft giving 0.5° beam for vertical and slant beams**
- **Three feeds for each beam to give lower, middle, and upper coverage**
- **Pulse width, 1 microsec**
- **Power out, 300 kw**
- **MTI on both lower beams**
- **Scan rate, 6-12 rpm variable**
- **Receiver sensitivity about 8 db below KTB**
- **Skiatron general indicator**

Up to six special control scopes of the off-center type with special tracking equipment similar to the APA-44. These would feed six controllers with the necessary data for precise bombing or close cooperation. The six controllers sit around the skiatron in the "soda fountain" technique proposed for C.I.C.

The use of radar offensively for a tactical air command follows, therefore, the following general pattern. First, the planes take off and are vectored by a tower search set; second, they report in to a V-Beam for general control; third, they are vectored by general control to accurate control, where they are controlled until their mis-
sion is completed; then they are returned to general control and finally are put into the tower-search set which controls them for landing. It has proved necessary to construct for this purpose a special tower-search set. The complete design of this is not yet in. At the moment a modification of the SCR-584 is contemplated. This modification uses moving target indication, has provision for beacon reception for identification, and contemplates four indicators with a central indicator of an expanded type such as a skiatron or possibly a photopjection tube. With this a survey of the aircraft interested in landing can be carried by each airport, and they can keep planes not interested in landing flying along a definite lane overhead and can bring the planes in with reasonably good control so that stacking is not necessary, or if necessary can be used for only a short time.

Future Problems.

Atmospheric reflections from clouds, i.e., from rain drops, are a very annoying feature when detailed control has to be carried on. In wartime one has to envisage the possibility of an aircraft flying through a storm area since it affords him a certain measure of protection from the radar and since, moreover, he has a certain degree of immunity there. In peacetime it is quite likely that a knowledge of the position of such rain storms could be a great asset and would help in controlling aircraft so that they would be able to fly in clear weather all the time even though flying at night. Microwave radar, and indeed any radar sees these rain storms quite definitely. When the performance of microwave radar is brought up close to theoretical, these rain storms will be still more apparent than they are at present. The development of circuitry to enable these to be eliminated is one of the important jobs that has to be done before radar can be considered to have arrived. In other words, it is necessary to see the aircraft where or when desired and to see the rain storms when desired. This has not yet been achieved although some palliatives are in existence. Considerable research should be put on this phase and possible directions of research lie along moving-target indication techniques with delay lines of variable length so that the variable motion of the clouds can be eliminated. Circuitry such as fast time constant and instantaneous automatic volume control have been proved to help a little. By very careful circuitry this assistance is such that it is quite appreciable at the present moment; however, much more and better remains to be done.

A second important problem that remains to be tackled is that of indication. We have never had any means of appraising instantly the situation of aircraft in the sky. The eye is not very good at this; the estimate of height and range of this is very slight and very inaccurate, and the ranges of detection are very low. Radar gives such a wealth of data that it far outstrips the eye, and therefore some means of using the data involves a considerably difficult psychological as well as material problem. Various things have been suggested, one of which is a continuous tracking mechanism on each aircraft, which by means of a servodrive moves (for example) small luminous dots up and down thin wires, and which therefore gives you a three-dimensional picture. Change in colors of the lights would indicate different aircraft. Such an indicator would be extremely elaborate and while perfectly possible would be something which would have to be embarked on only in an area of very high traffic. It would be a little difficult to build this unless one were sure of its ultimate success
since the cost involved would be rather large. However, if the future of aircraft is
such that aircraft becomes as common as automobiles, then something of this nature
will be absolutely necessary. Otherwise the direction of flying from the ground will be
extremely difficult.

One further thing remains unsettled. It has always been argued in the past that a
pilot is one who likes to fly his own plane and to keep freedom of action. On the
other hand, if he is controlled from the ground, his movements are much more cer-
tain and he is sure to get where he wishes to go more quickly and accurately. More-
over, he will be safer from enemy attack and he will get there in greater comfort
since he will be vectored around the various cloud positions. It has been argued that
this control from the ground will never be greatly liked by pilots. At this stage we
do not have the answer to this problem. Many pilots who have flown missions closely
controlled from the ground like it very much. Many pilots who fly navigational sys-
tems like those better, in this case they have, essentially, control in the aircraft. A
period of extensive testing, lasting possibly as long as ten years, will remain to decide
whether equipment will be procured and put in aircraft to enable the pilot to fly his
own course using data fed in from the ground or whether he will merely listen to his
radio and follow the instructions given to him.

A proposal has been made, by Griggs and the writer among others, for relaying
back up to the aircraft the information from a ground radar set together with beacons
and video mapping. If this were done, then the pilot could fly his own course and see
where he was on a map instantly and would have no problems whatsoever. On the
other hand, he would have one more thing to look at, one more thing to maintain in
his aircraft and one more thing to learn to do without when it fails.

The other philosophy is that of control solely by radio, making sure, as is at
present done on ATC aircraft, that enough radio is carried so that it can’t possibly
go out. Then by merely taking verbal instructions from the ground the plane, with no
further equipment, can be vectored wherever he needs to go. This form of divine
guidance, however, may not be psychologically satisfactory. Either way will achieve
the necessary result of letting an aircraft reach his objective in bad weather or at night
in complete safety.

Before such decisions can be made, however, we have to develop and make these
systems absolutely reliable: (1) V-Beam, (2) tower search, (3) landing control,
(4) beacons, (5) video mapping, (6) relay radar, (7) accurate control radar. After
this equipment is as good as the ordinary human being for reliability, ground radar
control can be said to have arrived.

THE CONTROL SYSTEM

Communication links for a control system are shown in Fig. 12. All control ex-
cept a few specialized functions is concentrated at a convenient location within the
area. The main difference between this system and those now in use lies in the trans-
mition of the radar data to indicators in the control center. Under present operati-
ional practice, data is transmitted to the control center by verbal relaying of co-
ordinate positions. This step introduces delays and errors which make reliable con-
rol from the retold plots an impossibility. The alternate solution now in use is to
pass control to the radar station. This is undesirable because the control is no longer centralized, resulting in difficulties in coordination between the operational planning group and the control group. The use of a relay link to transmit the radar data to the control center avoids these difficulties. It is probable that no advantage would be gained by bringing the control of traffic at an airport into the control center. Therefore, the airport control radars are indicated as operating with only voice and teletype communications to the control center. On the other hand, it may prove desirable to provide the over-all air picture to the airfield control tower by a relay transmission from the control center.

Antiaircraft defenses must also operate as semi-independent units, because of the requirement that the gun-laying radar must be near the guns. These units will be alerted from the control center and will be kept informed of friendly aircraft movements.

Antirocket defenses will probably have to operate almost independently because of the very short time available for carrying out defensive measures. Time delays in alerting cannot be tolerated. Furthermore, the equipment used for this purpose will probably be highly specialized and may be of little use in aiding in the control of aircraft. Certainly the present types of aircraft-control equipment will contribute virtually nothing to rocket defenses.

The directional air-ground communications systems are placed at the radar sites in order to provide easy orientation of the antenna to correspond with the radar picture. This feature also provides an identification aid by using the communication equipment as a direction finder.

Since the equipment is merely a means to an end, the organizational command will be operational rather than technical. The two main lower echelons will be air-control and technical, with suitable subdivisions to cover the functions and to provide for proper units at the various stations. Regardless of the classification as control or technical, all men on the system should be administratively under the same chain of command. The Army practice of having the control personnel in the Air Corps and the technical personnel in the Signal Corps had resulted in considerable conflict at times, and had been detrimental to the proper functioning of the system. It should be possible for either the control or the technical personnel to rise to the commanding position in the organization. In either case, the man should have a good grasp of the over-all functioning of the system.

The control network, if used to handle civil as well as military aviation during peacetime, can be kept an alive and progressive organization. On the other hand, if only simulated missions are carried out, crews will become indifferent and improvements will lag. This does not mean that simulated interception and bombing missions should be omitted, but it does mean that the organization should function continuously between these maneuvers.

This system can and should be set up to cover the United States and its possessions. At this time, the main ground radar should be the AN/CPS-6 and the main air-ground communications should be VHF. Development of improved communications should be pushed and substituted for the VHF. Mark V IFF can be used as a temporary beacon system while a higher resolution system is being developed. To ob-
tain coverage out to sea, a long-range airborne system is needed, although this function could be carried out by picket ships. During peace, the main function of this airborne system would be to provide navigation, traffic control and aid to planes and ships in distress. Further development of equipment and techniques of control would be indicated as operating problems developed.

In addition to the relatively fixed defense installations, there is a requirement for a highly mobile control system to be used with armies in the field. For air-ground cooperation, a control network must be available which includes provisions for precision navigation of aircraft and rockets from the ground. Although the ground-control system is limited by optical horizon, many targets are suitably located for attack by aircraft under ground control. Control at greater distances can be accomplished by augmenting the ground radar with long-range airborne radar which can effectively raise the antenna height. This radar must be capable of seeing aircraft in the presence of fixed echoes, and if possible should be capable of detecting moving vehicles. The actual control should probably be carried out on the ground because coordination with other radar equipment would be easier. The aim of this control system, together with airborne bombing and navigation equipment, should be to prevent all movement of the enemy's supplies, equipment and troops on an all-weather, 24-hour basis, and to make enemy air force, rockets and artillery completely inoperable by destruction of enemy equipment on the ground and in the air. Complete paralysis of enemy supply lines would eventually cause collapse, even if the destruction of weapons at the front could not be accomplished.

Strategic operations introduce one additional requirement. Because of the distances involved in attacking the enemy's manufacturing facilities, airborne control centers must accompany bombers on long-range missions. These centers should be capable of carrying out limited operations of the same types needed on the ground. In addition, there may be a requirement for precision control of rockets, the rockets being launched either from aircraft or from distant ground installations. These aircraft may act either as "shell spotters" or may actually control the rocket. Techniques to accomplish the latter should be developed. The strategic aim should be to wipe out all production facilities and storage depots. This too will cause collapse of the enemy, but the effects will take longer to show than the paralysis of the enemy's transport system.

The ultimate goal of all air-control systems should be to provide complete and usable position information on all aircraft in flight, and to provide for the use of this information to aid any aircraft in safely completing its mission in either peace or war. In war, there must be the additional aim of maximum damage to the enemy, with minimum losses from enemy actions.
AIR BASED CONTROL OF AIR OPERATIONS

THE PROBLEM

The existence of ground radar equipment, which has been used so successfully for fighter control since the Battle of Britain in 1940, and the existence of airborne radar, which has been employed for individual fighter contacts and interceptions, have inevitably led to the suggestion of mounting in an airplane a radar set which could be used for general surveillance of the air situation and control of friendly aircraft in accordance with the demands of enemy air dispositions. The origin of this suggestion is not known, but as early as 1942 the RAF, at the suggestion of Wing Commander Sidney Lugg, mounted in a Wellington a set derived from the CHL/GCI, with a rotating 200-megacycle antenna which made it very remarkable that the airplane was able to get off the ground. This equipment was on the face of it technically impracticable, and no particular operational experimentation with it was carried out. The notion of airborne aircraft control has been reinvented several times since, but it is interesting to observe that the equipment which is now under development for airborne tracking of distant aircraft is called AEW (standing for airborne early warning). While it may be thought that this is done in analogy with the set whose principal use is fighter control, but whose name in MEW (microwave early warning), the fact is that the AEW is essentially an equipment conceived to permit ship-based aircraft control. It happens to be installed in an airplane, but this is so only because a mast of the requisite height for the ranges demanded by the design would raise the center of gravity of the ship on which it was mounted to an intolerable degree.

It will be instructive in the present discussion to inquire as to the general conditions which make an airborne aircraft control system desirable. The basic circumstance, of course, is that the world is round. Only microwave radar has the property of permitting an antenna of a size which can be successfully carried by an operational airplane to give the performance necessary in a radar equipment which provides sufficiently detailed information for aircraft control. The beam of a microwave radar is propagated in a quasioptical fashion, and does not extend over the horizon to any substantial degree. This leaves two possibilities when control of air operations must be exercised in places over the horizon from friendly territory: Either an airborne control center, with the necessary radar and communications equipment, and personnel for plotting and control, must accompany the combat aircraft, or else such an airplane must carry with the combat aircraft the necessary radar equipment, and specialized communications equipment which permits the display of the radar to be relayed back to a control center located on a ship or a piece of friendly land. This, of course, assumes that the command communications are also so relayed; it is now commonplace that really satisfactory command radio can only be achieved at VHF
and above, and this suffers from the same horizon limitation which affects the microwave radar.

The ultimate choice between these two possibilities has not been made, and can scarcely be made intelligently while neither has actually been tried out even under proof-test conditions, let alone in combat. It may be remarked in comparing them, however, that the chief disadvantages of the airborne control center is that the limited pay load and space afforded even by the largest aircraft now in use limits severely the layout and adequate manning of such a control airplane, especially considering the amount of electronic equipment which must be carried to look after the necessary information-gathering and control-communications services. A secondary drawback is the fact that the men operating as controllers in such an airplane are subjected to the same combat stress as the crews of the bombers and fighters they are controlling. While this may lead to a feeling of brotherhood between controllers and controlled which results in unquestioned obedience to directions, it will also lead to some deterioration in the performance of control personnel. The principal disadvantage of the scheme of relaying information is its cumbersome operational character. Successful control depends, in general, not alone upon the radar plane accompanying the combat aircraft staying in the air, but also upon a relay airplane near the control center staying in the air. The amount of electronic equipment which must all work at once to conduct an operation is considerably greater in this latter scheme. In so far as any a priori decision between these means is accessible, it will arise from the direction in which the development of combat aircraft is to proceed in the future. This matter is considered fully later in this paper, page 142.

There are two sorts of operation which require or benefit by over-the-horizon aircraft control; these are fighter control and bomber operations. The first is defensive, and has as its aim destruction of enemy aircraft bent on attack, at a sufficient distance from the target to provide plenty of room for friendly fighter maneuver. The second is primarily offensive, and any class of aircraft may be engaged. The bombers mentioned in the phrase "bomber operations" may be anything from very heavies to self-propelled bombs. The purpose of the control is partly navigational, partly to warn the bombers of imminent attack by enemy air units, and partly to control escort fighters, if any. It will be instructive to discuss the immediate future possibilities in these two types of operation.

The range at which fighter control can be successfully exercised by ground radar has always been marginal, because of the horizon limitation, and is now definitely too small. If the attacking aircraft fly at low altitude, the optimum detection range is very small and increasing speed of the attacking airplanes demands its increase not only because of the shorter time between radar pickup and hostile attack, but also because of the greatly increased difficulty of making an interception on a high-speed plane. A typical example which proved troublesome when this was written [May, 1945] was the problem of the Japanese suicide bombs. These had a range, from release at the mother plane, of some 50 miles, which made the interception and destruction of the loaded mother plane before it had released its bomb, almost impossible if the only radar information available must be obtained at the target with antennas no higher than the usual one of a ground or ship radar equipment. B-29's of the
Twentieth Air Force were used to bombard the airfields from which these aircraft
operated; this was a somewhat inefficient use of the B-29, and suggests that greater
returns might have been obtained by a continuous picketing of these fields by radar-
equipped B-29’s capable of alerting friendly fighters when a raid takes off. It is con-
ceivable that this could be done with the help of existing airborne radar, if it were
skillfully used. In any case, it is clear that the only available answer to low-altitude at-
tacks by fast aircraft is a warning service and aircraft-control facility whose coverage
extends well beyond the optical horizon.

The problem, as it concerns bomber operations, is not nearly so clearly de-
fined. This is so chiefly because the air offensive of the future is more difficult to pre-
dict than the defense. The backbone of the latter will always be destruction of the
enemy’s offensive machines, whatever shape they take, and this will always demand
warning and information of position sufficient to permit control of the defensive agen-
cies, whatever they may be. The design of offensive machines is something else again.
There is an enormous range of choice, ranging from an extension of the escorted
heavy-bomber attack familiar from European experience, through medium-bomber
operations and the use of fighter-bombers, to an attack by entirely unmanned aircr-
act, which, in the extreme may themselves be projectiles. The usefulness of the de-
tailed control which modern radar permits will be greatest for the escorted heavy
bomber operation, and will decline through the list just given, with the important
exception that unmanned aircraft may be controlled to their target entirely by means
dependent on radar. This last is a somewhat speculative possibility. In the present
war we have committed ourselves rather completely to the mass escorted heavy- or
very-heavy-bomber operation as the chief weapon of long-range air attack, and further
discussion of air-based control of offensive air operations will be made on the basis,
principally, of this type of operation.

During the last months of operation of the Eighth Air Force, which was the
cradle of the modern escorted heavy-bomber operation, control of escorting fighters
and some degree of navigational facility to bomber formations were provided by a
long-range high-definition radar set which was sited first in eastern England, and later
on the Continent. Increasing reliance was placed on aircraft control exercised by this
equipment, and it became clear that an extension of the facilities it provided to cover
the entire area of operations of the Eighth Air Force could, in principle, cause a revo-
lution in the character of the operations of that force. It was customary to lay out a
proposed operation, down to the most minute detail, from 24 to 48 hours before it was
actually to be carried out, and the numbers of aircraft involved were so huge that
no enemy reaction, however unexpected or threatening, could be allowed to cause
an alteration in the broad outlines of that operation. The ability of the MEW radar,
within its range, to permit the fighter dispositions to be altered to deal with actual,
not expected, enemy reaction suggested that the entire operation could, in principle,
be controlled from such an installation if its range of coverage were sufficient. Such
coverage can be provided, clearly, by air-based detection and control equipment.

THE EQUIPMENT

It will be our purpose in this section to discuss only the principal performance
features of existing and proposed equipment for air-based control of air operations.
It will not be our aim to discuss this equipment exhaustively, nor to indicate its limitations arising from the present state of our technical development. We must, of course, discuss the limitations which are fundamental and cannot be escaped. Perhaps it will make this distinction clearer to say that the horizon range of microwaves is a fundamental limitation, which, there is good reason to think, cannot be avoided. On the other hand, the fact that there is presently no adequate three-dimensional radar indicator, showing a scale map of the air space with aircraft positions and past courses displayed upon it, is simply a confession of the fact that insufficient technical effort has been put on the development of such a device, which has not yet appeared sufficiently urgent. There are two basic types of equipment to be discussed: radar and communications. Communications includes as subtypes voice radio, IFF, and radar-relay equipment.

So far as the radar is concerned, there is presently under development and nearly ready for operational use a set which has been informally called the AEW (AN/APS-20). This equipment operates at 9 cm and has several operational drawbacks which must still be cured in order to provide a really satisfactory radar for airborne aircraft control. The two chief objections to the AEW as it is presently designed are that it does not provide any means of giving accurate height information, and that it suffers excessively from ground returns. A less significant drawback is that the AEW will not, in its first embodiment, give full horizon coverage on a single aircraft of any type; its performance falls short of this. Improved receiver performance is in sight as a consequence of the discovery of a process for making very much better mixer crystals than used to be thought possible, and the range limitation is very clearly a transitory one. Height-finding from a platform as unstable as an airplane is a considerably more important difficulty, but there is no reason to think that this will not yield to development effort. Perhaps the most difficult of all is the elimination of ground returns, but this has been successfully achieved for stationary ground radar stations, and there is no basic reason for supposing that this technique cannot be improved and extended even to a radar station in a moving airplane. The situation with regard to radar equipment for air-based control of air operations can be summarized by saying that all the necessary techniques are either in hand or in sight.

The same remarks apply to the equipment for the relaying of radar information. Perhaps because this has never been seriously done in military operations, it seems that there are no difficulties in principle, and the work in hand on this subject gives great promise of success. It may be, and probably will be, that the first embodiments of this equipment will have faults, but these should prove to be correctible.

There is a basic difference between the two types of equipment just mentioned and the voice radio and IFF gear demanded by a flexible control setup. While the technical difficulties of the former are considerable, they seem capable of solution and (this is the important point) a very small number of equipments will do the complete operational job even for a very large air force. Large-scale policy decisions do not have to be made, and the influence of political considerations on the technical problem is at a minimum. This is not true of voice radio and IFF. Whatever equipment is installed in aircraft for use by the air-based control facility will be expected to serve as voice radio and IFF for all possible purposes, and the resulting political arguments
will be very formidable. While it is not realistic to ignore this fact, which arises from the circumstance that all aircraft carry the equipment concerned, this will have to be done to permit us to get on with the discussion.

With the foregoing remarks about the lack of realism involved in such a discussion, it is fair to say that the existing and proposed voice radio, operating at VHF and just above, is very nearly satisfactory (it can be somewhat improved by a system which has sufficient channels to provide a separate one for each aircraft; such a system has previously been described in detail). Existing and proposed schemes of IFF are entirely unsatisfactory. Not only is the directivity of the largest feasible antenna which can be carried on an airplane marginal for the precise separation of friend and foe needed for aircraft control, but also personal recognition is not provided by any system, not excepting the highly regarded Mark V, and personal recognition is the backbone and the basis of successful aircraft control. It is even likely that the height-finding on friendly aircraft could be done with the help of the IFF system, if one like that proposed in the foregoing article could be used. It is to be hoped that the very great advantages of such a system in all connections will result in its adoption. Its virtues from the standpoint of airborne control can scarcely be regarded as important enough alone to produce its adoption. It is important to recognize, however, that the lack of directivity and of personal recognition facilities in all IFF, including the Mark V, constitutes a fundamental limitation arising from the frequency range used, and is curable only by the adoption of a completely new system.

THE FUTURE

As has already been indicated, the importance and the detailed design of equipment for the air-based control of air operations will depend upon the character of these very air operations. It is difficult to foresee just what this character will be. There are basically two directions in which offensive air operations can go. The first is toward a Navy task force sort of arrangement, in which the present-day escorted heavy-bomber operation is elaborated to whatever degree the square-cube law permits. This contemplates giant fleets of large airplanes, capable of long-range performance, and protected by specialized fighters (which may be manned or not, as the nature of the opposition demands), flying in formation from base to target and dropping great loads of bombs. On the assumption that long-range escort fighters can always be provided with the ability to engage defending fighters on reasonably equal terms (this has so far been the case), the chief hazard to such future aircraft can be expected to come from antiaircraft fire. Such fire, as the speed and the operating altitude of the bombers increase, will probably not be gunfire because of the large times of flight and the consequent difficulty of accurate prediction, but will be composed of homing or ground-directed self-propelled missiles, such as rockets. The problem of defense against this fire can be reduced to that of the problem of defense against fighters if the offensive aircraft fly high enough to permit such missiles to be engaged by their defending escort fighters before the missiles reach the bombardment aircraft. Such an eventuality places an extremely great premium on the development of a swift and adequate facility for the air-based plotting of such attacks, and the marshalling of escort fighters in detail to meet them.
The second direction in which offensive air operations can go is diametrically opposed, and seems at first glance to offer a far smaller field for the air-based control of air operations. This is the development of extremely fast bombers (or self-propelled unmanned bombs) which would proceed without escort from base to target. They would rely on their speed alone, and the difficulty of interception which is creates, for security against both fighter attack and ground antiaircraft fire, by whatever type of weapon. At first sight, this seems to remove the necessity for detailed control of air operations, but only at first sight. Not only is the guidance of unmanned bombs to their target of the greatest importance, but also there is a type of defense against such attack which makes radar location and fighter control as important as ever.

This arises from the circumstance that the laws of motion followed by a bomb are equally known to both sides in a war. Consequently, if a fleet of bombs or of bombers, flying at supersonic speeds, is detected by the enemy to be flying in a given direction, he can make a shrewd guess as to the target, and he can tell at precisely what point in space a bomb must be released from each altitude to hit the target. It will then be possible to deploy defensive air mines, which may be ground-controlled helicopters without crew, in a space lattice so placed that the offensive machines must run through it if the target is to be attacked at all. This will almost certainly be a more feasible form of defense than attempted fighter interception of very fast aircraft can ever be, and it demands the sweeping of the mine barrage before a successful attack can be carried out. This can only be done on the basis of the same sort of highly detailed aircraft control which has been contemplated throughout this article.

Since any other direction of development for offensive air tactics lies between the poles of the great air fleet and the supersonic unmanned bomb, and since both of these demand control of aircraft to be exercised over the horizon from friendly bases, we can conclude that:

1. Air-based control of aircraft will be an important technique in future air warfare.

2. The necessary radar equipment and equipment for relaying radar indication to a ground or ship base are being developed in a form which gives promise of being satisfactory.

3. A decision between the control of air operations from an actual airplane, or such control from a ground or ship base, receiving relayed radar signals, cannot be made without extended experiment, which has so far not been undertaken.

4. The voice communication and IFF techniques afforded by the use of microwaves are far more promising than those offered by existing or contemplated equipment, and will be very helpful to air-based control of aircraft if the political difficulties of introducing them can be overcome.
LOCATION OF TARGETS

EXACT TARGET LOCATION

It will do very little good to provide elaborate and precise means of navigating aircraft, and other elaborate and precise means of dropping bombs, unless we know where targets are to be found in enemy territory. The navigation and bombing problems may possibly be entirely solved by the means of automatic machinery involving no men in the aircraft, but the problem of determining precisely where the target is located in the first place requires the judgment which can only be supplied by men. It may be divided into two parts, namely, (a) reconnaissance, to locate the target in the enemy territory in order that plans for its attack may be formulated, and (b) recognition, to distinguish and recognize the target immediately prior to its attack. Reconnaissance is the process initiated after intelligence has determined that the target actually exists.

RECONNAISSANCE

Unless accurate maps or geodetic surveys of the enemy's territory already exist, these must be provided by our own forces. One example in the present war has been the mapping of the Solomon Islands and other Pacific Islands rendered necessary by the inaccuracies of the charts which we had before the war. The prime purpose of such maps should be to give an accurate picture of the topography of the enemy territory. They may or may not show the actual location of all possible targets. They will, however, show the shape and location of cities, important rivers, coastlines, mountains and other natural features.

The most important method of finding out what the enemy territory looks like is by aerial photography. The methods of aerial photography have been highly developed, and there is no reason why they should not continue to be useful even if the speeds and flying altitudes of aircraft increase. For very high-altitude flying, however, it may often occur that photographic missions have to be carried out from such long distances that very few of them succeed in finding enemy territory unobscured by clouds. In such cases, useful maps can be made by photographing the indicator scope of an airborne radar set. It may be desirable to provide special reconnaissance radar whose express function is to provide large and clear map-like presentations of the terrain, suitable for photographing.

It will not, however, be desirable in all cases to furnish either the ordinary aerial photographs or the reconnaissance photographs taken of radar scopes to bombardiers and navigators for use during actual bombing missions. Rather, it may be desirable to make line-drawn maps from these photographs. Apparatus to assist in the preparation of detailed maps from aerial photographs is at present highly developed. The
development of similar apparatus for reducing radar-scope or PPI photographs to
maps should present no difficulties and would require only the initiation of a develop-
ment program to get it under way.

Incidental to preparing maps from photographs it is necessary to know not
only what the enemy territory looks like but where it is located with respect to our
own territory. In order to provide this latter information, a means of geodetic sur-
evuy must be provided. That is, we must know the exact latitude and longitude of pro-
ninent features of the enemy territory. In order to provide this information, it is necessary
that there be some means of accurately locating the photographic aircraft with re-
spect to our own territory while it is taking the photographs. Several methods may
be used to furnish this information: (1) Astronomical navigation may be carried out
by the photographic airplane. (2) Various types of electronic ground-based naviga-
tional equipment may be employed.

Because of the limited range of electronic equipment, the solution to this prob-
lem differs according to the distance which separates the nearest friendly base from
the enemy territory. If the nearest friendly base is more than approximately 1000
miles from the enemy territory, we must rely upon astronomic navigational data in
order to position accurately the photographing aircraft. At the present time astro-
nomical methods of navigation are not as precise as several types of electronic methods.
Therefore, if the enemy territory is not more than approximately 1000 miles from the
nearest friendly base, the latter should be employed. For this purpose the Loran ap-
paratus presents many attractive possibilities. By its use, position data may be con-
tinuously and automatically recorded and impressed directly upon the photographs.
(The principles of the Loran system of navigation and its future possibilities are de-

Neither astronomical data nor even Loran data, with the possible exception
of cycle-matching Loran, discussed on page 114, will be of sufficient accuracy to com-
pare favorably with maps made according to the standard methods of geodetic sur-
evuy. There is, however, another system of electronic navigation called Shoran which
is capable of giving data for the location of the photographs which compares favor-
ably in every way with standard methods. This system, however, possesses the dis-
advantage that it can only operate from bases which are on the order of 200 or 300
miles distant from the enemy territory. Therefore, it may not always be possible
to use it, especially at the beginning of a war. This restriction on the range of our
most accurate survey means is a fundamental one and is not likely to be greatly im-
proved by future developments in the electronic art. It suggests that before wars are
declared one should already be in possession of accurate maps of the enemy territory.

After we have provided ourselves with accurate and precise survey maps of the
enemy territory, we must then spot on these maps the location of those enemy in-
stallations which we regard as targets. However, before we can spot the enemy’s
targets upon the map, we must first know that they exist. The first procedure will
undoubtedly be to make factual surveys of the enemy industry to find out what targets
and how many and approximately where they are likely to be. This can be done
by the usual methods involving agents, the study of prewar economic data, and other
studies such as are now carried out by the Board of Economic Warfare. This informa-
tion can also be found from aerial photographs or even in some cases from photographs of the radar indicators of the reconnaissance aircraft. However, the enemy, knowing that we are desirous of locating his main factories and other installations may try to disguise their appearance either by camouflage or by providing simulated decoy targets, or he may try to jam our electronic equipment. We must, therefore, employ a variety of means to locate the targets, comparing the results of one against the others. There are also several electrical devices whereby the operation of our agents and the conveyance of their data may be expedited. Some of these will be discussed below.

In considering the use of each of the devices to be discussed, therefore, we must also consider what means the enemy may use in order to defeat them. We shall discuss here the provision of decoy targets and the concealment of the actual target, leaving the discussion of jamming to another place. The means of concealment include natural cover (as by forests), camouflage, and the placing of major installations underground.

We shall first describe the means which may be used to locate accurately the position of cities and other targets which occupy a large area.

AERIAL PHOTOGRAPHY

There is very little that the enemy can do to conceal his cities or major factories. Efforts had been made during the recent war, especially by the Germans, to disguise the appearance of parts of cities, for example, by covering over main roadways with roofs of camouflage material. In another case, the enemy provided a decoy, complete in many details, of an important oil field. Such methods are, however, of more importance to the enemy in his efforts to defeat the recognition of his enterprises by bombardiers prior to a bombing mission than they are in defeating our reconnaissance efforts. The reason is that the long period of time which is available for the study of reconnaissance data usually enables decoys to be detected as such, since the actual target also appears on the photographs.

The concealment by camouflage of any target against aerial photography can generally be defeated by one of two methods. First is the employment of colored photography. There are very few pigments useful for optical camouflage which so carefully match the colors of the surrounding territory that by the proper applications of color photography and the use of carefully selected color filters they cannot be made to stand out in considerable contrast from the surroundings. This is regardless of the fact that they may appear indistinguishable to the eye. The second method involves the use of stereoscopic photography which has also been highly developed. This method provides photographs which when viewed through suitable devices show the height of the subject to be greatly exaggerated. The method is powerful because the height of a target such as a factory building cannot be made smaller by the application of camouflage paint.

In many cases, cities and large industrial installations may be located with sufficient accuracy from a study of radar-scope photographs taken by photographing the indicator tube of an airborne reconnaissance radar set. The ordinary methods of camouflage which are suitable against aerial photography do not at all accomplish their purpose when radar is employed to look at the target. The reason targets are seen
in radar sets is because of their gross characteristics and in particular because the target contains many reflecting surfaces which would have to be covered over by means of a camouflage material in order to make the target invisible. However, most camouflage materials, such as nets and pieces of cloth as they are now commonly employed, are quite transparent to the radar beam, which would therefore look through them and see the target underneath. Moreover, were the camouflage itself sufficient to hide the target beneath it, it would be in turn very difficult to prevent the camouflage from being detected as an object or region on the PPI or radar indicator tube different from the surrounding terrain, and this in turn would be almost as satisfactory as seeing the target.

The use of decoys to defeat radar detection of targets has been tried in some cases. However, the installations required to make a radar decoy are very expensive in comparison to those required to make an optical decoy. Furthermore, the same considerations apply here that apply to optical decoys, namely, that since the actual target will also appear and time is available to study the photographs, there is little hope that the Intelligence personnel would be fooled by this measure. It is, therefore, not regarded as being practical to attempt to hide either cities or area targets from reconnaissance aircraft either by camouflageing them or by providing decoys.

The building of cities underground is not regarded as practical from the point of view of the ventilation required if the city includes power plants and large, heavy industries. In this respect reference is made to "Heat and Television Guided Missiles," (G. A. Morton) page 42 ff., of the SAG report Guidance and Homing of Missiles and Pilotless Aircraft which discusses the problems of ventilating and getting rid of the heat generated in large installations when they are built underground. There are, however, many special types of large industrial installations, in particular aircraft assembly plants, which can be placed underground with practicability. These underground installations can be detected neither by aerial photography nor by radar-scope photography, and other means must be sought. We must therefore consider how we may detect these underground factories.

One must first remember that all the power consumed by a factory of any sort is eventually turned into heat. This process involves the friction in the machines, the resistive losses in electric motors, the heat generated by lighting fixtures, by air compressors, and so on. Now, if the factory is to be kept at sufficiently low temperature as to be endurable by the workers, some means must be provided for getting rid of this heat. As is shown in the above-noted paper on the thermal detectability of underground factories, this heat may be dissipated by a sufficiently elaborate but quite practical ventilating system; it will not dissipate of its own accord. In this respect an underground building resembles a thermos bottle. The hot air taken from the factory must be conveyed to the surface of the earth, and unless special and very expensive means are taken, the hot-air exhaust pipes may be detected by sufficiently sensitive equipment carried in reconnaissance airplanes. The reference mentioned shows that there are only a certain limited group of plants which may be so treated and that in any practical case there is always going to be a possibility that the exhaust pipes may be detected. Of course, the detection of such exhaust pipes is very nearly as good as the detection of the plant itself. Therefore, one should seriously consider the installation in reconnaissance aircraft of equipment especially devised to detect the heat given off by in-
dustrial installations. Apparatus for this purpose is understood to be now under de-
velopment at the RCA laboratories.

In the event that underground installations are undetectable by heat-sensitive
equipment carried in reconnaissance aircraft, other means may be partially effective
in detecting them. The chief of these is the employment of sound detectors. Just as all
industrial installations give off heat so do they give off a good deal of noise. The direct
detection of this noise by microphones carried in reconnaissance aircraft is not re-
garded as practical because of the noise of the aircraft itself, which will very easily
shield any noise from the ground. However, as is shown in the reference, it is possible
to drop radio transmitters, carrying microphones, to the ground which may then
pick up the noise on the surface of the ground and retransmit it to the reconnaissance
aircraft. Devices suitable for this purpose, called sonobuoys, have been employed in
the recent war against submarines. These sonobuoys are dropped in the water in vic-
nities suspected of harboring submarines, and they pick up the submarine noise and
radio it to the aircraft above. It is entirely practicable to employ similar devices against
underground targets. Of course, a great many of them would need to be employed,
but fortunately they are not very expensive to construct. The tactic would be to fly a
considerable number of aircraft over the enemy territory and drop such a sound de-
tector say for every square mile of territory. By suitably coding these detectors and
marking the position in which they were dropped it would be entirely possible in
some cases to locate the underground factory with a fair degree of accuracy.

Radio transmitting equipment, although it may be constructed underground,
necessarily requires an antenna above the surface. Highly developed and rather simple
equipment is already available for detecting enemy radio transmitters.

Atomic power plants, should they be developed, may be detected not only by
the heat which they give off in common with other industrial establishments, but also
they may be expected to give off types of radiation peculiar to themselves, which are
able to penetrate considerable thicknesses of earth. It may be feasible to provide suit-
able airborne equipment for the detection of such radiation.

In the present war, equipment has been employed to detect submerged submarines
by virtue of the irregularities which they produce by virtue of their iron construction
in the earth's magnetic field. In principle, such devices should also be applicable to
the detection of underground factories. However, because of the short range of detec-
tion, these devices are not regarded as highly practicable for this purpose.

We may divide all industrial installations into three classes. These are: (1)
heavy industrial establishments, such as steel plants or entire cities which can neither
be economically placed underground nor can be dispersed; (2) manufacturing enter-
prises which cannot be dispersed but which may be placed underground with a cer-
tain amount of immunity to detection; (3) small establishments and potential tar-
gets dispersed on the surface. Small factory buildings isolated from any surround-
ing establishments may be effectively camouflaged or hidden by natural cover assum-
ing that they are not underground. They may be camouflaged or hidden either from
detection by aerial photography or from detection by airborne radar. However, the
type of camouflage which is required in the first case is not particularly effective in
the second, and the type of camouflage which is required against radar may be definite-
ly harmful from the point of view of detection by aerial photography. Even targets which are hidden by natural cover like forests may in some cases be detected by airborne radar because the forests are often transparent to the radar beam. They will also be detectable by virtue of the heat which they give off as has been previously pointed out. The best way of locating such small establishments accurately is by a repeated series of reconnaissance missions each employing all of the useful techniques simultaneously. By a study of the successive photographs taken on successive days over a considerable period of time, it will often be possible to detect imperfections in the camouflage or other unnatural phenomena which will serve to expose the position of the target. Objects which are surrounded on two or more sides by water are particularly easy to detect by radar beams. This applies particularly to bridges. In some cases, however, in the present war the Germans succeeded in constructing bridges which were entirely submerged, their roadways being about a foot beneath the surface of the river. Such bridges are of course quite undetectable by radar and also in most cases by photography, or indeed by any other means. Their presence may be again detected, however, if a sufficient number of photographs are taken over a long interval of time, due to changes in the river height, eddies, and other chance phenomena.

Materials exist which are sufficiently nonreflecting to radar beams as to render the covered objects undetectable thereby. A building covered with such material and located in a dense forest might be expected to be completely undetectable by radar. In such cases, recourse must be had to the subsidiary methods mentioned in connection with underground establishments; in particular, the possibility of dropping of small sound detectors must be considered.

TACTICAL RECOGNITION

Tactical recognition is the procedure whereby the bombardier or gunner is enabled to find the target preparatory to aiming at it. In the case of large and extended targets, such as factories or major industrial installations which are located above ground, this presents no difficulty, the problem having already been solved by the reconnaissance. Small maneuvering targets (such as tanks) or targets which are stationary but of small size (such as small buildings) camouflaged or underground installations, gun batteries and the like may be marked by agents. This may be done by the use of beacons of various types which may be set up just prior to the raid. In a few restricted cases, the beacons may consist of flares. However, in most cases it would be preferable to use devices which are, temporarily at least, invisible to the enemy. In this category come portable radar beacons. Such beacons are being made, and in the future considerable effort should be made to make these devices smaller and lighter so that they may be more inconspicuously carried by a man. Use of such devices would require no special equipment to be attached to the sighting devices in the aircraft since radar bombsights are already equipped at the present time to detect corresponding beacons, and visual light flares would of course be detected in the usual manner.

A useful tactic for vehicle detection might also be to place small microphones and associated radio transmitters along the expected path of the enemy vehicles. Operational tests, however, would be required to tell whether such a procedure would
be tactically successful. It might be more successful as a means of sentry duty available to ground troops than as a means of identification for air attack.

A number of special devices may be utilized in order to enable the attacking aircraft to recognize unmarked targets.

Special attachments are available to airborne radar sets which will enable them to detect small moving land targets such as motor cars and tanks. The development and application of such devices is highly recommended.

The use of airborne control information centers may be of importance in strategic bombing operations. A complete description of the operation of such airborne control centers has been given in "Air Based Control of Air Operations," page 138. Finally, the attacking airplane may be equipped with specific radiation detectors to detect radio and radar transmissions, and this apparatus may be used to identify targets. IFF equipment is a particular example of equipment which is widely used to identify enemy positions from friendly ones.

There are a number of devices, navigational in nature, which may be used on the ground in order to control aircraft to the exact vicinity of the target. These include the various types of ground-controlled radar (which had been previously discussed under bombsights), IFF equipment, and of course the various types of communication equipment.

CONCLUSION

The problem of exact target location may be divided into two parts: (1) the strategic reconnaissance problem which accurately maps the enemy territory and locates on these maps the exact positions of all targets; and (2) the tactical recognition problem, the solution of which enables the attacking aircraft actually to sight upon the target. Different devices for the different types of these problems have been outlined. It is considered that no one device will solve all of the problems but that the devices employed must be chosen according to the need. The problem of training and briefing of all personnel concerned should not be neglected. In particular, the selection of suitable operational personnel is of the utmost importance; simplification of the intelligence material which is presented to the operational personnel must be achieved; and it is recommended that methods of presenting and preparing intelligence material should be studied continually.
RADAR AIDS FOR THE ALL WEATHER AIR BASE

INTRODUCTION

It is best to begin this discussion by listing the various steps which an all-weather air base would face in handling the take-off or return of large numbers of aircraft under instrument conditions. The problems vary from the emergency landing of a single airplane to handling several squadrons of airplanes many of which may be foreign to that particular field. The facilities for the most complex cases will be considered here although it is recognized that emergency landing of small numbers of planes may require only a part of the equipment required for the full job. In the proper sequence these various steps are:

(1) Clearance for taxiing aircraft and blind take-off.
(2) The marshalling of aircraft after take-off into squadron formation and the relinquishing of control of the aircraft to whatever navigational system may be used to aid the flights in their mission.
(3) The identification and control of aircraft returning to the field. It is probable that this will include the spacing, stacking or any other method of separation of planes into desired intervals for landing, and the initial contact of the plane with the landing aid.
(4) The final approach using the landing aid.
(5) Speedy clearance of runways after landing.

In normal weather the air-base control tower has little concern with functions except within a very small area (approximately 5 miles radius) around its field. The control tower gives taxiing instructions for take-off and landing, and functions to control planes entering the traffic circuit. The prime responsibility for the actual position of the plane is the pilot's. There are many who believe that in blind landing, the pilot can be given instruments by which he can function much as in good weather and with the very minimum of control by the tower. It appears to many others, however, that the functions listed above will all have to be the prime concern and responsibility of ground personnel and equipment, functioning very much as a control tower. In fact, the development of satisfactory facilities for handling large numbers of aircraft in blind approaches, should lead to the adoption of part of the same methods for good weather control. There is much to be said for each of these viewpoints to make it appear that both are correct, that the two systems of operation are complementary and that both will be of future use.

GENERAL MILITARY REQUIREMENTS

It would be well to set down a summary of the military requirements of the problem outlined above. Some of these are general requirements for all instrument flying, and are doubly important here.
(1) The system must give satisfactory results with all types of pilots, with the inexperienced as well as the veterans, even when tired or wounded.

(2) It is desirable that the systems require as a maximum but a few hours of pilot training and but little long-term practice to enable satisfactory emergency use.

(3) Both ground and airborne equipment must give 100% reliability. This is not only necessary for safety but is required to hold the pilot's confidence. This means that constant monitoring facilities for presentation to the pilot should be provided on airborne receivers. If beam-approach systems are used, the beams must hold their position over long periods of time.

(4) The system must be capable of handling planes approaching at various speeds up to 1000 mph, and whose top landing speed may be of the order of 250 mph; landing speeds range from 70 to 250 mph.

(5) The system must handle nonscheduled emergencies such as disabled planes, crack-ups on the runways, etc.

(6) Provisions must be made for preventing collisions.

(7) The equipment must provide security against enemy intruders.

(8) The equipment must provide protection against jamming.

(9) The weight and bulk of the airborne equipment must be kept at a minimum.

(10) The ground equipment must not present a hazard to flying aircraft.

(11) Ground equipment on the airfield itself must be mobile. If possible, all equipment should be air-transportable.

(12) The equipment must indicate to the pilot how to clear any flight obstacles which may be required around the airfield.

(13) The final landing aid must give the pilot an accurate sense of position in both the horizontal and vertical planes. It is desirable that the heading of the aircraft with respect to the runway should be indicated.

(14) The equipment must be capable of handling successive planes of very different landing characteristics.

(15) Provision must be made for positive identification of all aircraft to be landed.

(16) If landing beams, homing beacons, etc., are used, positive identification of a particular field in congested areas is required.

(17) Interference between ground stations cannot be tolerated.

(18) In multiposition ships, the system should allow for another member of the crew (copilot, navigator, or radio or radar operator) to take some part in the landing operation.

(19) Provision should be made for landing on parallel runways. Landing aids for the two runways must not interfere.

(20) Adequate radio communication must be available in the plane.

(21) At every all-weather airport, there must be at least an emergency system, of sufficient flexibility to handle any type of aircraft or military pilot. This requires that
every plane to be used in all-weather operation be equipped with some emergency landing aid, or that the system used require only radio communications in the aircraft.

(22) The over-all system should be capable of handling planes on single runways at approximately the speed at which these planes can be landed under good visibility conditions. The minimum requirement is 60 planes per hour, the maximum not more than double this.

(23) The pilot’s indication or presentation device must be as simple as possible and such that little or no mental computation or interpretation is needed.

(24) Last and perhaps most important is that the equipment must gain and hold pilot’s confidence. The pilot is a human being who likes to stay alive; pilot apprehension and distrust have killed about as many landing systems as pilots. The psychological attitude of the pilot is of prime importance in bad-weather flying and landing. In order to convince him, the data presented to him has to be of highly reproducible accuracy. He should be able to make check flights in good weather to convince himself of their accuracy.

The preceding list of requirements hold for the most rigorous conditions; no one existing equipment, radio or radar, completely satisfies this list. Combinations of existing equipments can be made, however, which will approximately satisfy all the operational requirements.

The question is asked, "How do the requirements for permanent bases differ from temporary ones?" In the above list only item (11) seems to be affected if permanent installations are desired. At permanent bases it will be possible to make a much more elaborate installation of the ground equipment; the mobile features of the airport gear may be removed and duplicate landing equipments established for various runways. It is possible to lay down permanent connecting cables from tower to field installation, etc. The need for extremely rapid shifting of landing equipment from one runway to another is not generally considered a necessity.

EXISTING LANDING AIDS

The following is a list of the navigational and landing aids that are in operational use by USAAF, USN, or RAF; are in development by the services; are developed but not in operational use; or are obsolete.

1. Navigational aids to help aircraft back to base or systems that can function as such
 a. radio ranges
 direction-finding chains
 Loran
 Gee, H, etc.
 radio-homing beacons with coded sectors
 *rocons (used with AI or ASV radars)
 *airborne radars such as H2S, ASV
 *AN/CPS-1
 *GCL, etc.
 b. *AN/CPS-6

*Indicates microwave systems.
2. Traffic control systems
 a. radio ranges, direction-finding chains, etc.
 *AN/MPN–1 (partially effective)
 b. *British ACR systems
 *AN/CPN–18 (AAF, NDRC development)
3. Approach systems
 a. Beam approach (localizers and glide paths)
 (1) SCS–51
 VHF–BA (British) --
 (2) *PGP (X-band pulsed glide path NDRC)
 *Sperry (S-band CW localizer and glide path)
 (3) SBA (British Lorenz)
 Air Track (YB and YO)
 Bendix (93 mc)
 Lorenz (10 mc)
 CAA–MIT (600 mc)
 b. Beacon-beam approach system
 (1) Radar BA (BABS) or Lucero
 BA (British)
 (2) BUPS
 AN/CPN–7
 (3) AI–BABS, ASV–BABS
 c. Ground control of approach
 (1) AN/MPN–1
 (2) AN/MPN–3
 AN/CPN–4
 AN/GPN–2
 (3) Modified SCR–517 or SCR–717, or
 AN/APS–15

*Indicates microwave systems.

TRAFFIC CONTROL

Let us now examine in more detail some of the landing functions required for an all-weather air base.

The problem of handling large numbers of planes (say 60 to 80 per hour) returning to the field under conditions of poor visibility is a rather hopeless one without radar facilities. Neither the planes nor the towers however, now possess the radar facilities to locate the planes individually in azimuth, elevation, and range with respect to the landing strip, nor to identify, space or stack them, nor to give proper order of landing, nor to feed them into a given final approach system.

The first and foremost requirement for the all-weather base is a ground search radar that is capable of giving to the control tower the necessary positional information of all the aircraft in space about it, including traffic passing through the control area, as well as that desiring to land. Ground radar can supply all the necessary infor-
mation and control such planes if the necessary communication and personal identification schemes are available to identify each individual plane, i.e., to identify positively, the plane desiring information or to be controlled, and to give instructions.

The GCA equipment developed at the Radiation Laboratory and now in operational use by the AAF, Navy, and RAF, although primarily an approach system, contains the first elements of traffic control in its S-band search radar. It has been used in a limited way to study some of the problems of aircraft traffic control on a PPI of 15- or 30-mile radius. Experiments were performed on stacking methods about the airport itself, stacking in angle, range, dog-leg path, etc., and the correlation of an approach system with blind vertical stack by the tower itself. These have led to the conclusion that in general a separate equipment must be made available with greater range, elevation coverage, indicator facilities, etc., than the present GCA to serve adequately the desired function. It has not been found possible for the one PPI operator available for traffic control to keep more than four or five single planes completely under his control at one time. Control schemes are now under study and test by the Air Forces whereby groups of planes such as fighter-bombers which can fly formations of two to four planes through cloud may be controlled by such facilities as are available in GCA itself. However, such procedures will be limited to highly maneuverable aircraft and must be looked on as only interim solutions.

The Army Air Forces together with the Radiation Laboratory began experimental studies of the equipment, operator, and operational requirements for such a separate ground radar set under the AN/CPN-18 development program for an airport search set.

This program proposes to study the following problems:

(1) The control of the spacing, course, and altitude of single or formation flights of planes over sufficient range so that the planes arrive over a marshalling point or "gate" at the proper interval be immediately handled by the final approach system. From the early experiments mentioned above it is believed possible to control the returning courses of a large number of planes with sufficient skill if planes are brought under control early enough, i.e., at sufficient range. Thus the aircraft will be stacked in a horizontal plane as they progress through the control area toward their field. It is realized that in a dense population of airfields it may be necessary to have such a system act as an area control, feeding planes into a number of fields; hence more than one such gate may be required.

(2) The control of these planes about such a gate, which may be a homing beacon, radio range station, etc., may be required since it may be found impossible to adjust arrival of planes at such gates with sufficient fineness in time as just to match the landing interval which the landing aid, whatever it might be, can handle. The gate, of course, can be the airfield itself, although it is generally felt that points eight to ten miles distant are more desirable. Provision must be made then for surveillance by radar of the control point so that planes may be stacked horizontally or vertically about them and their position in such a stack known at all times. It will then be possible to call the planes into the approach aid at the desired time so the desired landing rate can be maintained.
(3) The control of the descent of planes through overcast under sufficient ceiling (200 to 500 ft possibly) so that they may be brought in by the search radar itself. It has been found possible with the GCA search to bring airplanes in on the PPI alone so that singly or in small formations, they break out below the overcast and make their final approach visually.

(4) The final function of such a set is to feed planes into a final approach system so that, if a ground control system such as GCA is used, the plane is in proper position to be handled quickly and easily on the narrow sectors of vision of the approach system, or if other types of landing systems are used, so that time is not wasted in hunting localizer beams, etc.

It is recognized that the above aids fail unless proper facilities for communications with the planes and positive personal target identification methods are available.

In the experimental program outlined above, eight-channel HF and VHF communication facilities will be provided. It is hoped that communication channels necessary for the traffic control function will be found to be a maximum of two or three. Transmitting to any one plane under control need not be long, only a few seconds, so that many planes may be controlled in a short time. It may be required to separate the different functions into different channels.

The identification problem is recognized as perhaps the most difficult of all. It is recognized that, on a long-range program, a solution such as the proposed microwave communication system must be found to provide a very large number of communication frequencies and to provide personal recognition of aircraft. It is felt, however, that considerable success can be achieved by a combination of the several identification aids now available, namely, communication direction-finding, particularly if the direction-finding bearing can be added to cathode-ray tube presentation, height information, and beacon facility such as Rosebud. The combination of such information with maneuvering, such as the sending of a given plane out on a given heading from a given point, should be studied thoroughly.

Schemes will be devised in the future by which the information as to an airplane's range, azimuth, and elevation relative to a given control point may be fed to the plane's automatic pilot so that planes may be automatically controlled in the stack. In this vein, one should mention the experiments being conducted in England on orbiting control using Radar BA. The range indication from the interrogated ground beacon is used to feed voltages into the autopilot so as to hold the plane on a circular course around the beacon at constant range from it. Planes could be fed into such a system and given different ranges, say at half-mile intervals, in which to stay until called out to land. The spacing of such planes to obtain very high landing rates does not at the moment look too promising. These experiments are in their infancy and will be watched with a great deal of interest.

LANDING AIDS

The development of usable radio aids to landing has been along three general lines. The first, beam-approach devices (localizers for azimuth and glide paths for elevation), is the field in which most of the development has been concentrated. These systems are called air-indicated systems, i.e., airborne receiver systems and
indicators such as cross-pointer meters or cathode-ray tubes. These are used to detect and indicate single or multilobe beams generated on the ground and pointed in the desired directions in azimuth and elevation out from the runway. The second general class, beacon-beam approach systems, involves the use of airborne interrogators in addition to the airborne receiving and indicating gear. The ground equipments are essentially beacons which only radiate their beams when interrogated by the airborne equipment; the positional information furnished by the plane's interception of the beam is presented to the pilot or navigator on CRT's or on meters. The third general class is ground-controlled approach systems which in general are ground installations of scanning systems that obtain on the ground all the information as to the plane's position relative to a desired glide path in azimuth, elevation and range from the runway and then relay such information by voice or aural tone to the plane through normal radio communications.

A fourth classification which is in its early experimental stages might be added. This involves the use of the information available in the plane from any one of the other three general types as data to be fed into an automatic pilot to accomplish automatic approaches and landings.

Radar, particularly microwave, equipment has made valuable contributions in all three of the general types. Some of its peculiar properties such as the ability to produce very narrow beams (less than one degree half-widths) with reasonably sized antennas, the relative freedom from atmospheric effects, etc., over the short distances involved, the relative security from jamming and interference afforded by such narrow beams can materially aid in the elimination of many of the faults experienced with the lower frequency CW systems.

In discussing landing aids it is generally admitted that the systems in existence today are primarily approach systems. They are, in general, designed to handle a plane to within a certain altitude above the runway from which point the pilot lands his plane visually.

This does not mean that they cannot be used all the way to the ground and blind landings made on them. Practically all the systems that have been devised (those that have died as well as those adopted for general use) have recorded numerous "hooded" or blind touchdowns with expert instrument pilots; most of these systems are, however, incapable of achieving such results time after time under zero-zero emergency conditions with the ordinary AAF pilot and hence are not entitled to be considered as truly blind-landing devices. A true blind-landing device must provide for guiding the plane straight down the runway after touchdown until the plane has rolled to a stop. It must solve the problem of the change in the plane's direction after touchdown from its direction of flight while crabbing in the approach due to the cross wind.

Although conditions of ceiling and visibility which necessitate using instrument landing aids vary widely and hence require varying degrees of proficiency of the aid, a satisfactory definition of an approach aid may be the following: A satisfactory approach aid is one which is capable of repeatedly bringing the plane to within an elevation of 50 ft above the runway over its end, in azimuth to within the center half of a narrow runway of 150-ft width, and on such a heading, in such an altitude, forward
speed, and rate of descent as to be able to make a visual landing from that point.
The fulfillment of such conditions will take care of the vast majority of instrument
landings. Since worse conditions down to zero-zero emergencies do arise and since
pilots will attempt by necessity to fly an approach system all the way to the ground,
a successful approach system will find itself used in zero-zero, and may, if a sufficient
number of such emergency landings are made, become to be regarded by pilots as
actual blind-landing devices.

The development of the intensity-type system involving radio-beam localizer
and glide path has followed along natural lines in first the use of single-lobe beams
and then multilobe (two to eight in azimuth and dual lobe in elevation). Most of the
early type 1929-1939 glide paths were single-lobe constant intensity paths. All such
systems, such as the Air Track and British SBA Lorenz, have now been abandoned
in favor of the dual-lobe, straight-line glide path such as utilized in the IT&T develop-
ment, now a part of the SCS-51 equipment. The constant-intensity systems, besides
requiring the airplane to fly a curved path in the elevation plane, suffered severely
from false and bent courses with bad bumps due to reflections from buildings, etc.,
and, since they involved ground reflections, were susceptible to ground, moisture
conditions, and roughness of terrain immediately in front of them and other difficult
sighting problems. They failed to meet almost all the requirements listed and hence
died.

The surviving CW system, which the Army has adopted as its standard beam-
approach device, is the SCS-51. This is considered by all service, including the British,
to be the best CW beam system yet devised. The decision to adopt this was made in
1943 after some trials in conjunction with two microwave glide paths, the PGP, an
X-band pulsed glide-path system developed by NDRC, and the S-band CW system,
developed by Sperry. This decision was based partly on the feeling that greater re-
liability would be realized with the standard type tubes, receivers, and antennas that
were used in the 110-megacycle localizer and the 330-megacycle glide path than with
the untried specialized gear of the microwave equipment. A development contract,
later cancelled, was let to continue the improvement of the pulsed glide path and to
device a pulsed microwave localizer.

The difficulties now being experienced with many of the SCS-51 installations
suggest that it might be well for the proponents of the intensity-type beam systems
to reconsider carefully the advantages which microwave equipment have to offer.
These troubles involve maintenance of the ground gear, problems of sighting both
localizer and glide path (where normal obstructions on the airfield or hills, etc., have
to be carefully balanced out by screens or shields), effects of moisture both on the
ground and on the antennas on beam position, and unreliability of the airborne gear.
The glide path uses the perpendicular-type aerial system which necessitates the use
of ground reflections in order to be produced.

Both the microwave systems are tiltable glide paths which do not require ground
reflections to form their beams and which in fact attempt to adjust their beams above
such ground objects. The state of the radar art is now sufficiently advanced that an
X-band glide path such as PGP can reliably reach out to ranges of 15 miles or more and
can be built into compact airborne installations and fairly reliable ground gear. The
pulsed glide path is favored over the CW microwave system in the much simpler, less bulky and weighty, airborne and ground installations. It is felt that an adequate microwave localizer could likewise be developed. Considerable work in the airborne instrument-presentation problem might likewise produce more satisfactory results.

This general approach to the problem, however, when examined in the light of the conditions set forth in the section on "General Military Requirements," page 151 is incapable of meeting the majority of them and appears to be ultimately hopeless in providing a general, flexible system sufficiently accurate and reliable for emergency use by all pilots to be considered as the required all-weather aid. All such systems require long and careful pilot instrument training and continued practice. They do not provide sufficient safety factors in the lack of pilot warning of danger of collision with other planes or ground objects, etc. Such systems will no doubt prove useful in certain limited installations, in carefully chosen sites, with careful maintenance and continuous human monitoring of both ground and airborne gear, and with long and continuous practice by expert pilots. However, their use is restricted to those planes which presumably can afford to carry the weight of the airborne components and hence offers no general solution. Past and present experience suggest that all systems which depend for their positional information on the relative intensities of two or more lobes will fail ultimately in achieving wide-spread pilot confidence and will eventually meet the fate of their predecessors.

The case for the beacon-beam approach system has been presented primarily by the British who contemplate using the Radar BA system in Bomber Command. Only the localizer system has reached experimentation. Its chief advantages over the type just discussed are: greater security, because the ground gear is not continuously radiating but only when interrogated by the correct frequencies; less subject to interference unreliability; much more stable in beam position; more readable presentation (at present presented to navigator who talks pilot in); narrow azimuth pattern to minimize sighting difficulties; and continuous range information.

The 200-300 megacycle BABS system, however, will suffer from some airport sighting problems as the beams are subject to reflections from hangars, etc.; higher frequency equipment would be less susceptible to such effects although they are not completely eliminated on S- or X-band. The present Radar BA airborne equipment is very heavy (150 pounds, although it is thought that 60-pound equipment can be attained). The present equipment is designed to be used with the Eureka or Lucero interrogator and later with SCR-720, etc.; thus it is limited in application to those planes so equipped.

The use of microwave ground beacons such as BUPS or BUPX has been tried as a localizer facility with the plane carrying the appropriate S- or X-band radar to interrogate. Skilled pilots or navigators observing PPI presentation can achieve moderate success in aligning themselves with the runway under conditions of small cross wind and when the terrain surrounding the airport is completely familiar to the pilot. The problem of finding the correct heading to counter cross-wind appears a fairly difficult task.

It is extremely doubtful that such systems can hope for any widespread use; certainly those planes without the necessary interrogating radars will not add them specifically for this use.
Suggestions have been made that there might be a possibility in the future of utilizing time-measuring schemes. The time difference between the reception by the plane of beacon responses from two interrogated beacons placed on a base line perpendicular to the runway could be used in indicating the azimuthal error left or right of the extended runway line. The time intervals for practical base-line distances between the two beacons are so small, however, that a considerable advance in interval measuring methods and steepness of transmitted pulses will have to be made before such a possibility could be considered. For example, for beacons one-half mile apart, differences of 0.1 microsec would occur for an airplane 50 ft off course at one mile range and approximately 0.01 microsec for same error at ten miles range.

The development of the ground control of approach (GCA) equipment by NDRC and the operational use of the gear (AN/MPN-1) in the past few months by the services has made available an entirely different approach to the instrument-landing problem. For a number of years attempts have been made to talk a pilot down first by listening for him over the airport and attempting to direct him from such meager data as could be obtained from the sound of his motors and later by the use of direction-finding fixes on his radio transmission.

The success of the GCA equipment during the first few months of its operational use in achieving numerous emergency landings under operational conditions and with pilots who have never previously made an approach on the equipment suggests that the system possesses a number of desirable attributes.

1. First and foremost, since it feeds information to the pilot over his normal radio communications, the system requires no additional specialized gear in the plane. It, therefore, can be considered a universal system if the proper communication channels are made available for use.

2. The radar information obtained by the narrow-beam scanning antennas covering the plane’s position continuously in range, azimuth, and elevation is of very high accuracy (order of two mils in elevation and four mils in azimuth) and is not subject to error because of reflection of the beams from the ground, hangars, other aircraft, etc. Likewise such microwave beams suffer very little distortion from atmospheric effects over the short distances used in the system. Sighting difficulties in relation to the equipment’s position to other airport objects are therefore minimized.

3. Reflections from objects close to the desired azimuth or elevation landing path instead of being harmful provide positional information to the ground crew of the proximity of the plane to these objects so that the plane can be warned when it is too close and can be given direction of course to fly to avoid them. This includes other planes in or crossing the approach path.

4. The verbal information presented to the pilot is in such form that the amount of data interpretation is greatly minimized. It is fed to him through the sense least in use by him during the approach, his ears. Thus the pilot is relieved of part of the additional burden placed upon him by the instrument-flying condition instead of having the strain increased by requiring his close attention to additional meters or CRT’s as is necessary in most other systems. Some of this strain is shifted to the ground crew.
who are, for the moment, better equipped to accept the responsibility for the plane's safety.

(5) It has shown itself capable of handling all types of aircraft. In general it has been found possible to use glide paths of approximately 3° angle with all types although the desired glide angle can be changed quickly from one angle to another within the range 2° to 5°.

(6) The radar-scope presentations allow the operators themselves constantly to monitor the system so that they are immediately aware of any shift in the radar picture due to instability in electronic circuitry, etc., which may cause the positional data given to the pilot to be incorrect. This constant human monitoring is a tremendous safety factor which cannot help but increase pilot confidence if demonstrated to him.

(7) Its mobility about the airport from runway to runway is unusual for such ground equipment.

(8) It has demonstrated that it can be used by tired and inexperienced pilots with little or no previous contact with the equipment although it is recognized that pilot indoctrination and a few training flights are useful in dispelling fears and increasing the willingness to use the equipment when the necessity demands it.

(9) It is felt that a strong virtue of the ground-control approach system is its great versatility in handling the many unforeseen emergencies that arise in instrument weather flying.

The traffic handling capacity of GCA was overemphasized in the early experimental period. The proponents of the system are fully aware that it cannot serve as a traffic-control set in itself. It, however, has been repeatedly demonstrated that if planes are fed into it at proper intervals it can handle planes in the approach at two- to three-minute intervals which is better than any other existing system can do. It has in addition a partial traffic handling capacity of four or five single planes or groups at a time, which is a feature no other system can at present claim. The potentialities of high-density traffic handling on the approach are only now being considered with multipositional-approach indicators, etc. A rate of 60 planes per hour is being aimed at in new Army-developed GCA's.

OTHER PROBLEMS

The question of aids to instrument take-off should perhaps be mentioned. It would be perfectly feasible to provide any of the discussed landing aids to view the take-off and give the pilot positional information. Inasmuch as hooded take-offs are common practice in service flying experiments, it is felt that the chief problem comes after take-off in maneuvering away from the field. Obviously the traffic control radar search set or the GCA search could aid materially in marshalling after take-off, in avoiding collisions with planes and hills, etc.

Finally there is the problem of clearing the runway after landing. The control tower of the future will no doubt wish to have accurate information as to where his taxing planes are, and the planes will want information as to how to taxi. The British have experimented with a short-range high-resolution X-band set to show the position of ground objects on the field with indicator presentation in the tower. Such aids
could certainly be provided although it is hoped that the use of high-powered light or infrared systems might be easier solutions.

CONCLUSION

The all-weather air-base problem has two important aspects, traffic control and blind landing. Related subjects of less importance include blind take-off and ground-traffic control of aircraft taxiing along the runways. A complete system should solve all of these.

Air-traffic control may best be achieved by means of microwave radar, based on the ground and used by the control-tower officials together with the requisite communicating facilities, etc.

Two types of blind-landing equipment are outstanding, namely: the talk-down system as typified by GCA, and the glide path localizer system typified by SCS-51, and systems designed by the Sperry Corporation and by NDRC (PGP system).

The former of these types is noted for its operational flexibility and ability to cope with emergencies. The latter type is regarded as being particularly suited for heavy traffic. It would appear that this type of equipment is desirable under such conditions but that an airport equipped with it should also possess GCA. However, there will be some airports where only GCA is needed.

When assessing the relative ease of training and maintenance of these two types of equipment it should not be overlooked that one of them requires a good deal of equipment to be operated and maintained in the airplanes.
RADAR COUNTERMEASURES

In this section we shall try to estimate the influence of countermeasures upon the future usefulness of radar. One occasionally hears the view expressed that every radar system has its counterpart in a jamming device to which it will sooner or later fall victim. The picture suggested is one of an eventual undeclared truce in radar warfare, in which neither side can profitably use radar, because the other side could promptly annul its effectiveness. This view is not supported by a critical study of the problem and of the trends in radar development.

Action which can be taken against a radar-equipped enemy may be, roughly speaking, of three sorts:

1. Jamming, that is, causing extraneous signals to appear in his radar set which confuses, obliterates, or falsifies the information he seeks.

2. Concealment, that is, reducing the visibility to radar of his targets (for example, the Germans at last succeeded in rather effectively hiding their submarines from radar by submerging everything but the "Schnorkel," and by applying to the top of that a special coating of low-reflecting power).

3. Listening or detection of radar transmission leading either to early avoiding action or to direct offensive action against the radar station itself.

JAMMING

The radar-jamming methods which have been used or at least developed in this war can be conveniently classified in four categories.

1. Electronic Blanket Jamming. In this type of jamming, the aim is to obliterate the radar echo by jamming signals. The most effective type of jamming signal so far devised has been a CW carrier which has been either amplitude- or frequency-modulated by resistor noise. Two cases must be distinguished, however, one in which the main jamming signal energy is confined to a frequency range about equal to the radar receiver bandwidth (to be called “spot-frequency jamming”), and the other in which the jamming energy is distributed over a broad band (to be called “barrage jamming”).

2. Electronic Spoof Jamming. In this form of electronic jamming the idea is not to obliterate the radar echo, but to provide several additional synthetic echoes which will confuse the radar operator so that he will not know the exact position of the true echo.

3. Reflector Jamming (Window, Angels, etc.). In this form of jamming, material is disseminated whose radar reflection is made either to cover up the target signal or to provide many similar echoes for confusion purposes. This form of jamming has been very widely used because it is inherently broad band.

4. Special Forms of Jamming. In this category fall many special jamming tricks, generally utilizing some vulnerable feature of the radar set. As an example,
"Peter" may be mentioned; this is a jamming scheme utilizing the lobe switching rates of automatic tracking radar sets.

Certain problems are common to all methods. In the first place, one must know something about the particular enemy equipment to be jammed. If the jammer is electronic, it must be set on the proper frequency. In many cases this requires continual monitoring of the enemy transmissions in order that any changes in frequency may be followed. The problem is made more difficult when there are many enemy stations in the vicinity and more difficult still when these sets scan with narrow beams, so that the transmission is heard only during brief, widely separated intervals. Uniformity of jamming cover must be sought, for complete protection, and it is usually harder to protect many targets than to protect a single target.

The above requirement can be discussed quantitatively only in particular cases. The important question of the power required for jamming, however, deserves to be examined quantitatively. Suppose we are required to jam a radar set operating at a single known frequency. If the jammer is located at the target to be protected, and if the jamming power is radiated from a non-directional antenna, the power required is at least equal to the radar-scattering cross section, \(\sigma \), of the target. Using the same symbols which we used in writing the radar equations, page 42, with \(P_j \) meaning minimum jamming power,

\[
P_j = \frac{P_G \pi}{4 \pi R^2}
\]

(4)

For example, consider a target of radar cross-section 1000 sq ft (about that of a large bomber) 20 miles from an MEW (AN/CPS-1) set. \(P_j \) in this case is about 60 w, for a non-directional jammer located at the target.

The power output of present jamming transmitters is indicated below. The numbers in the last column suggest what might be done with present techniques, and are, of course, only guessed. The important trend to note is the decrease of available power with decreasing wavelength. This can be traced to causes closely related to those responsible for the decrease at shorter wavelengths of the peak power of radar transmitters, already mentioned in the section on "Pulsed Radar". Thus in respect to power output alone, the jammer and the radar compete on more or less even terms at different wavelengths. However, at shorter wavelengths, with a given antenna size, the radar beam is concentrated more strongly on the target, \(G \), equation (4), being proportional to \(1/\lambda^2 \). This factor tips the balance heavily in favor of the radar. The disadvantage to the jammer can only be overcome by providing the jammer itself with a highly-directional antenna. But this drastically limits the usefulness of the jammer. If either the jammer or the radar is moving, the jamming beam must accurately track on the radar at all times.

The following is a comparison of the present and possible power outputs for jamming transmitters.

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Present Power Output</th>
<th>Possible with Further Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 cm</td>
<td>20 kw</td>
<td>100 kw</td>
</tr>
<tr>
<td>10 cm</td>
<td>1 kw</td>
<td>10 kw</td>
</tr>
<tr>
<td>3 cm</td>
<td>250 w</td>
<td>1 kw</td>
</tr>
</tbody>
</table>

164
The jamming operation implied in the preceding discussion conceals targets only near a line through radar and jammer. It is self-screening jamming. When the radar is looking in some other direction, to mask its signals, much more power is required, by a factor of the order of the gain of the radar antenna. This gives an additional and enormous advantage to short-wavelength, high-gain radar.

Spot-frequency jamming requires that the jammer monitor the frequency of the radar transmitter in order to be able to set the jamming transmitter on the right frequency and to follow any changes in radar transmitter frequency. Now the bandwidth of the radar receiver is determined essentially by the pulse length and in most applications is of the same order (a few megacycles) independent of the carrier frequency. But the band over which a given type of radar can operate is usually limited to some fraction of the carrier frequency, which fraction includes more megacycles the higher the frequency. Thus it is usually more difficult to discover the exact frequency of a high-frequency transmitter, and to follow arbitrary changes in frequency.

In barrage jamming, the monitoring problem is avoided by causing the jamming transmitter to emit radiation over a broad frequency band. This is much more expensive in power by just the ratio of barrage bandwidth to radar receiver bandwidth, a ratio which in general is larger the higher the radar frequency, as explained in the previous paragraph.

Electronic spoof jamming, which seeks to create confusing artificial echoes is less effective against short-wave radar because of the higher resolving power of which such equipment is capable. It is hard to inject spoofs which cannot be recognized as such.

Because of its broad band, window jamming has been most successful. Microwaves have not been the answer to it, although it is still true that they are by far the hardest frequencies to jam with window. The actual weight of window material needed to give an echo approximately that of a bomber is not critically dependent on \(\lambda \), but depends on cutting methods, packing, materials, etc. At present about four ounces of material will give one B-17 echo although at X-band slightly more than this is required. However, to lay a lane of window to cover a flight of bombers requires one such bundle dropped in every radar "pulse packet." This will last only a given time (usually about five minutes), then needs replacing. Thus the amount needed per hour for the lane will be approximately inversely proportional to pulse length and to \(\theta \) (beam width). Since both of these quantities go down with \(\lambda \), the microwaves are far more difficult to jam with window. As an example the new 584-X set, designed to withstand window at X-band has a pulse length of \(0.1 \times 10^{-\tau} \) sec and a beam width of about 2°. It has successfully tracked an aircraft through window laid by a preceding aircraft at the rate of 600,000 dipoles per sec.

It will be possible, however, to devise new materials and reflection methods so that even our best microwave sets will be greatly hampered. Our best technical answer to it appears to be MTI which should virtually remove the threat of window.

ANTIJAMMING DEVICES

It will never be possible to claim that a given radar set is jamproof. However, it may be uneconomical to carry out effective jamming tactics. As we have seen, micro-
wave sets are generally much more difficult to jam for several fundamental reasons. In spite of this it is believed that an active antijamming program is an essential part of future radar development. The most important lines of research appear to be (1) the development of tunable systems, (2) moving target indication (also tunable), and (3) further improvement in discrimination. If this research is coordinated with systems design and development, there is every reason to believe that the jamming of future sets will never be as successful as the early jamming of both our own and the enemy's long-wave radar.

CONCEALMENT AND CAMOUFLAGE

If a target exposed to radar beam is to be hidden from detection, it must be prevented from reflecting radiation, or it must be located in the midst of other objects which return similar signals. The problem of reflection elimination has been discussed previously. It is possible, with existing means to reduce the reflection coefficient of a large, smooth metal surface to a few percent of its normal value. It is much more difficult to do this for an object of complicated shape. The blacking-out of aircraft by this means is not practical with present techniques, since the coating required would be prohibitively heavy. In any case, the external shape of the aircraft would not permit a very great reduction in scattering cross section. For submarines, for small vessels, perhaps also for long-range rockets, antireflection coatings may prove to have some value.

The best concealment for objects on the ground is natural cover, in the form of rough terrain, trees, or other highly reflective objects. This may not suffice to conceal a moving target, if the radar uses MTI. In general, the higher the resolution of the radar the more densely distributed the cover must be.

A countermeasure which can be classed either as deception or camouflage consists of making a fake target or otherwise altering the picture seen by the radar, by man-made reflectors. This was tried by the Germans in some cities with little success. A more economical and effective measure was the use of single reflectors to confuse sea-search radar.

It is occasionally suggested that the radar echo could be eliminated by a device on the target which would receive, amplify, and retransmit with suitable phase and amplitude, the incident wave, so as precisely to cancel the reflected wave. This might be possible in certain very special cases, but an extended target such as an airplane reflects short radar waves in a complicated way. The net amount of reflection depends critically on the direction from which the incident wave arrives. The cancelling device would have to measure this angle instantaneously with a precision which could be achieved only by the use of an antenna as large as the airplane. On many other grounds, as well, such a scheme is utterly impractical in the microwave region.

In general one must conclude that we cannot foresee any means by which aircraft can be made invisible to radar.

LISTENING

The detection of radar transmissions is an extremely simple problem technically. If a target is to be detected by radar, there is no way of preventing an observer at the target from detecting the incident.
The radiation arriving at the target is necessarily intense, and the most rudimentary equipment suffices to detect it. Because of this advantage in power, it is not difficult to make the detection device sensitive over a very broad band of frequencies. The assumption that the enemy does not know that he is being looked at with radar will never again be justified. It can almost be said that one temporary advantage of radar over the searchlight, its invisibility, has vanished.

DEFENSE AGAINST THE ATOMIC BOMB

(Supplement to Radiation Laboratory Contribution to the AAF SAG Report)

By

G. E. VALLEY

FOREWORD

The effect of the atomic bomb on military tactics and weapons will be far-reaching. At the present time, detailed analyses of what all of these effects may be cannot be given. The following notes seek only, therefore, to present some thoughts and speculations on this subject by members of the Radiation Laboratory. They are presented here more as a basis for discussion of the necessary research policies, than as definite suggestions of what those policies should indeed be.
DEFENSE AGAINST THE ATOMIC BOMB

INTRODUCTION

The atomic bomb renders obsolete a number of tactics and weapons newly developed during the war. Among these are even some which were so new as not yet to have been put into operation. Since it would be folly to continue to develop outmoded weapons, this supplementary note is written to indicate what some of these may be.

The atomic bomb is fantastic; its advent means that we must think boldly if our future efforts are indeed to be aimed at future needs. We must not hesitate to scrap our present weapons regardless of their novelty, it they cannot be employed in a war of atomic bombs. It would be better to have no weapons at all, and to know it, than to place our faith in obsolete devices of imposing size and number.

We should not let the fact that such outlawed weapons as poison gas and bacteria were not used during the past few years convince us that the atomic bomb can similarly be outlawed. The ease by which enemy material can be destroyed by this weapon and the simplicity of its associated tactics indicate forcefully that it will be used.

LESSONS FROM THE WAR

It has been demonstrated that bomber fleets of at least 1000 aircraft can be produced and operated at one time. It has also been shown that one atomic bomb can wipe out a city of 300,000 inhabitants. Therefore, in one raid, it is in principle possible according to present conditions to wipe out a city of 300,000,000 inhabitants or its equivalent. If we assume that half the population of this country inhabits the cities, it has an urban population of 70,000,000. Assuming that a fleet of 1000 aircraft were to be individually directed against the different cities inhabited by these 70,000,000, they and their works could be wiped out four times over.

We must assume that this possibility will dominate the offensive plans of any power contemplating war.

From this, one must conclude that massive multiplane raids against individual targets are things of the past. This means that formation flying and everything that connotes to the aircraft and radar designer must be most carefully considered to determine whether or not it is obsolete. If this tactic is found to be obsolete, then it follows that the tactic of saturating the enemy’s antibomber defenses is also obsolete, for all practical purposes.

The situation then becomes tactically very like the Battle of the Buzz Bombs, in that individual bombers (manned or pilotless, airborne or rocket) will seek individually to penetrate a massive defense. This battle is also of interest because it represents a nearly automatic defense (SCR-584 plus the M-9 director, plus the servo-driven 90-
mm guns) against robot-controlled aircraft. It may, therefore, be regarded as setting the pattern for the future.

We are informed in the Radar Press Release that "one Sunday late in August, 105 buzz bombs crossed the British Coast, headed for London. Only three of them arrived." Now this was the best figure attained; London would certainly have been wiped out had the V-1's carried atomic bombs even against such superlative defense measures.

But the fact that a defense which let through as few as 3% of the attacking aircraft would be inadequate if these carried atomic bombs is not the most important lesson to be derived. What is most important to realize is that this defense required at least six weeks to reach its maximum efficiency, and this in spite of the fact that all the defense weapons were at hand, all the operators trained, and the whole country experienced and forewarned in war of this particular means of attack. In spite of all the training and availability of weapons and military experience the first attackers suffered little loss.

This is not an indictment, therefore, of the defensive instruments, since after all 97% of the attackers were eventually shot down; what it means is that the people who manned the defense were incapable of instantaneous reaction. Therefore, the preeminent problem of defense with which we are now faced is: "How can the defense be made to react to the first blow with all its potential efficiency?"

Combining the known capabilities of the atomic bomb with the experience of the past war, we can state three requirements for any defense against it:

1. The defense must be capable of defending all our potential targets simultaneously.
2. The defense must closely approximate 100% efficiency.
3. The defense must function with its maximum efficiency against the first raid.

POSSIBLE METHODS OF DEFENSE

There are three general classes of defensive measures which may be considered:

1. Prevent any potential enemy from setting an atomic bomb attack in motion.
2. Destroy the bombs before they reach their targets.
3. Render all our potential targets impregnable to the atomic bomb.

The most general remark about these possibilities is that we should not try them all if this means that no one of them is developed to perfection. Three methods of defense, each 50% effective, when used together do not necessarily yield a defense which is 150% effective.

Class 1.

In order to prevent anyone from setting off an atomic-bomb raid against us we need to police the world, either as a member of an international organization or independently thereof. It means that we must prevent anyone else from manufacturing atomic bombs. Since the manufacture of these bombs is intimately connected with the peaceful utilization of atomic energy, this may mean that we must be prepared to use
forceful measures to restrain anyone else from manufacturing atomic fuel. This might mean that the world-wide utilization of atomic energy must be placed under our control, the fuel being prepared here and carefully rationed to the rest of the world, to be used under our surveillance or that of an international organization.

Barring such an arrangement we must be prepared immediately to start reconnoitering all places where atomic fuel can be manufactured, and be prepared to destroy such manufacturing establishments.

Aircraft such as the B-36 should be equipped for reconnaissance with neutron and heat detectors since large amounts of either or both of these types of radiation are known to be emitted by the most important method of manufacturing atomic fuel (the uranium-pile method for manufacturing element 94). Such aircraft must also take aerial photographs. The use of radar photography should not be omitted; since great range is not nearly as important as high resolution and 360° “looking,” 1-cm PPI equipment should be used. It is recommended that an effort be made to equip a B-36 with at least a 12-foot antenna suitable for PPI use, and operating in the 1-cm region of wavelength. A special modification of AN/APQ–34 or AN/APS–30 could probably be prepared in six months time.

Since none of the detecting devices mentioned can be regarded as infallible, we must depend upon repeated reconnaissance and constant interpretation and comparison of the results for certainty.

In order to destroy any atomic-fuel factories we discover, the atomic bomb used in conjunction with the present bombsights will be sufficient. It does not seem very worth while to improve the accuracy of bombsights over that now attainable; on the other hand, considerable bomb sight research will be needed to make instruments at all suitable for supersonic aircraft. However, in comparison with other technical problems posed by the atomic bomb, it might be unwise to continue an elaborate bombsight development program. The development of guided bombs probably falls in the same category.

The above police measures are useful right now; they will only remain useful if we retain control of the situation. If we lose control of the international atomic-energy situation, then fairly fantastic measures must be adopted.

Suppose we are denied reconnaissance by aircraft. We may then try the German suggestion of an observation post established in a free orbit beyond the atmosphere. Corresponding to this, the development of V-2 missiles with ranges of several thousands of miles is also important. Probably the easiest way to start such developments is to try to send a remote-controlled rocket to the moon, since the direct line-of-sight control problem is simplest.

If one discards the suicide-pilot method of control, two methods of control suitable for distances reaching far beyond the horizon are available: (1) automatic celestial navigation such as was worked on by the Eastman Kodak Co., and (2) radio control. It will be difficult to get the required accuracy with either of these methods and in addition the second may be easily jammed.

The missiles may in addition be fitted with homing devices sensitive to light, heat, electrical and nuclear radiation. Their use would relax the accuracy requirements.
placed upon the control system considerably; unfortunately, the high speeds likely to be attained by such rockets may require the homing devices to have impossibly long ranges of action in order to be effectual. The ideal solution would thus seem to be to control the rocket for somewhat more than half its journey by microwave radio (governed by an elaborate ground-based computer) and to have a homing device in the rocket guide it the rest of the way. The development of the ground-based control radio is relatively straightforward; the development of suitable homing devices cannot be regarded so optimistically.

Class 2.

If we elect to defend ourselves by destroying all the missiles launched against us, the defensive measures must be as nearly automatic as can be conceived. They must locate, recognize, load and fire their missiles automatically. Regardless of the size and excellence of training of our forces, there are enough equivalents of the Pearl Harbor attack in history to teach us that the human part of the defense force is not likely to be ready. Since only one attack will be necessary we cannot take the chance that the lessons of the past plus future good intentions will preserve us.

The defense will almost certainly employ radar-guided missiles. Probably these will be launched from the air, since the attackers, if airborne, will likely fly low; if the attack is by long-range rocket, then either air- or ground-launched counter rockets may be employed.

Since it will be desirable to destroy the attackers some distance away from the target, a combination of guided and homing missile will be likely to be employed. It would be sensible to coordinate the Army and Navy antiaircraft guided-missiles programs, in order to use the available effort more efficiently. Only one problem should be attacked; there is now sufficient technical knowledge to choose the correct method of attack. In order to get warning of attack, radar of much longer range than is now available should be designed. A free-space range of several thousands of miles is attainable and would be useful. Possibly long-wavelength non directive sets such as the British CH Stations which were so useful in tracking V-2 will be needed. In any event, a chain of such stations should be set up on the far sides of both oceans.

The possibility of the previously mentioned space-ship observation post should not be neglected.

Class 3.

In order to render all our installations impregnable to atomic-bomb attack, they must either be placed underground or be dispersed in units so small as to make prohibitive the price of knocking out any sizeable number of them.

The technological problems associated with a thing like an underground steel mill are probably as difficult to solve as those associated with building a space ship or any of the other defensive measures.

The economic and social consequences of such a program would certainly reduce our standard of living and thus weaken us militarily in an indirect way. This is particularly true since one cannot single out any particular industry for such treatment; all are interconnected. However, the continuing popular use of automobiles and air
transport will cause, according to many, a certain amount of natural decentralization of the economy. This process can be aided by a wise tax program, and should be viewed with satisfaction as long as adequate transportation is available.

CONCLUSION

The foregoing indicates that technologically, economically, and sociologically the simplest defense against atomic bombing is a world-wide police system whose purpose would be to prevent the manufacture of atomic bombs.
PART III

AIRCRAFT RADIO COMMUNICATION EQUIPMENT

By

G. A. MORTON
PART III

AIRCRAFT RADIO COMMUNICATION EQUIPMENT

4 DECEMBER 1945

SUMMARY

A reliable and adequate radio-communication system is essential to integrated aerial tactics. Basically a long-range liaison and short-range command system is necessary. Other special systems may be employed to supplement these.

At the outset of World War II, the Army and Navy liaison systems were BC348, BC191, RU, RAX, GO and the command units SCR274N, ATA, ATR. Because of obvious deficiencies a new series including liaison systems ART13, XANRB3, ARR15, ARB, BC348 and command systems SCR522, ARC1 were put into production and widely used.

Currently new transmitters and receivers are being developed which include such features as receiver-controlled transmitter frequency, Autotune and automatic tuning mechanisms. For the immediate future at least, the development of liaison systems will continue to make use of present frequency bands because of propagation considerations. New developments will take place in antenna design, in band-switching methods and in numerous individual components. Teletype, recording and voice-coding systems may also be worked out for this service.

Command systems will probably move to higher frequency bands (200 to 500 mc) to obtain more channels, smaller components, a wider choice of modulation methods, etc. Much work remains to be done on suitable switching mechanisms for multichannel communication, on oscillator stability, component development and practical antenna design.

Progress is being made and should be encouraged in the future toward adapting the very high frequency portions of the radio spectrum for communication systems. This should make possible highly directional channels, limited range systems and also systems which are difficult to intercept or jam.

Radio relays will be of considerable importance, both for the transmission of radar and television pictures and for multichannel speech systems. Much work remains to be done in this field and it should have a prominent place in an aviation radio research program.
INTRODUCTION

Aircraft radio communication is an essential and critical part of integrated aerial warfare. The transition from individual combat methods to integrated group tactics, although predicted at the close of World War I, did not occur in fact until fairly recently. It has placed demands upon existing radio-communication equipment which the latter is scarcely able to meet. Frequently, it has been necessary to use rather crude improvisation which has been far from satisfactory. As the development of integrated and coordinated aerial warfare progresses, even greater demands will be placed upon the radio-communication system. Therefore, particular attention must be paid to laying out a program for the development of adequate aircraft radio equipment as part of the major program of developing an air force sufficient to meet the requirements of security.

In laying out such a program full cognizance should be taken of the "systems engineering" as part of the problem as well as the equipment design, and production. The essential requirement is not for the communication between two planes, or a plane and a ground station but for the intercommunication within a group of planes which may number hundreds or even thousands. The integration of the system as a whole is fully as important as the design of the individual units.

It is extremely important that care be taken not to impose excessive technical demands upon the designer, in the type of equipment demanded. The gap is very great between the performance that can be expected from equipment in the laboratory in the hands of engineers or skilled technicians and equipment which is simplified to the point where it can be reliably operated by unskilled personnel, and rugged enough so it will stand the type of handling it must meet in actual service. Because of this gap, it may be necessary to divide the communication equipment into two classes, the first representing an essential minimum of absolutely reliable devices, the second, those which are desirable and useful but whose failure does not jeopardize the performance of the combat group as a whole.

For the next decade or perhaps longer, the first group of equipment will probably be represented by apparatus which is fairly similar to the type now in use both in military and commercial aviation. Aircraft experience to date indicates that it is almost essential to use a dual radio communication system comprising a liaison system and a command system. The liaison system operates at relatively long wavelengths and is capable of ranges from a few hundred to several thousand miles. The command system operates at a much higher frequency in order to permit a great many communication channels, and is limited to ranges up to one or two hundred miles, in other words, line-of-sight communications. These two systems constitute an irreducible minimum for coordinated air activity. With them, it is possible for one or more flights of airplanes to take off from several bases, fly to an assembly point and thence
to the target and return, while at all times maintaining sufficient communication so that the required instructions and information can be reliably communicated.

The second classification will consist of equipment employing some of the newer radio techniques. For example, microwave transmission to give high directionality, special modulation systems to reduce probability of jamming and static interference, and special coding systems to reduce bandwidth and to prevent interception. In addition, it would be highly desirable to have an extremely short-range microwave communication system which could be used between planes in a formation instead of the high-frequency command system. By using a high enough frequency for this short-range communication system, it would be possible to restrict its communication distance to a predetermined range, and thus allow communication between planes while in effect maintaining radio silence as far as enemy ground defenses are concerned. Furthermore, indicator or recording systems are also extremely useful in controlling operations. Such systems may take the form of teletype recorders, reproducing written messages, facsimile recorders for the transmission of maps and diagrams as well as written material, or, to go to the other extreme, simply indicating equipment for the transmission of a half-dozen or more simple symbols designating prearranged maneuvers and instructions.

To make possible all-weather flying, the major air bases should maintain the equivalent of a "Teleran" system. This system locates all planes in the neighborhood of the base by radar and transmits the information back to the approaching planes in visual presentation; thus each plane receives a television image of a map giving not only its own location, meteorologic and other pertinent information, but also the location of all other planes flying at the same level. Furthermore, the system provides for the blind landing and take off of planes.

CURRENT COMMUNICATION PRACTICE

Before discussing future trends of aircraft-radio development, it would be well to review the development of radio-communication technique during the last four or five years, that is, since the onset of World War II. At the start of the war, the military aircraft radio equipment was far behind that used by the commercial aircraft companies. In fact, most of the equipment followed design practice that was at least ten years old.

The command set used by the Army at the beginning of the war was the SCR-274N system and the corresponding Navy equipment was the Navy ATA transmitter and ARA receiver. These sets operated in the neighborhood of two megacycles and were designed for communication between squadrons, and to control towers. They were pilot-operated and were carried in fighters, small bombers, etc. The first receivers of this series were tuned radio-frequency receivers. Later on, superheterodyne receivers were used. The transmitter followed more-or-less conventional design but employed master oscillator which was not crystal-controlled. The weight of the combination
was approximately 100 lb. A basic production of 100,000 units of this type equipment was set up.

The liaison equipment of this period consisted, in the case of the Army, of a general purpose receiver (BC-348) physically resembling the Hallicrafter, which was carried in airplanes of the two-engine bomber class and larger. This receiver was a superheterodyne with two continuously tunable bands, one extending from 200 to 500 kc and the other from 1500 to 18,000 kc. The weight of this receiver was about 30 lb. The transmitter in this series for heavy bombers of the four-engine class and up consisted of 125-w CW and MCW units tunable over two ranges, namely, 300 to 600 kc and 3000 to 26,500 kc. An intermediate transmitter, BC-191 and BC-275, was used for twin-engine medium bombers. This was a CW and phone transmitter with plug-in units to change frequency in bands between 1500 and 12,500 kc. At the same time the Navy was using the RU (tuned radio frequency) and RAX (superheterodyne) receivers. These sets were narrow and deep in shape and each set had a rather limited band range so in order to obtain large coverage several units were used. In other words, instead of band switching which is now common practice, different receivers were employed. The Navy transmitter GO was similar to the Army long-range transmitter described above.

As the war progressed, it became increasingly evident that this radio equipment was entirely inadequate. In the first place, it was both Army and Navy practice to transmit and receive on the same wavelength. However, the stability of the sets described above was such that it was extremely difficult to maintain communication on this basis. Furthermore, if two planes from different bases were required to meet and to continue together in a combined operation, it was virtually impossible to arrange to adjust their receivers and transmitters beforehand so that they could establish immediate communication when they arrived at the assembly point. Therefore, much time was wasted in adjusting instruments after the rendezvous. Finally, because of the poor stability of the transmitter, the bandwidth that was necessary to carry on communication was so large that the number of channels available was entirely inadequate.

Because of the obvious inadequacy of these systems, new types of both command and liaison systems were put into production and are now in use. The command systems of the new Army series operate in the VHF region of the radio spectrum (i.e., 100 to 156 megacycles), and both transmitter and receiver are crystal controlled. These units have four operating bands which are selected by push-button controls. The receiver bandwidth is 50 to 60 kc in order to take care of the instability of the transmitter and receiver crystal oscillators. This system was designated as the SCR-522 system.

The Navy lagged behind the Army by two years in moving into the VHF region for its command equipment and then adopted the ARC-1 system. This is similar to the Army unit in that both the transmitter and the receiver were crystal controlled, but has eight bands instead of four. The weight of the Navy unit is 50 lb and it was a nominal 10-w output.

The difficulty with these systems is that they have required enormous pools of accurately calibrated crystals distributed all over the world. There are now over a million special crystals in these pools and this is still not an adequate supply.
For liaison communication, the Army and Navy adopted the ART-13 transmitter. This is a 100-w crystal-controlled unit, weighing about 110 lb. It has 11 spot frequencies, one band being in the region of 200 to 600 kc, the other ten in the 2 to 18 megacycle band. Experience has shown that the 200 to 600 kc band which was designed for communication with naval vessels, etc., is rarely used and will probably be abandoned. In addition to its increased stability as a result of being crystal controlled, this transmitter marks a great advance over those previously used in that it employs the Autotune or automatic tuning mechanism for changing bands. This consists of a series of preset notched cams mounted on a shaft which is motor driven. The cams make it possible to stop the shaft rotation at the position of exact tuning from a remote point.

A number of attempts were made to design special receivers for this transmitter but so far they have not been wholly successful. The XANRB3 was designed for this purpose but was rejected for lack of frequency stability. Recently the ARR-15 has been developed to take its place but as yet the acceptance tests are not complete.

In the meantime, the Army has been using the BC-348 receiver which was described above. The Navy is using the ARB general purpose receiver which is very similar to the BC-348. These receivers, when their application makes remote tuning necessary, must employ the expedient of a flexible shaft from the operating point to the appropriate dial on the receiver. Block diagrams showing the tube components in the transmitter ART-13 and BC-348 are given in Fig. 1.
RECENT DEVELOPMENTS

A dual liaison receiver has been designed and has been accepted for production by the Navy which eliminates a good many of the difficulties enumerated, in particular, that of making contact between two parties from different bases. A block diagram of this transmitter-receiver system is shown in Fig. 2. The receiver is a superheterodyne with a main oscillator which is variably tuned over a narrow range of frequency, for example, one octave. However, the oscillator is arranged so that its output has a large harmonic content. Therefore, the second harmonic can be used to cover the octave beyond the fundamental frequency band and the fourth harmonic, the octave beyond that. This method is employed to give continuous tuning over a range from 1500 to 12,000 kc. An oscillator which has as narrow a tuning band as this can be made to have a reasonably high degree of stability even though not crystal controlled. Since the set is push button actuated with spot bands of predetermined frequencies, it is necessary to have a fine tuning adjustment. This is done by adjusting the intermediate frequency against a calibrating standard. A second oscillator (D) is arranged to tune with the IF adjustment so that the frequency that it generates is always identical with the output of the IF frequency. This is heterodyned with the output of the local oscillator (B) and after going through the detector (E) generates a frequency identical with the frequency to which the receiver is tuned. This frequency is used to control the transmitter, consequently the receiver and transmitter always operate on exactly the same frequency. If the operator tunes his receiver until he hears a transmitter, he will know that his transmitter is tuned exactly to transmit his receiver frequency. Furthermore, assuming that the operator communicating with him is using the same type of system, he can be sure that the latter's receiver is also on this frequency. This greatly simplifies the problem of making contact.

Another type of receiver-transmitter which is in the design stage and may be in production in the immediate future is shown in Fig. 3. This system is similar to the one described above in that the transmitter frequency is controlled by the system's receiver so that the transmitter always operates on exactly the same frequency that is being used for reception. It differs from the previous unit in that the main oscillator is crystal controlled and, therefore, has higher stability. Furthermore, the IF amplifier and second oscillator is tunable rather than merely being adjustable. This means that the frequency is continuously controllable over a certain bandwidth. In order to facilitate remote control, this outfit uses Autotune or automatic tuning mechanisms throughout.

So far, radio equipment has been discussed in terms of the requirements for fighters and bombers. The communication equipment needed for transports is very similar to that required for large bombers and, in general, the same types of liaison and command radio equipment are employed. Artillery liaison flying, which is generally done in small planes operating close to the ground, places somewhat different
Figure 3
requirements on its radio equipment. In spite of the relatively small distances over which communication must be maintained, it cannot employ the very high frequency which characterizes command communication sets. This is because the airplane must stay close to the ground so that line of sight is quite limited. Almost all sets used for this purpose are medium high frequency, operating in the two to six megacycle band. In general, these sets consist of a one channel crystal-controlled transmitter and a tunable receiver.

The communication equipment described above represents the principle types of units used by the Army and Navy Air Forces. Many other receivers and transmitters have been used on a small scale, particularly for test purposes and to meet special problems. However, the types enumerated above constitute the great bulk of the equipment used.

FUTURE TRENDS

With this background of existing communication equipment as a guide, it should be possible to formulate a reasonable program for the future development of a system adequate to meet the increasing demands placed upon it. Such a system will include liaison and command instruments as well as certain special transmitters which will be discussed later.

LIAISON COMMUNICATION

Perhaps the most difficult problem of aircraft communication is that of the liaison system. The primary requirement of the liaison system is reliable communication over large distances. Ordinarily to obtain great distances in radio communication, the longer wavelengths of the radio spectrum are used. The relationship between range and wavelength and the reason for the selection of long wavelengths for this purpose is illustrated in Fig. 4. Thus transoceanic radio communication is frequently carried on at 100 or 200 kc. However, in order to obtain moderately efficient coupling between the medium of radio propagation and the transmitter, it is necessary to have a transmitting antenna which is the order of 3/8 to 1/4 of a wavelength. At 200 kc, this means that the antenna must be more than 1000 ft long. Obviously, such antennas are not practical for aircraft. From the standpoint of antenna lengths, the minimum frequencies that can efficiently be used with aircraft equipment is in the neighborhood of one or two megacycles. When frequencies as high as this are employed, transmission at a distance can be obtained only by relying on the reflection of the radio waves from the various ionized layers of the upper atmosphere as illustrated in Fig. 5. Since for any one frequency these reflections are quite variable, it is not possible to depend on a single frequency where absolutely reliability of communications is essential. It has been found that if the receiver and transmitter are capable of selecting one out of eight or ten different frequencies in the band between two and
Figure 4 — Dependence of Ground Wave on Distance & Frequency (good ground)
THIRTEEN

ED

T

H

I

S

P

A

G

E

D

E

C

L

A

S

I

F

I

E

D

I

A

W

E

0

1

9

5

8

30 megacycles, reliable communication in general is obtained. Even when this is done, communication may occasionally be interrupted during periods of violent magnetic storms and sunspot activity. At present, no means is apparent for overcoming this difficulty in long-range transmission and the liaison equipment of the future will probably operate in the same region of the radio spectrum as at present. However, improvements will be made in the method of shifting from one band to the next in order to find a channel over which satisfactory communication can be established. It is possible that automatic tuning systems can be devised for making this selection so that the operator does not have to pick out the channel himself.

Even in the two to thirty megacycle bands, the antenna presents a formidable aerodynamic problem. In order to obtain efficiency it should be about 100 ft long. According to present practice, it consists of a wire stretched between the nose of the plane and the tail fin. However, as airplane speeds increase, such a wire and its supports cannot be tolerated, and other types of antenna construction must be found. Some interesting experiments have been carried on, using the wings of an airplane as the antenna. Figure 6 illustrates the way these tests were conducted. The wing of the airplane from the engine nacelle to the tip was made of plastic. The radiator was an internal conductor stretched from the engine to the wing tip. The wing tip itself was metalized to form a capacity cap. The conductor was fed from a matching tuner located close to the engine. This tuner was in turn supplied by coaxial cable from the transmitter. As different frequency bands are selected it is necessary, of course, to reset the tuner. This was done by means of Autotune mechanisms from a remote control point in the cabin. In the test described, only one wing was used as the antenna because of phasing difficulties when both wings were tried. However, this phasing difficulty can be overcome by further developmental work, thus making it possible to employ the full length of both wings for the radiator. This should constitute a very efficient radiator and present no serious aerodynamic obstacles. In this connection, it is interesting to note that some very promising experimental work on bonded glass as a structural material for airplanes has been carried out at Wright Field. Bonded-glass wing structures would be admirably suitable to carry the liaison antenna wire.

Because the nature of the propagation characteristics makes it necessary to use one of a number of rather narrow bands at different frequencies, the problem of maintaining several communication channels is difficult. Since intelligible speech requires a bandwidth of about 2000 c, if double side-band transmission is employed only four or five channels at the most can be maintained. By going to single side-band transmission, it may be possible to double this number. If more than this number of channels become necessary, recourse will have to be made to teletype communications or a speech-coding system, along the lines investigated by the Bell Telephone Company in their work with the Vocoder. At present, little would be gained by going to these systems because practical oscillator stabilities are not better than about 0.02% which means that stability alone will require some six kilocycles band width at the high-frequency end of this communication band. However, oscillator stabilities are almost certain to improve as the radio art continues to develop.
Figure 6 — Antenna System with Plastic Wing Sections
Figure 7 — Radio Spectrum
The radio transmitter and receiver itself will not differ basically from those used at present. Improvements will be made in tubes and circuits which will allow more efficient power utilization and in particular, as has already been pointed out, tuning mechanism will be made simpler to operate and more reliable. Other improvements in the liaison communication equipment may be made possible by virtue of new discoveries. However, these cannot be included in plans formulated at this time.

COMMAND SYSTEMS

Command communication equipment at present operates in the 100-156 megacycle band. However, undoubtedly the frequency for this application will be raised in the immediate future. By moving into the region of 200 to 500 megacycles, more channels become available, antenna design becomes somewhat easier, and there will be less interference with bands already allocated for commercial postwar aviation. Tube and circuit methods for this region of the spectrum are quite well developed so that it is possible to design and produce absolutely reliable receivers and transmitters. Furthermore the essential parts of the unit can be made very small and lightweight.

The antenna for these frequencies is small enough so that it can be contained within the aerodynamic members of the airplane and consequently, offers no additional drag. Antenna design presents some difficulty where uniformity of response in all directions is a requisite. However, the problems are straightforward and can be solved by adequate engineering studies.

Much higher frequencies may eventually be used for command communication. This includes the ultrahigh-frequency band 300 to 3000 megacycles and the superhigh-frequency region above 3000 megacycles. However, at present, techniques in this portion of the radio spectrum are in their infancy. It will be some time before accumulated engineering experience compares with that which exists for the lower frequencies. Nevertheless the feasibility of communications in the centimeter (1000 megacycles) and microwave (10,000) regions has been indisputably demonstrated and any long term planning should not neglect these possibilities.

There are a number of advantages to be gained by going to the higher frequencies. Since transmission of speech intelligence requires a fixed channel width the number of channels in a region representing a certain percentage of the frequency used increases with the frequency. For example at 1 megacycle a 10% region would contain 10 channels 10 kc wide, while a 10% region at 1000 megacycles would contain 1000 such channels and at 30,000 megacycles the region could contain 30,000 channels. Thus a great many more channels become available for a multiphase system.

Wider channels can also be employed in greater frequency spread available in the centimeter and microwave regions. This permits the choice of special forms of modulation which might render the system less susceptible to jamming and interception. Some work has been done in the study of such special forms of modulation including pulse, phase and frequency modulation, but much remains to be done in the future to determine their possible advantage for command communication. A program for radio development should include more extensive tests on these various types of modulation, particularly with regard to their susceptibility to jamming and inter-
ference and ease of enemy interception. Except for their less economical use of communication bandwidths and certain other minor objections, in general such modulation systems may prove to have important advantages.

Greater directivity can be obtained as the radio carrier frequency is increased. This may be important in connection with certain types of operations. In general, however, this is an undesirable feature since most frequently an omnidirectional system is desired. Antennas giving a uniform pattern in all directions are more difficult to attain at very high frequencies and the power utilization is less efficient.

Under wartime pressure, research in the ultrahigh-frequency regions has led to major advances in technique. The introduction of the lighthouse tube and other plane parallel-electrode ring-seal tubes represent an important step. Great improvement has been made in wave guide and coaxial systems. When certain problems of frequency stability have been overcome and the engineering design problems worked out ultrahigh-frequency radio systems will become very important. It is quite possible that equipment working in the 1000 to 5000 megacycle region will come into extensive use supplementing the command systems discussed above working at the lower frequencies, or possibly it may replace them entirely. Microwave systems may have important application for military aviation communication. They are characterized by certain unique advantages as well as disadvantages. Most prominent among the advantages is the extreme directionality that can be achieved; also in this region of the spectrum there is practically no natural static.

While microwave techniques are still very new, nevertheless enough work has already been done to lay the ground work for future systems. A good deal of valuable experience has been gained with S-, X- and K-band radars which can be applied to communication systems. Tests also have been made on phone transmitters and receivers operating in this portion of the radio spectrum.

As illustrative of microwave communication possibilities a system proposed and described in reports from the Radiation Laboratory at M.I.T. will be discussed.*

The system is to provide transmitter-receiver combinations on a large number of airplanes in such a way that communication can be effected between any pair independent of all the others. Thus it would provide what amounts to a telephone exchange between planes; calling another plane would simply be a matter of dialing the appropriate number. By the response of his own receiver, the individual calling can tell immediately whether the party called is within range and is receiving his signal.

Like the systems illustrated in Figs. 2 and 3 there would be a single oscillator which would serve as master oscillator for both the transmitter and receiver. However, unlike these systems transmission and reception would not be on the same frequency but on frequencies differing by the intermediate frequency.

In order to make such a system feasible it is necessary to use very stable oscillators. Ordinarily neither klystrons nor magnetrons operating at these frequencies provide anything like the required stability. However, the units in question can be stabilized against an accurately made, temperature-compensated resonant cavity by means of a feed-back loop. The cavity serves as the master frequency-determining

*Radiation Laboratory Reports #815 and #830 by R. V. Pound.
element of the transmitter-receiver unit. Normally this cavity will be set at the frequency assigned to the particular station. In making a call the operator adjusts the frequency of the cavity until it has the required value for the station he is calling. The adjustment will probably be made by means of some dial system similar to those currently in use for ordinary telephones. Proper contact will be indicated by a light or meter on his receiver. At the same time the receiver at the station being called will flash an indication.

A schematic diagram of a transmitter-receiver combination for such a system is shown in Fig. 8. In the absence of incoming signal, energy from oscillator B is divided by “magic tee”, C, into two equal portions, one of which is radiated from the antenna A and the other is fed to the stabilizing cavity D. The cavity D and two crystals E and E’ act as a discriminator and generate a voltage when the oscillator differs from the resonant frequency of the cavity. This voltage is amplified and supplied to the frequency-control element of the oscillator. When the frequency is too high this voltage is in the direction to decrease the frequency, and conversely, the voltage tends to increase the frequency if it is too low. The degree of stabilization that can be achieved depends upon the stability of the cavity and the properties of the feed-back loop. Preliminary experimental oscillators have been stabilized to 10 kc and better in this way.

The oscillator output can be frequency modulated simply by introducing the modulation voltage into the feed-back loop as shown in the figure.

When used as a receiver the incoming signal enters the same antenna used for transmission. The signal is divided at the “magic tee” and the useful portion goes through a wave guide to the balanced discriminator F, F’ where it beats with the signal from the local master oscillator B. Since the incoming signal has a carrier frequency which differs from that of the oscillator B by the IF the output from F, F’ leads to a frequency-modulated signal on a carrier of the correct intermediate frequency. In general the intermediate frequency cannot be low enough so that it represents the spacing between channels. Practical considerations suggest that the IF might be in the neighborhood of 30 megacycles. With an elaborate system of switching and image rejection one half the total number of channels available could be used for communication. A more practical and straightforward arrangement would permit one-third of the total number of channels to be used. This arrangement is shown in Fig. 9.

Group A in the figure is the distribution of transmitter (master oscillator) frequencies, the receiving frequencies and the image frequencies. A calling station adjusts its master oscillator to the receiving frequency of the station being called. This is seen in Group B. The calling station will receive the station called on his image frequency. Since his normal receiving frequency will be over a group of image-response channels no interference will result.

Even with this reduction to one-third of the total number of channels available there are still a large number which can be used. Assume the band to be used to be that at 10,000 megacycles and that the tuning range be 10% or 1000 megacycles. Then if 100 kc is allowed for each channel the total number is 10,000 and the useful number over 3000. This figure is conservative and it is certain that practical stabilities of better than the 100 kc can be achieved, thus increasing the number of useful channels.
An experimental transmitter-receiver combination of this type has already been experimentally tested and shown to be entirely feasible. In view of the rapidity with which the microwave field is advancing, the technical availability of the system is assured.

Going to still higher frequencies, 60,000 megacycles or more, the portion of the spectrum is reached where molecular absorption of the gases in the atmosphere is of consequence. Employing these frequencies, it should be possible to design short-range radio communication systems which would allow the transfer of intelligence between planes in a formation and yet have the signal strength attenuated so rapidly that the enemy at a slightly greater distance could not intercept or even detect radiation. Furthermore, it would be virtually impossible to jam the communications between the planes in the formation, short of sending jamming transmitters actually into the formation itself.

CHANNEL CONTROL AND SPECIAL SYSTEM

Much developmental work remains to be done as to methods of selecting and switching communication channels within the command-frequency spectrum. A command system designed to obtain the maximum performance from a large formation of aircraft may require individual channels for each of the airplanes involved plus additional channels for various groups of these planes and a master channel for the entire formation. If such a system is used, the switching and selecting must be made as easy as ordinary telephone dialing. Already work is being done to develop such a system. An experimental British receiver has been built which incorporates some 300 channels. These channels are selected by means of two dials, each having positions designated by letters of the alphabet. To tune the receiver and transmitter to any channel, one merely dials the two letters designating that channel. There is no fundamental reason why this system cannot be extended to include a thousand or more channels and the dial be simplified to a single telephone dial with the ten digits marked on it, on which one dials three or four numbers just as one does in the case of using the conventional telephone. Where this system is used, each plane could be assigned a channel so that any other airplane wishing to communicate with it would simply dial the appropriate number which tunes the calling transmitter and receiver to a channel which the plane being called keeps continuously open for the reception of such messages. Submaster and master channels also kept continuously open would be reserved for the use of the formation leaders. Some channels would also be reserved for emergency work. Such a system would require two or three transmitter-receiver sets per plane. However, with the short distances involved the power required would be small and each set could be made very compact. The switching system required could readily be evolved from present day telephone technique.

Mention has already been made of the possibility of reducing jamming and interference by the use of various modulated systems. There is also the problem of minimizing enemy interception of messages. This may make it necessary to use speech-scrambling systems in order to render the messages unintelligible. It would be relatively simple to develop scrambling systems whose coding could be changed at predetermined intervals in such a way as to make enemy interception virtually impossible. Intelligence transmitted by teletype or facsimile may possibly play some role in com-
mand communication system. However, this appears to be less likely than in the case of the liaison communication. Both teletype and facsimile methods are so well developed that they need no further comment.

For some aircraft work, it is desirable to have a system which gives a permanent or semipermanent indication of the command being transmitted. This is particularly important in the case of a fighter pilot as there is a considerable probability of his being occupied at the moment the message is being sent, and if it is not recorded he may lose the information. Work has already been done along these lines in connection with a British system named “Beechnut” and a corresponding American system designated as “Voflag.”

In the “Voflag” system the message, consisting of six units of intelligence, is preset into the transmitter together with the calling signal code. An electromechanical scanner surveys the preset message and directs subcarrier frequency modulation keying of an amplitude-modulated ultrahigh-frequency radio transmitter.

At the aircraft receiving the message, the “Voflag” signal is intercepted by a voice communication receiver and converted to an electrical audio output. The audio output is fed to discriminator circuits with very high selectivity which separate out the keying signals. These operate a small synchronous motor which distributes the code signals to a teleselector mechanism. The output of the teleselector controls the annunciator messages display box or can be used to control a printer.

The system is equipped with an automatic repeat-back which informs the transmitting station of the correct delivery of the message.

Because of the high selectivity of the receiving circuits and the protective feature of the balanced equal-length signalling code used, the system is very difficult to jam.

The systems discussed in the preceding paragraphs are still only in the research stage. It will be many years before they are brought to a point of development where they can be considered part of the absolutely essential minimum. However, long before this stage is reached, they may serve as important adjuncts to the fundamental communication system.

All radio communication above 50 or 100 megcycles is essentially limited to line-of-sight transmission. If radar patterns or television pictures requiring the transmission of bandwidths of several megacycles becomes an important part of the aircraft communication system, it will become necessary to develop airborne radio relay links in order to maintain communication over great distances. This will be particularly important if the transmitters are part of remote-controlled missiles. A good deal of work has already been done in developing automatic relay systems for television and multichannel telephone communication. The present equipment is, in general, too bulky for airborne use but it can be said with considerable assurance that the bulk and weight of this equipment can be reduced by a large factor without going beyond present technical knowledge. Operation at 3000 megacycles or more it will undoubtedly be possible to design a relay unit which will give several hundred miles line-sight communication range, with a nominal output power of 50 w or less. Equipment of this type could be carried in either pilot operated airplanes or remote-controlled
ships and could serve to retransmit either pictures or multichannel voice communications. A number of such airborne repeater stations spaced at intervals between the aircraft formation and its operational control point may in the future serve to maintain liaison communications as a supplement to a long-wave transmitter. This would have the advantage of permitting a great number of communication channels, of being virtually free from static and atmospheric interference and of being less susceptible to jamming. Probably the long-wave transmitter would be retained only to be used in event that the relay chain was broken.

Control of the landing, take-off and flight formation of planes from a ground station or base becomes very difficult when large numbers of planes are involved, particularly under the black-out conditions imposed by war. The presence of fog, heavy rain or other unfavorable meteorological circumstances greatly increases the hazard and makes accurate control essential. The employment of a “Teleran” system or its equivalent will expedite these operations and to a large extent reduce the danger associated with them.

The “Teleran” system includes the radar location of all planes in the neighborhood of the base and transmitting this information together with other data to the planes in the form of a television picture. It also provides for the blind-landing of planes as ordered.

For this system the space above the air base is divided into levels. The planes as they come in are assigned to the various levels. At the ground station all the planes are located by radar and the location of the planes in the different levels are plotted electronically. A map of the air-base terrain, including meteorological indications, with all of the positions of planes in a level is transmitted by television to all the planes in that level. Thus every pilot not only is informed of his own location but also knows the location of all other planes at his level and can thus avoid the possibility of collision.

A complete blind-landing system, with guide beams and indicators is provided in the lowest level.

Such a system gives the air base complete control of incoming and outgoing planes and should greatly increase the safety of what is now a very hazardous operation.

COMPONENTS

In addition to the development of systems and equipment outlined above, a good deal of effort should be spent on perfecting components which go into making up the communication equipment. Industrial engineering has developed excellent components, tubes, inductors, capacitors, resistors, and insulators for commercial radio equipment. However, the demands placed on components, and reliability required is very different for military aviation radio than for ordinary commercial practice, even commercial aviation.

The development of components should be carried out in collaboration with parts manufacturers to ensure an eventual adequate supply of these elements. Attention should be focused on such factors as stability, resistance to shock, insulation under extremes of pressure, temperature, humidity, etc.
It is certain the components with the required characteristics can be produced, and the only reason they are not at present is that they are uneconomical to use in commercial equipment.

* * * * *

Other developments in the technique of radio communication undoubtedly will occur and obviously will make it necessary to alter the program. However, the program as outlined can be considered to represent the minimum realizable communication system and any deviations from it will necessarily be in the direction of improvement.

RECOMMENDATIONS

The discussion above outlines a course of radio-communication equipment development which would meet the basic needs of an effective air force. It also suggests special lines along which research should be directed. These are the following:

Liaison Systems (2 to 30 megacycles)
1. Antenna research in collaboration with aeronautical designers.
2. Improvement of oscillator stability.
3. New tuning methods, with an aim to obtaining automatic band selection if possible.
4. Investigation of voice coding systems for reducing the band widths required per channel.

Command Systems (200 to 500 megacycles)
1. Antenna design.
2. Stability of oscillators and other components.
3. Development of multichannel switching and selector mechanisms.
4. Study of antijamming and anti-interception methods.
5. Modulation methods.

Components
1. Development of suitable tubes.
2. Development and production of insulators, resistors, capacitors, etc.
Special Systems

1. The study of centimeter, microwave, and millimeter wavelength systems. This includes the investigation of all components including antennas.

2. Highly directional transmission and reception.

3. Pulse modulation.

4. Application of facsimile, teletype and indicator systems to aircraft needs.

5. Television and radar picture transmission.

6. Airborne radio relay links.

7. "Teleran" air base control systems.